Commit Graph

3 Commits

Author SHA1 Message Date
Rui Salvaterra 3e26a691fe lib: lz4: fixed zram with lz4 on big endian machines
Based on Sergey's test patch [1], this fixes zram with lz4 compression
on big endian cpus.

Note that the 64-bit preprocessor test is not a cleanup, it's part of
the fix, since those identifiers are bogus (for example, __ppc64__
isn't defined anywhere else in the kernel, which means we'd fall into
the 32-bit definitions on ppc64).

Tested on ppc64 with no regression on x86_64.

[1] http://marc.info/?l=linux-kernel&m=145994470805853&w=4

Cc: stable@vger.kernel.org
Suggested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-13 09:22:49 -07:00
Chanho Min c72ac7a1a9 lib: add lz4 compressor module
This patchset is for supporting LZ4 compression and the crypto API using
it.

As shown below, the size of data is a little bit bigger but compressing
speed is faster under the enabled unaligned memory access.  We can use
lz4 de/compression through crypto API as well.  Also, It will be useful
for another potential user of lz4 compression.

lz4 Compression Benchmark:
Compiler: ARM gcc 4.6.4
ARMv7, 1 GHz based board
   Kernel: linux 3.4
   Uncompressed data Size: 101 MB
         Compressed Size  compression Speed
   LZO   72.1MB		  32.1MB/s, 33.0MB/s(UA)
   LZ4   75.1MB		  30.4MB/s, 35.9MB/s(UA)
   LZ4HC 59.8MB		   2.4MB/s,  2.5MB/s(UA)
- UA: Unaligned memory Access support
- Latest patch set for LZO applied

This patch:

Add support for LZ4 compression in the Linux Kernel.  LZ4 Compression APIs
for kernel are based on LZ4 implementation by Yann Collet and were changed
for kernel coding style.

LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html
LZ4 source repository : http://code.google.com/p/lz4/
svn revision : r90

Two APIs are added:

lz4_compress() support basic lz4 compression whereas lz4hc_compress()
support high compression or CPU performance get lower but compression
ratio get higher.  Also, we require the pre-allocated working memory with
the defined size and destination buffer must be allocated with the size of
lz4_compressbound.

[akpm@linux-foundation.org: make lz4_compresshcctx() static]
Signed-off-by: Chanho Min <chanho.min@lge.com>
Cc: "Darrick J. Wong" <djwong@us.ibm.com>
Cc: Bob Pearson <rpearson@systemfabricworks.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Herbert Xu <herbert@gondor.hengli.com.au>
Cc: Yann Collet <yann.collet.73@gmail.com>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:30 -07:00
Kyungsik Lee cffb78b0e0 decompressor: add LZ4 decompressor module
Add support for LZ4 decompression in the Linux Kernel.  LZ4 Decompression
APIs for kernel are based on LZ4 implementation by Yann Collet.

Benchmark Results(PATCH v3)
Compiler: Linaro ARM gcc 4.6.2

1. ARMv7, 1.5GHz based board
   Kernel: linux 3.4
   Uncompressed Kernel Size: 14MB
        Compressed Size  Decompression Speed
   LZO  6.7MB            20.1MB/s, 25.2MB/s(UA)
   LZ4  7.3MB            29.1MB/s, 45.6MB/s(UA)

2. ARMv7, 1.7GHz based board
   Kernel: linux 3.7
   Uncompressed Kernel Size: 14MB
        Compressed Size  Decompression Speed
   LZO  6.0MB            34.1MB/s, 52.2MB/s(UA)
   LZ4  6.5MB            86.7MB/s
- UA: Unaligned memory Access support
- Latest patch set for LZO applied

This patch set is for adding support for LZ4-compressed Kernel.  LZ4 is a
very fast lossless compression algorithm and it also features an extremely
fast decoder [1].

But we have five of decompressors already and one question which does
arise, however, is that of where do we stop adding new ones?  This issue
had been discussed and came to the conclusion [2].

Russell King said that we should have:

 - one decompressor which is the fastest
 - one decompressor for the highest compression ratio
 - one popular decompressor (eg conventional gzip)

If we have a replacement one for one of these, then it should do exactly
that: replace it.

The benchmark shows that an 8% increase in image size vs a 66% increase
in decompression speed compared to LZO(which has been known as the
fastest decompressor in the Kernel).  Therefore the "fast but may not be
small" compression title has clearly been taken by LZ4 [3].

[1] http://code.google.com/p/lz4/
[2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157
[3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347

LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html
LZ4 source repository: http://code.google.com/p/lz4/

Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com>
Signed-off-by: Yann Collet <yann.collet.73@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Florian Fainelli <florian@openwrt.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:30 -07:00