Add support to specify platform specific transition_delay_us instead
of using the transition delay derived from PCC.
With commit 3d41386d55 (cpufreq: CPPC: Use transition_delay_us
depending transition_latency) we are setting transition_delay_us
directly and not applying the LATENCY_MULTIPLIER. Because of that,
on Qualcomm Centriq we can end up with a very high rate of frequency
change requests when using the schedutil governor (default
rate_limit_us=10 compared to an earlier value of 10000).
The PCC subspace describes the rate at which the platform can accept
commands on the CPPC's PCC channel. This includes read and write
command on the PCC channel that can be used for reasons other than
frequency transitions. Moreover the same PCC subspace can be used by
multiple freq domains and deriving transition_delay_us from it as we
do now can be sub-optimal.
Moreover if a platform does not use PCC for desired_perf register then
there is no way to compute the transition latency or the delay_us.
CPPC does not have a standard defined mechanism to get the transition
rate or the latency at the moment.
Given the above limitations, it is simpler to have a platform specific
transition_delay_us and rely on PCC derived value only if a platform
specific value is not available.
Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org>
Cc: 4.14+ <stable@vger.kernel.org> # 4.14+
Fixes: 3d41386d55 (cpufreq: CPPC: Use transition_delay_us depending transition_latency)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A bunch of fixes, mostly for existing code and going to stable.
Our memory hot-unplug path wasn't flushing the cache before removing memory.
That is a problem now that we are doing memory hotplug on bare metal.
Three fixes for the NPU code that supports devices connected via NVLink (ie.
GPUs). The main one tweaks the TLB flush algorithm to avoid soft lockups for
large flushes.
A fix for our memory error handling where we would loop infinitely, returning
back to the bad access and hard lockup the CPU.
Fixes for the OPAL RTC driver, which wasn't handling some error cases correctly.
A fix for a hardlockup in the powernv cpufreq driver.
And finally two fixes to our smp_send_stop(), required due to a recent change to
use it on shutdown.
Thanks to:
Alistair Popple, Balbir Singh, Laurentiu Tudor, Mahesh Salgaonkar, Mark
Hairgrove, Nicholas Piggin, Rashmica Gupta, Shilpasri G Bhat.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJa5FRaExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYA3
LQ//es8gvVVYxXOP5m+jl+LP//nQ8Z9l4ezW/0QmtAwuzAnt31F3eYcBwtIa5EaZ
Fm7iQ5eu+o4JJSj7y/a1gXZOgZaG1uprc6psUdI+FZ6rQ3AAF9BlD7J5ZvkJ/Nuz
Wo37+oxr8T8dpGYurS2nrOyP1654ZNvtkHzr1rovhNZ/Yx6GuDppyou1cBrcHgoQ
f/SILBDpwPQ6sEzMOPptN3SNajq2716kgoTT9yU2lEHGReeMPc1RL1gVw91O7jdA
RJGZl/GTPDDuT2hg0yms4eWhmMDbfQU6kRbPwBtYM5BsCvvBGuISL3RKSceNSo/C
LO3IqnirNff0zzx5dSuy+cmzoPxMbDhWV91to29HJH5cyvWCqH8V5uJsKeHnDbmr
YscSvgi6iEbiMtuckYL8Bqe/jcE/4RCRixH+j7mkJc+XUrvjligUFG9VVq8tERXF
lA/M0Zh+AI0doFjiPbkWHlbcfPu0jhwnZ7aivpf5FKdcfF6aeBr5tX+j0bRqAXEZ
FVUd2gst7s73q4B8b8QicfMpJkYfWia9PnrifrHe10EYi9kL2z5GjDOz8s6Suzed
KD+XGuLWb9zm2Fuga/Guzx2YM0DWTEk/or5qbBRh+44WTprEZxDTotVl5tTYfgsU
ErEnGqlBevCrzknbe7ZaWKlkzSNXxoF9OpETf8kVOocEuWs=
=JJLB
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"A bunch of fixes, mostly for existing code and going to stable.
Our memory hot-unplug path wasn't flushing the cache before removing
memory. That is a problem now that we are doing memory hotplug on bare
metal.
Three fixes for the NPU code that supports devices connected via
NVLink (ie. GPUs). The main one tweaks the TLB flush algorithm to
avoid soft lockups for large flushes.
A fix for our memory error handling where we would loop infinitely,
returning back to the bad access and hard lockup the CPU.
Fixes for the OPAL RTC driver, which wasn't handling some error cases
correctly.
A fix for a hardlockup in the powernv cpufreq driver.
And finally two fixes to our smp_send_stop(), required due to a recent
change to use it on shutdown.
Thanks to: Alistair Popple, Balbir Singh, Laurentiu Tudor, Mahesh
Salgaonkar, Mark Hairgrove, Nicholas Piggin, Rashmica Gupta, Shilpasri
G Bhat"
* tag 'powerpc-4.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/kvm/booke: Fix altivec related build break
powerpc: Fix deadlock with multiple calls to smp_send_stop
cpufreq: powernv: Fix hardlockup due to synchronous smp_call in timer interrupt
powerpc: Fix smp_send_stop NMI IPI handling
rtc: opal: Fix OPAL RTC driver OPAL_BUSY loops
powerpc/mce: Fix a bug where mce loops on memory UE.
powerpc/powernv/npu: Do a PID GPU TLB flush when invalidating a large address range
powerpc/powernv/npu: Prevent overwriting of pnv_npu2_init_contex() callback parameters
powerpc/powernv/npu: Add lock to prevent race in concurrent context init/destroy
powerpc/powernv/memtrace: Let the arch hotunplug code flush cache
powerpc/mm: Flush cache on memory hot(un)plug
gpstate_timer_handler() uses synchronous smp_call to set the pstate
on the requested core. This causes the below hard lockup:
smp_call_function_single+0x110/0x180 (unreliable)
smp_call_function_any+0x180/0x250
gpstate_timer_handler+0x1e8/0x580
call_timer_fn+0x50/0x1c0
expire_timers+0x138/0x1f0
run_timer_softirq+0x1e8/0x270
__do_softirq+0x158/0x3e4
irq_exit+0xe8/0x120
timer_interrupt+0x9c/0xe0
decrementer_common+0x114/0x120
-- interrupt: 901 at doorbell_global_ipi+0x34/0x50
LR = arch_send_call_function_ipi_mask+0x120/0x130
arch_send_call_function_ipi_mask+0x4c/0x130
smp_call_function_many+0x340/0x450
pmdp_invalidate+0x98/0xe0
change_huge_pmd+0xe0/0x270
change_protection_range+0xb88/0xe40
mprotect_fixup+0x140/0x340
SyS_mprotect+0x1b4/0x350
system_call+0x58/0x6c
One way to avoid this is removing the smp-call. We can ensure that the
timer always runs on one of the policy-cpus. If the timer gets
migrated to a cpu outside the policy then re-queue it back on the
policy->cpus. This way we can get rid of the smp-call which was being
used to set the pstate on the policy->cpus.
Fixes: 7bc54b652f ("timers, cpufreq/powernv: Initialize the gpstate timer as pinned")
Cc: stable@vger.kernel.org # v4.8+
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Reported-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com>
Signed-off-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This debug code was helpful while developing the driver, but it isn't
being used for anything anymore.
Signed-off-by: Markus Mayer <mmayer@broadcom.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This isn't used anymore. Remove the helper and update documentation
accordingly.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from SCMI driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When multiple CPUs are related in one cpufreq policy, the first online
CPU will be chosen by default to handle cpufreq operations. Let's take
cpu0 and cpu1 as an example.
When cpu0 is offline, policy->cpu will be shifted to cpu1. cpu1's perf
capabilities should be initialized. Otherwise, perf capabilities are 0s
and speed change can not take effect.
This patch copies perf capabilities of the first online CPU to other
shared CPUs when policy shared type is CPUFREQ_SHARED_TYPE_ANY.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Shunyong Yang <shunyong.yang@hxt-semitech.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There was no clk_put() balancing the clk_get(). This commit fixes it.
Fixes: 92ce45fb87 (cpufreq: Add DVFS support for Armada 37xx)
Cc: 4.16+ <stable@vger.kernel.org> # 4.16+
Reported-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that the driver has started to set transition_delay_us directly,
there is no need to set transition_latency along with it, as it is not
used by the cpufreq core.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This driver can not be built as a module and there is no need of the
platform driver unregister part. Use builtin_platform_driver() instead
of module_platform_driver().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The intel_pstate driver doesn't use debugfs any more, so drop
linux/debugfs.h from the list of included headers in it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The main addition this time around is the new ARM "SCMI" framework,
which is the latest in a series of standards coming from ARM to do power
management in a platform independent way. This has been through many
review cycles, and it relies on a rather interesting way of using the
mailbox subsystem, but in the end I agreed that Sudeep's version was
the best we could do after all.
Other changes include:
- the ARM CCN driver is moved out of drivers/bus into drivers/perf,
which makes more sense. Similarly, the performance monitoring
portion of the CCI driver are moved the same way and cleaned up
a little more.
- a series of updates to the SCPI framework
- support for the Mediatek mt7623a SoC in drivers/soc
- support for additional NVIDIA Tegra hardware in drivers/soc
- a new reset driver for Socionext Uniphier
- lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and
drivers/firmware and drivers/reset across platforms
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaxiNzAAoJEGCrR//JCVInYhYP/2kPhc5t/kszA1bcklcbO9dY
eX37Ra/RR4yQ5yeQZVIZ4UkUovxk9PmG2tM4K5oJaTDsz5pPEgavVOOr3sbfj6vb
4O9auTeysEQlHcbVdNFum0YS2gUY2YD7D12DTRorotLxCqod184ccWXq0XGfIWaY
l3YRrcL/lPlqmyS3z/GNx9oNygOMUzEfXfIQYICyzHuYiLBUGnkKC1vIb+Hx1TDq
Cxk++AUqH13Mss24O2A2QQh+oBHj2BybDLLqwcC5PSpsUbFrVCfzG54l43mig32T
NOxV0Qnml2wAtU4H0QcgtSgwRimHD0YOiX8ssquvDDiqTqM5G+llSTGkEbYe+AUW
4GIZYoBOwGkfEXS+tyymHe9yfc5h1OLYAeFU1jRm723c7phanuu67rPn35YC8UMK
zSql10JpkAGNzMikrxxb6wnis951w2UFlzhgZQ6ItA/nRq3l+oEQA0Qiljv965nz
DVLsD5+gdhK6GBctkzlsD5HFn6GjM8JilnsOVPHD765nKnVBSxKiXRLV228XVug2
rChF1FhQqLnM54jCMqHZX5fS9SbSgtYswHqIXpVw6GmJkqq/Ly10yGR0vuWD+uyn
BV7q5AKpGrwm6wZkMM2uZ1VdUtWzn856AbkqrvX/QhmJcX4McuqaLUrC8bSOj1ty
KeVil0akq3nU+xHl5Ojs
=Pmsx
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Arnd Bergmann:
"The main addition this time around is the new ARM "SCMI" framework,
which is the latest in a series of standards coming from ARM to do
power management in a platform independent way.
This has been through many review cycles, and it relies on a rather
interesting way of using the mailbox subsystem, but in the end I
agreed that Sudeep's version was the best we could do after all.
Other changes include:
- the ARM CCN driver is moved out of drivers/bus into drivers/perf,
which makes more sense. Similarly, the performance monitoring
portion of the CCI driver are moved the same way and cleaned up a
little more.
- a series of updates to the SCPI framework
- support for the Mediatek mt7623a SoC in drivers/soc
- support for additional NVIDIA Tegra hardware in drivers/soc
- a new reset driver for Socionext Uniphier
- lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and
drivers/firmware and drivers/reset across platforms"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (87 commits)
reset: uniphier: add ethernet reset control support for PXs3
reset: stm32mp1: Enable stm32mp1 reset driver
dt-bindings: reset: add STM32MP1 resets
reset: uniphier: add Pro4/Pro5/PXs2 audio systems reset control
reset: imx7: add 'depends on HAS_IOMEM' to fix unmet dependency
reset: modify the way reset lookup works for board files
reset: add support for non-DT systems
clk: scmi: use devm_of_clk_add_hw_provider() API and drop scmi_clocks_remove
firmware: arm_scmi: prevent accessing rate_discrete uninitialized
hwmon: (scmi) return -EINVAL when sensor information is unavailable
amlogic: meson-gx-socinfo: Update soc ids
soc/tegra: pmc: Use the new reset APIs to manage reset controllers
soc: mediatek: update power domain data of MT2712
dt-bindings: soc: update MT2712 power dt-bindings
cpufreq: scmi: add thermal dependency
soc: mediatek: fix the mistaken pointer accessed when subdomains are added
soc: mediatek: add SCPSYS power domain driver for MediaTek MT7623A SoC
soc: mediatek: avoid hardcoded value with bus_prot_mask
dt-bindings: soc: add header files required for MT7623A SCPSYS dt-binding
dt-bindings: soc: add SCPSYS binding for MT7623 and MT7623A SoC
...
- Modify the cpuidle poll state implementation to prevent CPUs from
staying in the loop in there for excessive times (Rafael Wysocki).
- Add Intel Cannon Lake chips support to the RAPL power capping
driver (Joe Konno).
- Add reference counting to the device links handling code in the
PM core (Lukas Wunner).
- Avoid reconfiguring GPEs on suspend-to-idle in the ACPI system
suspend code (Rafael Wysocki).
- Allow devices to be put into deeper low-power states via ACPI
if both _SxD and _SxW are missing (Daniel Drake).
- Reorganize the core ACPI suspend-to-idle wakeup code to avoid a
keyboard wakeup issue on Asus UX331UA (Chris Chiu).
- Prevent the PCMCIA library code from aborting suspend-to-idle due
to noirq suspend failures resulting from incorrect assumptions
(Rafael Wysocki).
- Add coupled cpuidle supprt to the Exynos3250 platform (Marek
Szyprowski).
- Add new sysfs file to make it easier to specify the image storage
location during hibernation (Mario Limonciello).
- Add sysfs files for collecting suspend-to-idle usage and time
statistics for CPU idle states (Rafael Wysocki).
- Update the pm-graph utilities (Todd Brandt).
- Reduce the kernel log noise related to reporting Low-power Idle
constraings by the ACPI system suspend code (Rafael Wysocki).
- Make it easier to distinguish dedicated wakeup IRQs in the
/proc/interrupts output (Tony Lindgren).
- Add the frequency table validation in cpufreq to the core and
drop it from a number of cpufreq drivers (Viresh Kumar).
- Drop "cooling-{min|max}-level" for CPU nodes from a couple of
DT bindings (Viresh Kumar).
- Clean up the CPU online error code path in the cpufreq core
(Viresh Kumar).
- Fix assorted issues in the SCPI, CPPC, mediatek and tegra186
cpufreq drivers (Arnd Bergmann, Chunyu Hu, George Cherian,
Viresh Kumar).
- Drop memory allocation error messages from a few places in
cpufreq and cpuildle drivers (Markus Elfring).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJawgTUAAoJEILEb/54YlRxI48QALc6IUfj/O+gLAWAf8qHk+8V
eLn9E1NrZXUtNMNYItBcgZfuMImIj7MC5qRo/BhzYdd0VyUzFYEyd9liUVFBDEXA
SH65jyjRrXORKfLrSP5H8lcCdckTFXfxzonVFN2n4l7Gdv540UFuqloU+vS4Wrfp
wMg9UvKRxr+7LwOI4q2sMFtB8Uki+lySY5UECqRIKUIJKIH6RPo3m73Kps7kw8kU
c2RCU8w/9PoomPaEjvwZ0vT5lNrQXmBbC5hxcMzBHtLS0Cwb3xJsUB4w6niezdGY
e+n6Vx7XeId7+Ujnn4praxUwyVq2wEirJccvAEgKFcZzjmGAXrHl8rOgMLvb3ugN
P+ftkYk+Vizci9hmACeA1LGw4hN/dXMfephnezCsy9Q/QK8QPJV8XO0vxfyaQYhZ
ie6SKcdZimFDzqd6oHLFftRou3imvq8RUvKTx2CR0KVkApnaDDiTeP5ay1Yd+UU3
EomWe7/mxoSgJ9kB/9GlKifQXBof62/fbrWH0AdM1oliONbbOZcLqg5x4DZUmfTK
hTAx3SSxMRZSlc4Zl1CzbrHnFKi9cRBYCs0tPdOSnAO2ZfCsOmokJE+ig5I8lZre
SlaciUpG2Vvf7m61mVlrqLLos8T9rTVM2pqwsoxII7A+dFrWK3HpqoypEN/87tm7
4/zjPF6LK2eTKL9WdTCk
=6JC2
-----END PGP SIGNATURE-----
Merge tag 'pm-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These update the cpuidle poll state definition to reduce excessive
energy usage related to it, add new CPU ID to the RAPL power capping
driver, update the ACPI system suspend code to handle some special
cases better, extend the PM core's device links code slightly, add new
sysfs attribute for better suspend-to-idle diagnostics and easier
hibernation handling, update power management tools and clean up
cpufreq quite a bit.
Specifics:
- Modify the cpuidle poll state implementation to prevent CPUs from
staying in the loop in there for excessive times (Rafael Wysocki).
- Add Intel Cannon Lake chips support to the RAPL power capping
driver (Joe Konno).
- Add reference counting to the device links handling code in the PM
core (Lukas Wunner).
- Avoid reconfiguring GPEs on suspend-to-idle in the ACPI system
suspend code (Rafael Wysocki).
- Allow devices to be put into deeper low-power states via ACPI if
both _SxD and _SxW are missing (Daniel Drake).
- Reorganize the core ACPI suspend-to-idle wakeup code to avoid a
keyboard wakeup issue on Asus UX331UA (Chris Chiu).
- Prevent the PCMCIA library code from aborting suspend-to-idle due
to noirq suspend failures resulting from incorrect assumptions
(Rafael Wysocki).
- Add coupled cpuidle supprt to the Exynos3250 platform (Marek
Szyprowski).
- Add new sysfs file to make it easier to specify the image storage
location during hibernation (Mario Limonciello).
- Add sysfs files for collecting suspend-to-idle usage and time
statistics for CPU idle states (Rafael Wysocki).
- Update the pm-graph utilities (Todd Brandt).
- Reduce the kernel log noise related to reporting Low-power Idle
constraings by the ACPI system suspend code (Rafael Wysocki).
- Make it easier to distinguish dedicated wakeup IRQs in the
/proc/interrupts output (Tony Lindgren).
- Add the frequency table validation in cpufreq to the core and drop
it from a number of cpufreq drivers (Viresh Kumar).
- Drop "cooling-{min|max}-level" for CPU nodes from a couple of DT
bindings (Viresh Kumar).
- Clean up the CPU online error code path in the cpufreq core (Viresh
Kumar).
- Fix assorted issues in the SCPI, CPPC, mediatek and tegra186
cpufreq drivers (Arnd Bergmann, Chunyu Hu, George Cherian, Viresh
Kumar).
- Drop memory allocation error messages from a few places in cpufreq
and cpuildle drivers (Markus Elfring)"
* tag 'pm-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (56 commits)
ACPI / PM: Fix keyboard wakeup from suspend-to-idle on ASUS UX331UA
cpufreq: CPPC: Use transition_delay_us depending transition_latency
PM / hibernate: Change message when writing to /sys/power/resume
PM / hibernate: Make passing hibernate offsets more friendly
cpuidle: poll_state: Avoid invoking local_clock() too often
PM: cpuidle/suspend: Add s2idle usage and time state attributes
cpuidle: Enable coupled cpuidle support on Exynos3250 platform
cpuidle: poll_state: Add time limit to poll_idle()
cpufreq: tegra186: Don't validate the frequency table twice
cpufreq: speedstep: Don't validate the frequency table twice
cpufreq: sparc: Don't validate the frequency table twice
cpufreq: sh: Don't validate the frequency table twice
cpufreq: sfi: Don't validate the frequency table twice
cpufreq: scpi: Don't validate the frequency table twice
cpufreq: sc520: Don't validate the frequency table twice
cpufreq: s3c24xx: Don't validate the frequency table twice
cpufreq: qoirq: Don't validate the frequency table twice
cpufreq: pxa: Don't validate the frequency table twice
cpufreq: ppc_cbe: Don't validate the frequency table twice
cpufreq: powernow: Don't validate the frequency table twice
...
With commit e948bc8fbe (cpufreq: Cap the default transition delay
value to 10 ms) the cpufreq was not honouring the delay passed via
ACPI (PCCT). Due to which on ARM based platforms using CPPC the
cpufreq governor tries to change the frequency of CPUs faster than
expected.
This leads to continuous error messages like the following.
" ACPI CPPC: PCC check channel failed. Status=0 "
Earlier (without above commit) the default transition delay was
taken form the value passed from PCCT. Use the same value provided
by PCCT to set the transition_delay_us.
Fixes: e948bc8fbe (cpufreq: Cap the default transition delay value to 10 ms)
Signed-off-by: George Cherian <george.cherian@cavium.com>
Cc: 4.14+ <stable@vger.kernel.org> # 4.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cris architecture is getting removed, including the artpec3
and etraxfs SoCs, so these cpufreq drivers are now unused.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The blackfin architecture is getting removed, so this driver is
now obsolete.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Aaron Wu <aaron.wu@analog.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from tegra186 driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from speedstep driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from sparc driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from sh-cpufreq driver.
The driver though prints the min/max frequency values and the same is
done from the ->ready() callback now to keep the behavior unchanged.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from sfi driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from scpi driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from sc520 driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from s3c24xx driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from qoirq driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from pxa driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from ppc_cbe driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from powernow driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from p4-clockmod driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from mediatek driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from longhaul driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from ia64-acpi driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from elanfreq driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from e_powersaver driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from cpufreq-dt driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from brcmstb driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from arm_big_little driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table in the acpi-cpufreq driver.
The driver needs to crosscheck if the max frequency corresponds to the
P-state 0 or not and the same is done from the ->ready() callback now.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq table is already validated by the cpufreq core and none of
the users of cpufreq_generic_init() have any dependency on it to
validate the table as well.
Don't validate the cpufreq table anymore from cpufreq_generic_init().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This is a preparatory commit to make policy->suspend_freq independent of
validation of the cpufreq table, as a later commit would update
cpufreq_generic_init() to not validate the cpufreq table any longer.
The driver already assumes the order in which the frequency table is
sorted and we can get the max frequency easily.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A built-in scpi cpufreq driver cannot link against a modular
thermal framework:
drivers/cpufreq/scpi-cpufreq.o: In function `scpi_cpufreq_ready':
scpi-cpufreq.c:(.text+0x4c): undefined reference to `of_cpufreq_cooling_register'
drivers/cpufreq/scpi-cpufreq.o: In function `scpi_cpufreq_exit':
scpi-cpufreq.c:(.text+0x9c): undefined reference to `cpufreq_cooling_unregister'
This adds a Kconfig dependency that makes sure this configuration
is not possible, while allowing all configurations that can work.
Note that disabling CPU_THERMAL means we don't care about the
THERMAL dependency.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core is already validating the CPU frequency table after
calling the ->init() callback of the cpufreq drivers and the drivers
don't need to do the same anymore. Though they need to set the
policy->freq_table field directly from the ->init() callback now.
Stop validating the frequency table from powernv driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A built-in scmi cpufreq driver cannot link against a modular
thermal framework:
drivers/cpufreq/scmi-cpufreq.o: In function `scmi_cpufreq_ready':
scmi-cpufreq.c:(.text+0x40): undefined reference to `of_cpufreq_cooling_register'
drivers/cpufreq/scmi-cpufreq.o: In function `scmi_cpufreq_exit':
scmi-cpufreq.c:(.text+0x88): undefined reference to `cpufreq_cooling_unregister'
This adds a Kconfig dependency that makes sure this configuration
is not possible, while allowing all configurations that can work.
Note that disabling CPU_THERMAL means we don't care about the
THERMAL dependency.
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
ARM System Control and Management Interface(SCMI)[1] is more flexible and
easily extensible than any of the existing interfaces.
Few existing as well as future ARM platforms provide micro-controllers
to abstract various power and other system management tasks which have
similar interfaces, both in terms of the functions that are provided by
them, and in terms of how requests are communicated to them.
There are quite a few protocols like ARM SCPI, TI SCI, QCOM RPM, Nvidia Tegra
BPMP, and so on already. This specification is to standardize and avoid any
further fragmentation in the design of such interface by various vendors.
The current SCMI driver implementation is very basic and initial support.
It lacks support for notifications, asynchronous/delayed response, perf/power
statistics region and sensor register region.
Mailbox is the only form of transport supported currently in the driver.
SCMI supports interrupt based mailbox communication, where, on completion
of the processing of a message, the caller receives an interrupt as well as
polling for completion.
SCMI is designed to minimize the dependency on the mailbox/transport
hardware. So in terms of SCMI, each channel in the mailbox includes
memory area, doorbell and completion interrupt.
However the doorbell and completion interrupt is highly mailbox dependent
which was bit of controversial as part of SCMI/mailbox discussions.
Arnd and me discussed about the few aspects of SCMI and the mailbox framework:
1. Use of mailbox framework for doorbell type mailbox controller:
- Such hardware may not require any data to be sent to signal the remote
about the presence of a message. The channel will have in-built
information on how to trigger the signal to the remote.
There are few mailbox controller drivers which are purely doorbell based.
e.g.QCOM IPC, STM, Tegra, ACPI PCC,..etc
2. Supporting other mailbox controller:
- SCMI just needs a mechanism to signal the remote firmware. Such
controller may need fixed message to be sent to trigger a doorbell.
In such case we may need to get that data from DT and pass the same
to the controller. It's not covered in the current DT binding, but
can be extended as optional property in future.
However handling notifications may be interesting on such mailbox, but
again there is no way to interpret what the data field(remote message)
means, it could be a bit mask or a number or don't-care.
Arnd mentioned that he doesn't like the way the mailbox binding deals
with doorbell-type hardware, but we do have quite a few precedent drivers
already and changing the binding to add a data field would not make it any
better, but could cause other problems. So he is happy with the status quo
of SCMI implementation.
[1] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0056a/index.html
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJalvXJAAoJEABBurwxfuKYUHoQANi5gm0vGgRhb8/Cc6BHF9ij
WVge3E2O+Ygg2qTKJJxWvwG3w09Pu9Pugwoa7vuisDNz4ihF+3WEYCZiwrbQhMOQ
8ZyxXwdBu4Kp0fnNAGGq0MWllwspVgdC2Be5jviDTMw7H8ZIQEiKjxPkdSFY1xFj
YAtTzuUeDcuztUb3IliOpLscxNUqGEQr4p/xj0VFu+1XSwtYo/9bDU7haiYNj0MD
zbNv9WhyjUHTTsdQjDW4YGywQpFPu/oI8oSR5q+Q3mudccaZYbvvTwKDRACLVkr4
rpeymFdGSEU8OI23pKql4eEZ2DC1VKuVnG9peTr9UhhuRL8jQKqFLeCYH0fGcY89
VGWDIFBjyUg1NK7giCriqCq4m68UM49ChITXY6zRrIvyONgUZj6p6kTmCHC3TULH
LWfu9lf7XqI5/AqZaXhHsDPL2Arf0u5K7rP6yaU0BgdQ2HRKV8rIT3KadjsOioAw
bIDfpi4eInmq41CUy1gsWP6nIRg4qR4sZiWC2CW8ap0gbHq8a7PVuuRi4VDCZIkN
CfntuDAnE+FMq/cMpgLRGteNbl0MVAeAeJfEGNyk5ahhYZtvnAy142zDpBmvWZth
ZuZvb7mwiNPiZTC65B/DFDdSCKZtD+LVCodzcm2Pkx6zgW0SC6pje+mX0+zpDxZ9
A9Eguiun1hInKX3URD1D
=qOck
-----END PGP SIGNATURE-----
Merge tag 'scmi-updates-4.17' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux into next/drivers
Pull "ARM SCMI support for v4.17" from Sudeep Holla:
ARM System Control and Management Interface(SCMI)[1] is more flexible and
easily extensible than any of the existing interfaces.
Few existing as well as future ARM platforms provide micro-controllers
to abstract various power and other system management tasks which have
similar interfaces, both in terms of the functions that are provided by
them, and in terms of how requests are communicated to them.
There are quite a few protocols like ARM SCPI, TI SCI, QCOM RPM, Nvidia Tegra
BPMP, and so on already. This specification is to standardize and avoid any
further fragmentation in the design of such interface by various vendors.
The current SCMI driver implementation is very basic and initial support.
It lacks support for notifications, asynchronous/delayed response, perf/power
statistics region and sensor register region.
Mailbox is the only form of transport supported currently in the driver.
SCMI supports interrupt based mailbox communication, where, on completion
of the processing of a message, the caller receives an interrupt as well as
polling for completion.
SCMI is designed to minimize the dependency on the mailbox/transport
hardware. So in terms of SCMI, each channel in the mailbox includes
memory area, doorbell and completion interrupt.
However the doorbell and completion interrupt is highly mailbox dependent
which was bit of controversial as part of SCMI/mailbox discussions.
Arnd and me discussed about the few aspects of SCMI and the mailbox framework:
1. Use of mailbox framework for doorbell type mailbox controller:
- Such hardware may not require any data to be sent to signal the remote
about the presence of a message. The channel will have in-built
information on how to trigger the signal to the remote.
There are few mailbox controller drivers which are purely doorbell based.
e.g.QCOM IPC, STM, Tegra, ACPI PCC,..etc
2. Supporting other mailbox controller:
- SCMI just needs a mechanism to signal the remote firmware. Such
controller may need fixed message to be sent to trigger a doorbell.
In such case we may need to get that data from DT and pass the same
to the controller. It's not covered in the current DT binding, but
can be extended as optional property in future.
However handling notifications may be interesting on such mailbox, but
again there is no way to interpret what the data field(remote message)
means, it could be a bit mask or a number or don't-care.
Arnd mentioned that he doesn't like the way the mailbox binding deals
with doorbell-type hardware, but we do have quite a few precedent drivers
already and changing the binding to add a data field would not make it any
better, but could cause other problems. So he is happy with the status quo
of SCMI implementation.
[1] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0056a/index.html
* tag 'scmi-updates-4.17' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux:
cpufreq: scmi: add support for fast frequency switching
cpufreq: add support for CPU DVFS based on SCMI message protocol
hwmon: add support for sensors exported via ARM SCMI
hwmon: (core) Add hwmon_max to hwmon_sensor_types enumeration
clk: add support for clocks provided by SCMI
firmware: arm_scmi: add device power domain support using genpd
firmware: arm_scmi: add per-protocol channels support using idr objects
firmware: arm_scmi: refactor in preparation to support per-protocol channels
firmware: arm_scmi: add option for polling based performance domain operations
firmware: arm_scmi: add support for polling based SCMI transfers
firmware: arm_scmi: probe and initialise all the supported protocols
firmware: arm_scmi: add initial support for sensor protocol
firmware: arm_scmi: add initial support for power protocol
firmware: arm_scmi: add initial support for clock protocol
firmware: arm_scmi: add initial support for performance protocol
firmware: arm_scmi: add scmi protocol bus to enumerate protocol devices
firmware: arm_scmi: add common infrastructure and support for base protocol
firmware: arm_scmi: add basic driver infrastructure for SCMI
dt-bindings: arm: add support for ARM System Control and Management Interface(SCMI) protocol
dt-bindings: mailbox: add support for mailbox client shared memory
The cpufreq core provides option for drivers to implement fast_switch
callback which is invoked for frequency switching from interrupt context.
This patch adds support for fast_switch callback in SCMI cpufreq driver
by making use of polling based SCMI transfer. It also sets the flag
fast_switch_possible.
Cc: linux-pm@vger.kernel.org
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
On some ARM based systems, a separate Cortex-M based System Control
Processor(SCP) provides the overall power, clock, reset and system
control including CPU DVFS. SCMI Message Protocol is used to
communicate with the SCP.
This patch adds a cpufreq driver for such systems using SCMI interface
to drive CPU DVFS.
Cc: linux-pm@vger.kernel.org
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
The script "checkpatch.pl" pointed information out like the following.
WARNING: void function return statements are not generally useful
Thus remove such a statement in the affected functions.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>