- Support for userspace to send requests directly to the on-chip GZIP
accelerator on Power9.
- Rework of our lockless page table walking (__find_linux_pte()) to make it
safe against parallel page table manipulations without relying on an IPI for
serialisation.
- A series of fixes & enhancements to make our machine check handling more
robust.
- Lots of plumbing to add support for "prefixed" (64-bit) instructions on
Power10.
- Support for using huge pages for the linear mapping on 8xx (32-bit).
- Remove obsolete Xilinx PPC405/PPC440 support, and an associated sound driver.
- Removal of some obsolete 40x platforms and associated cruft.
- Initial support for booting on Power10.
- Lots of other small features, cleanups & fixes.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Andrey Abramov,
Aneesh Kumar K.V, Balamuruhan S, Bharata B Rao, Bulent Abali, Cédric Le
Goater, Chen Zhou, Christian Zigotzky, Christophe JAILLET, Christophe Leroy,
Dmitry Torokhov, Emmanuel Nicolet, Erhard F., Gautham R. Shenoy, Geoff Levand,
George Spelvin, Greg Kurz, Gustavo A. R. Silva, Gustavo Walbon, Haren Myneni,
Hari Bathini, Joel Stanley, Jordan Niethe, Kajol Jain, Kees Cook, Leonardo
Bras, Madhavan Srinivasan., Mahesh Salgaonkar, Markus Elfring, Michael
Neuling, Michal Simek, Nathan Chancellor, Nathan Lynch, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pingfan Liu, Qian Cai, Ram
Pai, Raphael Moreira Zinsly, Ravi Bangoria, Sam Bobroff, Sandipan Das, Segher
Boessenkool, Stephen Rothwell, Sukadev Bhattiprolu, Tyrel Datwyler, Wolfram
Sang, Xiongfeng Wang.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl7aYZ8THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPiKD/9zNCuZLFMAFrIdbm0HlYA2RGYZFT75
GUHsqYyei1pxA7PgM3KwJiXELVODsBv0eQbgNh1tbecKrxPRegN/cywd1KLjPZ7I
v5/qweQP8MvR0RhzjbhvUcO0jq/f8u2LbJr5mUfVzjU6tAvrvcWo3oZqDElsekCS
kgyOH3r1vZ2PLTMiGFhb0gWi2iqc+6BHU1AFCGPCMjB1Vu5d5+54VvZ/6lllGsOF
yg9CBXmmVvQ+Bn6tH4zdEB78FYxnAIwBqlbmL79i5ca+HQJ0Sw6HuPRy9XYq35p6
2EiXS4Wrgp7i7+1TN3HO362u5Onb8TSyQU7NS6yCFPoJ6JQxcJMBIw6mHhnXOPuZ
CrjgcdwUMjx8uDoKmX1Epbfuex2w+AysW+4yBHPFiSgl3klKC3D0wi95mR485w2F
rN8uzJtrDeFKcYZJG7IoB/cgFCCPKGf9HaXr8q0S/jBKMffx91ul3cfzlfdIXOCw
FDNw/+ZX7UD6ddFEG12ZTO+vdL8yf1uCRT/DIZwUiDMIA0+M6F4nc7j3lfyZfoO1
65f9UlhoLxScq7VH2fKH4UtZatO9cPID2z1CmiY4UbUIPtFDepSuYClgLF+Duf4b
rkfxhKU0+Ja1zNH5XNc+L+Bc5/W4lFiJXz02dYIjtHoUpWkc1aToOETVwzggYFNM
G3PXIBOI0jRgRw==
=o0WU
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Support for userspace to send requests directly to the on-chip GZIP
accelerator on Power9.
- Rework of our lockless page table walking (__find_linux_pte()) to
make it safe against parallel page table manipulations without
relying on an IPI for serialisation.
- A series of fixes & enhancements to make our machine check handling
more robust.
- Lots of plumbing to add support for "prefixed" (64-bit) instructions
on Power10.
- Support for using huge pages for the linear mapping on 8xx (32-bit).
- Remove obsolete Xilinx PPC405/PPC440 support, and an associated sound
driver.
- Removal of some obsolete 40x platforms and associated cruft.
- Initial support for booting on Power10.
- Lots of other small features, cleanups & fixes.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Andrey Abramov, Aneesh Kumar K.V, Balamuruhan S, Bharata B Rao, Bulent
Abali, Cédric Le Goater, Chen Zhou, Christian Zigotzky, Christophe
JAILLET, Christophe Leroy, Dmitry Torokhov, Emmanuel Nicolet, Erhard F.,
Gautham R. Shenoy, Geoff Levand, George Spelvin, Greg Kurz, Gustavo A.
R. Silva, Gustavo Walbon, Haren Myneni, Hari Bathini, Joel Stanley,
Jordan Niethe, Kajol Jain, Kees Cook, Leonardo Bras, Madhavan
Srinivasan., Mahesh Salgaonkar, Markus Elfring, Michael Neuling, Michal
Simek, Nathan Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin,
Oliver O'Halloran, Paul Mackerras, Pingfan Liu, Qian Cai, Ram Pai,
Raphael Moreira Zinsly, Ravi Bangoria, Sam Bobroff, Sandipan Das, Segher
Boessenkool, Stephen Rothwell, Sukadev Bhattiprolu, Tyrel Datwyler,
Wolfram Sang, Xiongfeng Wang.
* tag 'powerpc-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (299 commits)
powerpc/pseries: Make vio and ibmebus initcalls pseries specific
cxl: Remove dead Kconfig options
powerpc: Add POWER10 architected mode
powerpc/dt_cpu_ftrs: Add MMA feature
powerpc/dt_cpu_ftrs: Enable Prefixed Instructions
powerpc/dt_cpu_ftrs: Advertise support for ISA v3.1 if selected
powerpc: Add support for ISA v3.1
powerpc: Add new HWCAP bits
powerpc/64s: Don't set FSCR bits in INIT_THREAD
powerpc/64s: Save FSCR to init_task.thread.fscr after feature init
powerpc/64s: Don't let DT CPU features set FSCR_DSCR
powerpc/64s: Don't init FSCR_DSCR in __init_FSCR()
powerpc/32s: Fix another build failure with CONFIG_PPC_KUAP_DEBUG
powerpc/module_64: Use special stub for _mcount() with -mprofile-kernel
powerpc/module_64: Simplify check for -mprofile-kernel ftrace relocations
powerpc/module_64: Consolidate ftrace code
powerpc/32: Disable KASAN with pages bigger than 16k
powerpc/uaccess: Don't set KUEP by default on book3s/32
powerpc/uaccess: Don't set KUAP by default on book3s/32
powerpc/8xx: Reduce time spent in allow_user_access() and friends
...
Newer ISA versions are enabled by clearing all bits in the PCR
associated with previous versions of the ISA. Enable ISA v3.1 support
by updating the PCR mask to include ISA v3.0. This ensures all PCR
bits corresponding to earlier architecture versions get cleared
thereby enabling ISA v3.1 if supported by the hardware.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200521014341.29095-3-alistair@popple.id.au
Power10 is introducing second DAWR. Use real register names from ISA
for current macros:
s/SPRN_DAWR/SPRN_DAWR0/
s/SPRN_DAWRX/SPRN_DAWRX0/
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Michael Neuling <mikey@neuling.org>
Link: https://lore.kernel.org/r/20200514111741.97993-2-ravi.bangoria@linux.ibm.com
The use of any sort of waitqueue (simple or regular) for
wait/waking vcpus has always been an overkill and semantically
wrong. Because this is per-vcpu (which is blocked) there is
only ever a single waiting vcpu, thus no need for any sort of
queue.
As such, make use of the rcuwait primitive, with the following
considerations:
- rcuwait already provides the proper barriers that serialize
concurrent waiter and waker.
- Task wakeup is done in rcu read critical region, with a
stable task pointer.
- Because there is no concurrency among waiters, we need
not worry about rcuwait_wait_event() calls corrupting
the wait->task. As a consequence, this saves the locking
done in swait when modifying the queue. This also applies
to per-vcore wait for powerpc kvm-hv.
The x86 tscdeadline_latency test mentioned in 8577370fb0
("KVM: Use simple waitqueue for vcpu->wq") shows that, on avg,
latency is reduced by around 15-20% with this change.
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-mips@vger.kernel.org
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Message-Id: <20200424054837.5138-6-dave@stgolabs.net>
[Avoid extra logic changes. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- A large series from Nick for 64-bit to further rework our exception vectors,
and rewrite portions of the syscall entry/exit and interrupt return in C. The
result is much easier to follow code that is also faster in general.
- Cleanup of our ptrace code to split various parts out that had become badly
intertwined with #ifdefs over the years.
- Changes to our NUMA setup under the PowerVM hypervisor which should
hopefully avoid non-sensical topologies which can lead to warnings from the
workqueue code and other problems.
- MAINTAINERS updates to remove some of our old orphan entries and update the
status of others.
- Quite a few other small changes and fixes all over the map.
Thanks to:
Abdul Haleem, afzal mohammed, Alexey Kardashevskiy, Andrew Donnellan, Aneesh
Kumar K.V, Balamuruhan S, Cédric Le Goater, Chen Zhou, Christophe JAILLET,
Christophe Leroy, Christoph Hellwig, Clement Courbet, Daniel Axtens, David
Gibson, Douglas Miller, Fabiano Rosas, Fangrui Song, Ganesh Goudar, Gautham R.
Shenoy, Greg Kroah-Hartman, Greg Kurz, Gustavo Luiz Duarte, Hari Bathini, Ilie
Halip, Jan Kara, Joe Lawrence, Joe Perches, Kajol Jain, Larry Finger,
Laurentiu Tudor, Leonardo Bras, Libor Pechacek, Madhavan Srinivasan, Mahesh
Salgaonkar, Masahiro Yamada, Masami Hiramatsu, Mauricio Faria de Oliveira,
Michael Neuling, Michal Suchanek, Mike Rapoport, Nageswara R Sastry, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers,
Oliver O'Halloran, Po-Hsu Lin, Pratik Rajesh Sampat, Rasmus Villemoes, Ravi
Bangoria, Roman Bolshakov, Sam Bobroff, Sandipan Das, Santosh S, Sedat Dilek,
Segher Boessenkool, Shilpasri G Bhat, Sourabh Jain, Srikar Dronamraju, Stephen
Rothwell, Tyrel Datwyler, Vaibhav Jain, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl6JypATHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgOTyD/0U90tXb3VXlQcc4OFIb8vWIj76k4Zn
ZSZ7RyOuvb5pCISBZjSK79XkR9eMHT77qagX4V41q64k4yQl8nbgLeVnwL76hLLc
IJCs23f4nsO0uqX/MhSCc5dfOOOS2i8V+OQYtsYWsH5QaG95v0cHIqVaHHMlfQxu
507GO/W5W6KTd4x008b5unQOuE51zMKlKvqEJXkT59obQFpaa2S5Wn7OzhsnarCH
YSRNxaC7vtgBKLA9wUnFh8UUbh0FbOwXBCaq4OhHMhgRihdteVBCzlcR/6c+IRbt
EoZxKzfQ0hI1z5f++kJNaRXMtUbSpM8D1HdKKHgiWjpdBSD0eu2X106KQT2R2ZOF
qhX8xPLWNzdBglA6L43AaZUu+4ayd3QrrJIkjDv/K1rCHZjfGOzSQfoZgTEBNLFA
tC0crhEfw8m98e4EwhCtekGQxdczRdLS9YvtC/h6mU2xkpA35yNSwB1/iuVQdkYD
XyrEqImAQ1PJla7NL0hxSy5ZxrBtMeKT4WZZ0BNgKXryemldg8Tuv3AEyach3BHz
eU0pIwpbnPm1JAPyrpDQ1yEf7QsD77gTPfEvilEci60R9DhvIMGAY+pt0qfME3yX
wOLp2yVBEXlRmvHk/y/+r+m4aCsmwSrikbWwmLLwAAA6JehtzFOWxTEfNpACP23V
mZyyZznsHIIE3Q==
=ARdm
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Slightly late as I had to rebase mid-week to insert a bug fix:
- A large series from Nick for 64-bit to further rework our exception
vectors, and rewrite portions of the syscall entry/exit and
interrupt return in C. The result is much easier to follow code
that is also faster in general.
- Cleanup of our ptrace code to split various parts out that had
become badly intertwined with #ifdefs over the years.
- Changes to our NUMA setup under the PowerVM hypervisor which should
hopefully avoid non-sensical topologies which can lead to warnings
from the workqueue code and other problems.
- MAINTAINERS updates to remove some of our old orphan entries and
update the status of others.
- Quite a few other small changes and fixes all over the map.
Thanks to: Abdul Haleem, afzal mohammed, Alexey Kardashevskiy, Andrew
Donnellan, Aneesh Kumar K.V, Balamuruhan S, Cédric Le Goater, Chen
Zhou, Christophe JAILLET, Christophe Leroy, Christoph Hellwig, Clement
Courbet, Daniel Axtens, David Gibson, Douglas Miller, Fabiano Rosas,
Fangrui Song, Ganesh Goudar, Gautham R. Shenoy, Greg Kroah-Hartman,
Greg Kurz, Gustavo Luiz Duarte, Hari Bathini, Ilie Halip, Jan Kara,
Joe Lawrence, Joe Perches, Kajol Jain, Larry Finger, Laurentiu Tudor,
Leonardo Bras, Libor Pechacek, Madhavan Srinivasan, Mahesh Salgaonkar,
Masahiro Yamada, Masami Hiramatsu, Mauricio Faria de Oliveira, Michael
Neuling, Michal Suchanek, Mike Rapoport, Nageswara R Sastry, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Nick
Desaulniers, Oliver O'Halloran, Po-Hsu Lin, Pratik Rajesh Sampat,
Rasmus Villemoes, Ravi Bangoria, Roman Bolshakov, Sam Bobroff,
Sandipan Das, Santosh S, Sedat Dilek, Segher Boessenkool, Shilpasri G
Bhat, Sourabh Jain, Srikar Dronamraju, Stephen Rothwell, Tyrel
Datwyler, Vaibhav Jain, YueHaibing"
* tag 'powerpc-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc: Make setjmp/longjmp signature standard
powerpc/cputable: Remove unnecessary copy of cpu_spec->oprofile_type
powerpc: Suppress .eh_frame generation
powerpc: Drop -fno-dwarf2-cfi-asm
powerpc/32: drop unused ISA_DMA_THRESHOLD
powerpc/powernv: Add documentation for the opal sensor_groups sysfs interfaces
selftests/powerpc: Fix try-run when source tree is not writable
powerpc/vmlinux.lds: Explicitly retain .gnu.hash
powerpc/ptrace: move ptrace_triggered() into hw_breakpoint.c
powerpc/ptrace: create ppc_gethwdinfo()
powerpc/ptrace: create ptrace_get_debugreg()
powerpc/ptrace: split out ADV_DEBUG_REGS related functions.
powerpc/ptrace: move register viewing functions out of ptrace.c
powerpc/ptrace: split out TRANSACTIONAL_MEM related functions.
powerpc/ptrace: split out SPE related functions.
powerpc/ptrace: split out ALTIVEC related functions.
powerpc/ptrace: split out VSX related functions.
powerpc/ptrace: drop PARAMETER_SAVE_AREA_OFFSET
powerpc/ptrace: drop unnecessary #ifdefs CONFIG_PPC64
powerpc/ptrace: remove unused header includes
...
At present, on Power systems with Protected Execution Facility
hardware and an ultravisor, a KVM guest can transition to being a
secure guest at will. Userspace (QEMU) has no way of knowing
whether a host system is capable of running secure guests. This
will present a problem in future when the ultravisor is capable of
migrating secure guests from one host to another, because
virtualization management software will have no way to ensure that
secure guests only run in domains where all of the hosts can
support secure guests.
This adds a VM capability which has two functions: (a) userspace
can query it to find out whether the host can support secure guests,
and (b) userspace can enable it for a guest, which allows that
guest to become a secure guest. If userspace does not enable it,
KVM will return an error when the ultravisor does the hypercall
that indicates that the guest is starting to transition to a
secure guest. The ultravisor will then abort the transition and
the guest will terminate.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
The Hcall named H_SVM_* are reserved to the Ultravisor. However, nothing
prevent a malicious VM or SVM to call them. This could lead to weird result
and should be filtered out.
Checking the Secure bit of the calling MSR ensure that the call is coming
from either the Ultravisor or a SVM. But any system call made from a SVM
are going through the Ultravisor, and the Ultravisor should filter out
these malicious call. This way, only the Ultravisor is able to make such a
Hcall.
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Ram Pai <linuxram@us.ibnm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
These are only used by HV KVM and BookE, and in both cases they are
nops.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The h_cede_tm kvm-unit-test currently fails when run inside an L1 guest
via the guest/nested hypervisor.
./run-tests.sh -v
...
TESTNAME=h_cede_tm TIMEOUT=90s ACCEL= ./powerpc/run powerpc/tm.elf -smp 2,threads=2 -machine cap-htm=on -append "h_cede_tm"
FAIL h_cede_tm (2 tests, 1 unexpected failures)
While the test relates to transactional memory instructions, the actual
failure is due to the return code of the H_CEDE hypercall, which is
reported as 224 instead of 0. This happens even when no TM instructions
are issued.
224 is the value placed in r3 to execute a hypercall for H_CEDE, and r3
is where the caller expects the return code to be placed upon return.
In the case of guest running under a nested hypervisor, issuing H_CEDE
causes a return from H_ENTER_NESTED. In this case H_CEDE is
specially-handled immediately rather than later in
kvmppc_pseries_do_hcall() as with most other hcalls, but we forget to
set the return code for the caller, hence why kvm-unit-test sees the
224 return code and reports an error.
Guest kernels generally don't check the return value of H_CEDE, so
that likely explains why this hasn't caused issues outside of
kvm-unit-tests so far.
Fix this by setting r3 to 0 after we finish processing the H_CEDE.
RHBZ: 1778556
Fixes: 4bad77799f ("KVM: PPC: Book3S HV: Handle hypercalls correctly when nested")
Cc: linuxppc-dev@ozlabs.org
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Remove includes of asm/kvm_host.h from files that already include
linux/kvm_host.h to make it more obvious that there is no ordering issue
between the two headers. linux/kvm_host.h includes asm/kvm_host.h to
pick up architecture specific settings, and this will never change, i.e.
including asm/kvm_host.h after linux/kvm_host.h may seem problematic,
but in practice is simply redundant.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor memslot handling to treat the number of used slots as the de
facto size of the memslot array, e.g. return NULL from id_to_memslot()
when an invalid index is provided instead of relying on npages==0 to
detect an invalid memslot. Rework the sorting and walking of memslots
in advance of dynamically sizing memslots to aid bisection and debug,
e.g. with luck, a bug in the refactoring will bisect here and/or hit a
WARN instead of randomly corrupting memory.
Alternatively, a global null/invalid memslot could be returned, i.e. so
callers of id_to_memslot() don't have to explicitly check for a NULL
memslot, but that approach runs the risk of introducing difficult-to-
debug issues, e.g. if the global null slot is modified. Constifying
the return from id_to_memslot() to combat such issues is possible, but
would require a massive refactoring of arch specific code and would
still be susceptible to casting shenanigans.
Add function comments to update_memslots() and search_memslots() to
explicitly (and loudly) state how memslots are sorted.
Opportunistically stuff @hva with a non-canonical value when deleting a
private memslot on x86 to detect bogus usage of the freed slot.
No functional change intended.
Tested-by: Christoffer Dall <christoffer.dall@arm.com>
Tested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all callers of kvm_free_memslot() pass NULL for @dont, remove
the param from the top-level routine and all arch's implementations.
No functional change intended.
Tested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allocate the rmap array during kvm_arch_prepare_memory_region() to pave
the way for removing kvm_arch_create_memslot() altogether. Moving PPC's
memory allocation only changes the order of kernel memory allocations
between PPC and common KVM code.
No functional change intended.
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Because of this cleanup, we get to remove a few fields in struct
kvm_arch that are now unused.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[mpe: Fix build error in kvm/timing.c, adapt kvmppc_remove_cpu_debugfs()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200209105901.1620958-2-gregkh@linuxfoundation.org
* Fix compile warning on 32-bit machines
* Fix locking error in secure VM support
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJeMiC8AAoJEJ2a6ncsY3GfGg8H/03p+jc/aCKcA75ZeQPlzhmu
KWvSBbPATNcQiYOLfIvbB9AMXUPoyIfiblW/On8G6COFypsIhhUTwEfPUjWIBHNX
IwCfzoyf0gDRTi7A7gTDD06ZE+stikxJu59agX2Gc8kTIQ8ge340VR8J95Ol8/n2
/hVA8S/ORrdv8/KaCcvvIwc1V7OV6xBuGsTUOUvywzBTGDKd0CAbNzRwtS8LmWcM
OCkZX4G5DpFIYdsnjSBaSfwEVPAf3G1DzyQ801emwRnbAGYYgfakd1LwqdLDxptt
6CFHuIENEmmweJKMf9FBLWg+fOMl8wsv9l4mBIYt7coq5XPpi07yJ6yqSaJEToQ=
=Hmfo
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
Second KVM PPC update for 5.6
* Fix compile warning on 32-bit machines
* Fix locking error in secure VM support
Move the kvm_cpu_{un}init() calls to common PPC code as an intermediate
step towards removing kvm_cpu_{un}init() altogether.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move allocation of all flavors of PPC vCPUs to common PPC code. All
variants either allocate 'struct kvm_vcpu' directly, or require that
the embedded 'struct kvm_vcpu' member be located at offset 0, i.e.
guarantee that the allocation can be directly interpreted as a 'struct
kvm_vcpu' object.
Remove the message from the build-time assertion regarding placement of
the struct, as compatibility with the arch usercopy region is no longer
the sole dependent on 'struct kvm_vcpu' being at offset zero.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call kvm_vcpu_uninit() if vcore creation fails to avoid leaking any
resources allocated by kvm_vcpu_init(), i.e. the vcpu->run page.
Fixes: 371fefd6f2 ("KVM: PPC: Allow book3s_hv guests to use SMT processor modes")
Cc: stable@vger.kernel.org
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement the H_SVM_INIT_ABORT hcall which the Ultravisor can use to
abort an SVM after it has issued the H_SVM_INIT_START and before the
H_SVM_INIT_DONE hcalls. This hcall could be used when Ultravisor
encounters security violations or other errors when starting an SVM.
Note that this hcall is different from UV_SVM_TERMINATE ucall which
is used by HV to terminate/cleanup an VM that has becore secure.
The H_SVM_INIT_ABORT basically undoes operations that were done
since the H_SVM_INIT_START hcall - i.e page-out all the VM pages back
to normal memory, and terminate the SVM.
(If we do not bring the pages back to normal memory, the text/data
of the VM would be stuck in secure memory and since the SVM did not
go secure, its MSR_S bit will be clear and the VM wont be able to
access its pages even to do a clean exit).
Based on patches and discussion with Paul Mackerras, Ram Pai and
Bharata Rao.
Signed-off-by: Ram Pai <linuxram@linux.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.ibm.com>
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add 'skip_page_out' parameter to kvmppc_uvmem_drop_pages() so the
callers can specify whetheter or not to skip paging out pages. This
will be needed in a follow-on patch that implements H_SVM_INIT_ABORT
hcall.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Given that in kvm_create_vm() there is:
kvm->mm = current->mm;
And that on every kvm_*_ioctl we have:
if (kvm->mm != current->mm)
return -EIO;
I see no reason to keep using current->mm instead of kvm->mm.
By doing so, we would reduce the use of 'global' variables on code, relying
more in the contents of kvm struct.
Signed-off-by: Leonardo Bras <leonardo@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 22945688ac ("KVM: PPC: Book3S HV: Support reset of secure
guest") added a call to uv_svm_terminate, which is an ultravisor
call, without any check that the guest is a secure guest or even that
the system has an ultravisor. On a system without an ultravisor,
the ultracall will degenerate to a hypercall, but since we are not
in KVM guest context, the hypercall will get treated as a system
call, which could have random effects depending on what happens to
be in r0, and could also corrupt the current task's kernel stack.
Hence this adds a test for the guest being a secure guest before
doing uv_svm_terminate().
Fixes: 22945688ac ("KVM: PPC: Book3S HV: Support reset of secure guest")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add support for reset of secure guest via a new ioctl KVM_PPC_SVM_OFF.
This ioctl will be issued by QEMU during reset and includes the
the following steps:
- Release all device pages of the secure guest.
- Ask UV to terminate the guest via UV_SVM_TERMINATE ucall
- Unpin the VPA pages so that they can be migrated back to secure
side when guest becomes secure again. This is required because
pinned pages can't be migrated.
- Reinit the partition scoped page tables
After these steps, guest is ready to issue UV_ESM call once again
to switch to secure mode.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
[Implementation of uv_svm_terminate() and its call from
guest shutdown path]
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[Unpinning of VPA pages]
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Register the new memslot with UV during plug and unregister
the memslot during unplug. In addition, release all the
device pages during unplug.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A pseries guest can be run as secure guest on Ultravisor-enabled
POWER platforms. On such platforms, this driver will be used to manage
the movement of guest pages between the normal memory managed by
hypervisor (HV) and secure memory managed by Ultravisor (UV).
HV is informed about the guest's transition to secure mode via hcalls:
H_SVM_INIT_START: Initiate securing a VM
H_SVM_INIT_DONE: Conclude securing a VM
As part of H_SVM_INIT_START, register all existing memslots with
the UV. H_SVM_INIT_DONE call by UV informs HV that transition of
the guest to secure mode is complete.
These two states (transition to secure mode STARTED and transition
to secure mode COMPLETED) are recorded in kvm->arch.secure_guest.
Setting these states will cause the assembly code that enters the
guest to call the UV_RETURN ucall instead of trying to enter the
guest directly.
Migration of pages betwen normal and secure memory of secure
guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls.
H_SVM_PAGE_IN: Move the content of a normal page to secure page
H_SVM_PAGE_OUT: Move the content of a secure page to normal page
Private ZONE_DEVICE memory equal to the amount of secure memory
available in the platform for running secure guests is created.
Whenever a page belonging to the guest becomes secure, a page from
this private device memory is used to represent and track that secure
page on the HV side. The movement of pages between normal and secure
memory is done via migrate_vma_pages() using UV_PAGE_IN and
UV_PAGE_OUT ucalls.
In order to prevent the device private pages (that correspond to pages
of secure guest) from participating in KSM merging, H_SVM_PAGE_IN
calls ksm_madvise() under read version of mmap_sem. However
ksm_madvise() needs to be under write lock. Hence we call
kvmppc_svm_page_in with mmap_sem held for writing, and it then
downgrades to a read lock after calling ksm_madvise.
[paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write
mmap_sem when calling ksm_madvise"]
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
AIL=2 mode has no known users, so is not well tested or supported.
Disallow guests from selecting this mode because it may become
deprecated in future versions of the architecture.
This policy decision is not left to QEMU because KVM support is
required for AIL=2 (when injecting interrupts).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This consolidates the HV interrupt delivery logic into one place.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
reset_msr sets the MSR for interrupt injection, but it's cleaner and
more flexible to provide a single op to set both MSR and PC for the
interrupt.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the reserved bits of the Processor Compatibility
Register (PCR) are cleared as per the Programming Note in Section
1.3.3 of version 3.0B of the Power ISA. This causes all new
architecture features to be made available when running on newer
processors with new architecture features added to the PCR as bits
must be set to disable a given feature.
For example to disable new features added as part of Version 2.07 of
the ISA the corresponding bit in the PCR needs to be set.
As new processor features generally require explicit kernel support
they should be disabled until such support is implemented. Therefore
kernels should set all unknown/reserved bits in the PCR such that any
new architecture features which the kernel does not currently know
about get disabled.
An update is planned to the ISA to clarify that the PCR is an
exception to the Programming Note on reserved bits in Section 1.3.3.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Tested-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190917004605.22471-2-alistair@popple.id.au
- Initial support for running on a system with an Ultravisor, which is software
that runs below the hypervisor and protects guests against some attacks by
the hypervisor.
- Support for building the kernel to run as a "Secure Virtual Machine", ie. as
a guest capable of running on a system with an Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with medium
sized DMA masks (> 32 && < 59 bits) to use more than 2GB of DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas macros, both
to make it more readable and also enable some future optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to:
Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh
Kumar K.V, Anju T Sudhakar, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Cédric Le Goater, Christophe JAILLET, Christophe Leroy,
Christopher M. Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens,
David Gibson, David Hildenbrand, Desnes A. Nunes do Rosario, Ganesh Goudar,
Gautham R. Shenoy, Greg Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari
Bathini, Joakim Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras,
Lianbo Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan Chancellor,
Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Qian Cai, Ram
Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm, Sam Bobroff, Santosh Sivaraj,
Segher Boessenkool, Sukadev Bhattiprolu, Thiago Bauermann, Thiago Jung
Bauermann, Thomas Gleixner, Tom Lendacky, Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2EtEcTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPfsD/9uXyBXn3anI/H08+mk74k5gCsmMQpn
D442CD/ByogZcccp23yBTlhawtCE03hcHnCLygn0Xgd8a4YvHts/RGHUe3fPHqlG
bEyZ7jsLVz5ebNZQP7r4eGs2pSzCajwJy2N9HJ/C1ojf15rrfRxoVJtnyhE2wXpm
DL+6o2K+nUCB3gTQ1Inr3DnWzoGOOUfNTOea2u+J+yfHwGRqOBYpevwqiwy5eelK
aRjUJCqMTvrzra49MeFwjo0Nt3/Y8UNcwA+JlGdeR8bRuWhFrYmyBRiZEKPaujNO
5EAfghBBlB0KQCqvF/tRM/c0OftHqK59AMobP9T7u9oOaBXeF/FpZX/iXjzNDPsN
j9Oo2tKLTu/YVEXqBFuREGP+znANr1Wo4CFyOG8SbvYz0HFjR6XbtRJsS+0e8GWl
kqX5/ZhYz3lBnKSNe9jgWOrh/J0KCSFigBTEWJT3xsn4YE8x8kK2l9KPqAIldWEP
sKb2UjGS7v0NKq+NvShH88Q9AeQUEIjTcg/9aDDQDe6FaRQ7KiF8bUxSdwSPi+Fn
j0lnF6i+1ATWZKuCr85veVi7C5qoe/+MqalnmP7MxULyzgXLLxUgN0SzEYO6QofK
LQK/VaH2XVr5+M5YAb7K4/NX5gbM3s1bKrCiUy4EyHNvgG7gricYdbz6HgAjKpR7
oP0rHfgmVYvF1g==
=WlW+
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This is a bit late, partly due to me travelling, and partly due to a
power outage knocking out some of my test systems *while* I was
travelling.
- Initial support for running on a system with an Ultravisor, which
is software that runs below the hypervisor and protects guests
against some attacks by the hypervisor.
- Support for building the kernel to run as a "Secure Virtual
Machine", ie. as a guest capable of running on a system with an
Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with
medium sized DMA masks (> 32 && < 59 bits) to use more than 2GB of
DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas
macros, both to make it more readable and also enable some future
optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to: Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Cédric Le Goater, Christophe
JAILLET, Christophe Leroy, Christopher M. Riedl, Christoph Hellwig,
Claudio Carvalho, Daniel Axtens, David Gibson, David Hildenbrand,
Desnes A. Nunes do Rosario, Ganesh Goudar, Gautham R. Shenoy, Greg
Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari Bathini, Joakim
Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras, Lianbo
Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Qian Cai, Ram Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm,
Sam Bobroff, Santosh Sivaraj, Segher Boessenkool, Sukadev Bhattiprolu,
Thiago Bauermann, Thiago Jung Bauermann, Thomas Gleixner, Tom
Lendacky, Vasant Hegde"
* tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (264 commits)
powerpc/mm/mce: Keep irqs disabled during lockless page table walk
powerpc: Use ftrace_graph_ret_addr() when unwinding
powerpc/ftrace: Enable HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
ftrace: Look up the address of return_to_handler() using helpers
powerpc: dump kernel log before carrying out fadump or kdump
docs: powerpc: Add missing documentation reference
powerpc/xmon: Fix output of XIVE IPI
powerpc/xmon: Improve output of XIVE interrupts
powerpc/mm/radix: remove useless kernel messages
powerpc/fadump: support holes in kernel boot memory area
powerpc/fadump: remove RMA_START and RMA_END macros
powerpc/fadump: update documentation about option to release opalcore
powerpc/fadump: consider f/w load area
powerpc/opalcore: provide an option to invalidate /sys/firmware/opal/core file
powerpc/opalcore: export /sys/firmware/opal/core for analysing opal crashes
powerpc/fadump: update documentation about CONFIG_PRESERVE_FA_DUMP
powerpc/fadump: add support to preserve crash data on FADUMP disabled kernel
powerpc/fadump: improve how crashed kernel's memory is reserved
powerpc/fadump: consider reserved ranges while releasing memory
powerpc/fadump: make crash memory ranges array allocation generic
...
Introduce two options to control the use of the tlbie instruction. A
boot time option which completely disables the kernel using the
instruction, this is currently incompatible with HASH MMU, KVM, and
coherent accelerators.
And a debugfs option can be switched at runtime and avoids using tlbie
for invalidating CPU TLBs for normal process and kernel address
mappings. Coherent accelerators are still managed with tlbie, as will
KVM partition scope translations.
Cross-CPU TLB flushing is implemented with IPIs and tlbiel. This is a
basic implementation which does not attempt to make any optimisation
beyond the tlbie implementation.
This is useful for performance testing among other things. For example
in certain situations on large systems, using IPIs may be faster than
tlbie as they can be directed rather than broadcast. Later we may also
take advantage of the IPIs to do more interesting things such as trim
the mm cpumask more aggressively.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-7-npiggin@gmail.com
On POWER9, when userspace reads the value of the DPDES register on a
vCPU, it is possible for 0 to be returned although there is a doorbell
interrupt pending for the vCPU. This can lead to a doorbell interrupt
being lost across migration. If the guest kernel uses doorbell
interrupts for IPIs, then it could malfunction because of the lost
interrupt.
This happens because a newly-generated doorbell interrupt is signalled
by setting vcpu->arch.doorbell_request to 1; the DPDES value in
vcpu->arch.vcore->dpdes is not updated, because it can only be updated
when holding the vcpu mutex, in order to avoid races.
To fix this, we OR in vcpu->arch.doorbell_request when reading the
DPDES value.
Cc: stable@vger.kernel.org # v4.13+
Fixes: 579006944e ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
When we are running multiple vcores on the same physical core, they
could be from different VMs and so it is possible that one of the
VMs could have its arch.mmu_ready flag cleared (for example by a
concurrent HPT resize) when we go to run it on a physical core.
We currently check the arch.mmu_ready flag for the primary vcore
but not the flags for the other vcores that will be run alongside
it. This adds that check, and also a check when we select the
secondary vcores from the preempted vcores list.
Cc: stable@vger.kernel.org # v4.14+
Fixes: 38c53af853 ("KVM: PPC: Book3S HV: Fix exclusion between HPT resizing and other HPT updates")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The Performance Stop Status and Control Register (PSSCR) is used to
control the power saving facilities of the processor. This register
has various fields, some of which can be modified only in hypervisor
state, and others which can be modified in both hypervisor and
privileged non-hypervisor state. The bits which can be modified in
privileged non-hypervisor state are referred to as guest visible.
Currently the L0 hypervisor saves and restores both it's own host
value as well as the guest value of the PSSCR when context switching
between the hypervisor and guest. However a nested hypervisor running
it's own nested guests (as indicated by kvmhv_on_pseries()) doesn't
context switch the PSSCR register. That means if a nested (L2) guest
modifies the PSSCR then the L1 guest hypervisor will run with that
modified value, and if the L1 guest hypervisor modifies the PSSCR and
then goes to run the nested (L2) guest again then the L2 PSSCR value
will be lost.
Fix this by having the (L1) nested hypervisor save and restore both
its host and the guest PSSCR value when entering and exiting a
nested (L2) guest. Note that only the guest visible parts of the PSSCR
are context switched since this is all the L1 nested hypervisor can
access, this is fine however as these are the only fields the L0
hypervisor provides guest control of anyway and so all other fields
are ignored.
This could also have been implemented by adding the PSSCR register to
the hv_regs passed to the L0 hypervisor as input to the H_ENTER_NESTED
hcall, however this would have meant updating the structure layout and
thus required modifications to both the L0 and L1 kernels. Whereas the
approach used doesn't require L0 kernel modifications while achieving
the same result.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190703012022.15644-3-sjitindarsingh@gmail.com
The performance monitoring unit (PMU) registers are saved on guest
exit when the guest has set the pmcregs_in_use flag in its lppaca, if
it exists, or unconditionally if it doesn't. If a nested guest is
being run then the hypervisor doesn't, and in most cases can't, know
if the PMU registers are in use since it doesn't know the location of
the lppaca for the nested guest, although it may have one for its
immediate guest. This results in the values of these registers being
lost across nested guest entry and exit in the case where the nested
guest was making use of the performance monitoring facility while it's
nested guest hypervisor wasn't.
Further more the hypervisor could interrupt a guest hypervisor between
when it has loaded up the PMU registers and it calling H_ENTER_NESTED
or between returning from the nested guest to the guest hypervisor and
the guest hypervisor reading the PMU registers, in
kvmhv_p9_guest_entry(). This means that it isn't sufficient to just
save the PMU registers when entering or exiting a nested guest, but
that it is necessary to always save the PMU registers whenever a guest
is capable of running nested guests to ensure the register values
aren't lost in the context switch.
Ensure the PMU register values are preserved by always saving their
value into the vcpu struct when a guest is capable of running nested
guests.
This should have minimal performance impact however any impact can be
avoided by booting a guest with "-machine pseries,cap-nested-hv=false"
on the qemu commandline.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190703012022.15644-1-sjitindarsingh@gmail.com
Notable changes:
- Removal of the NPU DMA code, used by the out-of-tree Nvidia driver, as well
as some other functions only used by drivers that haven't (yet?) made it
upstream.
- A fix for a bug in our handling of hardware watchpoints (eg. perf record -e
mem: ...) which could lead to register corruption and kernel crashes.
- Enable HAVE_ARCH_HUGE_VMAP, which allows us to use large pages for vmalloc
when using the Radix MMU.
- A large but incremental rewrite of our exception handling code to use gas
macros rather than multiple levels of nested CPP macros.
And the usual small fixes, cleanups and improvements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Andreas Schwab, Aneesh Kumar K.V, Anju
T Sudhakar, Anton Blanchard, Arnd Bergmann, Athira Rajeev, Cédric Le Goater,
Christian Lamparter, Christophe Leroy, Christophe Lombard, Christoph Hellwig,
Daniel Axtens, Denis Efremov, Enrico Weigelt, Frederic Barrat, Gautham R.
Shenoy, Geert Uytterhoeven, Geliang Tang, Gen Zhang, Greg Kroah-Hartman, Greg
Kurz, Gustavo Romero, Krzysztof Kozlowski, Madhavan Srinivasan, Masahiro
Yamada, Mathieu Malaterre, Michael Neuling, Nathan Lynch, Naveen N. Rao,
Nicholas Piggin, Nishad Kamdar, Oliver O'Halloran, Qian Cai, Ravi Bangoria,
Sachin Sant, Sam Bobroff, Satheesh Rajendran, Segher Boessenkool, Shaokun
Zhang, Shawn Anastasio, Stewart Smith, Suraj Jitindar Singh, Thiago Jung
Bauermann, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJdKVoLAAoJEFHr6jzI4aWA0kIP/A6shIbbE7H5W2hFrqt/PPPK
3+VrvPKbOFF+W6hcE/RgSZmEnUo0svdNjHUd/eMfFS1vb/uRt2QDdrsHUNNwURQL
M2mcLXFwYpnjSjb/XMgDbHpAQxjeGfTdYLonUIejN7Rk8KQUeLyKQ3SBn6kfMc46
DnUUcPcjuRGaETUmVuZZ4e40ZWbJp8PKDrSJOuUrTPXMaK5ciNbZk5mCWXGbYl6G
BMQAyv4ld/417rNTjBEP/T2foMJtioAt4W6mtlgdkOTdIEZnFU67nNxDBthNSu2c
95+I+/sML4KOp1R4yhqLSLIDDbc3bg3c99hLGij0d948z3bkSZ8bwnPaUuy70C4v
U8rvl/+N6C6H3DgSsPE/Gnkd8DnudqWY8nULc+8p3fXljGwww6/Qgt+6yCUn8BdW
WgixkSjKgjDmzTw8trIUNEqORrTVle7cM2hIyIK2Q5T4kWzNQxrLZ/x/3wgoYjUa
1KwIzaRo5JKZ9D3pJnJ5U+knE2/90rJIyfcp0W6ygyJsWKi2GNmq1eN3sKOw0IxH
Tg86RENIA/rEMErNOfP45sLteMuTR7of7peCG3yumIOZqsDVYAzerpvtSgip2cvK
aG+9HcYlBFOOOF9Dabi8GXsTBLXLfwiyjjLSpA9eXPwW8KObgiNfTZa7ujjTPvis
4mk9oukFTFUpfhsMmI3T
=3dBZ
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Removal of the NPU DMA code, used by the out-of-tree Nvidia driver,
as well as some other functions only used by drivers that haven't
(yet?) made it upstream.
- A fix for a bug in our handling of hardware watchpoints (eg. perf
record -e mem: ...) which could lead to register corruption and
kernel crashes.
- Enable HAVE_ARCH_HUGE_VMAP, which allows us to use large pages for
vmalloc when using the Radix MMU.
- A large but incremental rewrite of our exception handling code to
use gas macros rather than multiple levels of nested CPP macros.
And the usual small fixes, cleanups and improvements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Andreas Schwab,
Aneesh Kumar K.V, Anju T Sudhakar, Anton Blanchard, Arnd Bergmann,
Athira Rajeev, Cédric Le Goater, Christian Lamparter, Christophe
Leroy, Christophe Lombard, Christoph Hellwig, Daniel Axtens, Denis
Efremov, Enrico Weigelt, Frederic Barrat, Gautham R. Shenoy, Geert
Uytterhoeven, Geliang Tang, Gen Zhang, Greg Kroah-Hartman, Greg Kurz,
Gustavo Romero, Krzysztof Kozlowski, Madhavan Srinivasan, Masahiro
Yamada, Mathieu Malaterre, Michael Neuling, Nathan Lynch, Naveen N.
Rao, Nicholas Piggin, Nishad Kamdar, Oliver O'Halloran, Qian Cai, Ravi
Bangoria, Sachin Sant, Sam Bobroff, Satheesh Rajendran, Segher
Boessenkool, Shaokun Zhang, Shawn Anastasio, Stewart Smith, Suraj
Jitindar Singh, Thiago Jung Bauermann, YueHaibing"
* tag 'powerpc-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (163 commits)
powerpc/powernv/idle: Fix restore of SPRN_LDBAR for POWER9 stop state.
powerpc/eeh: Handle hugepages in ioremap space
ocxl: Update for AFU descriptor template version 1.1
powerpc/boot: pass CONFIG options in a simpler and more robust way
powerpc/boot: add {get, put}_unaligned_be32 to xz_config.h
powerpc/irq: Don't WARN continuously in arch_local_irq_restore()
powerpc/module64: Use symbolic instructions names.
powerpc/module32: Use symbolic instructions names.
powerpc: Move PPC_HA() PPC_HI() and PPC_LO() to ppc-opcode.h
powerpc/module64: Fix comment in R_PPC64_ENTRY handling
powerpc/boot: Add lzo support for uImage
powerpc/boot: Add lzma support for uImage
powerpc/boot: don't force gzipped uImage
powerpc/8xx: Add microcode patch to move SMC parameter RAM.
powerpc/8xx: Use IO accessors in microcode programming.
powerpc/8xx: replace #ifdefs by IS_ENABLED() in microcode.c
powerpc/8xx: refactor programming of microcode CPM params.
powerpc/8xx: refactor printing of microcode patch name.
powerpc/8xx: Refactor microcode write
powerpc/8xx: refactor writing of CPM microcode arrays
...
If we enter an L1 guest with a pending decrementer exception then this
is cleared on guest exit if the guest has writtien a positive value
into the decrementer (indicating that it handled the decrementer
exception) since there is no other way to detect that the guest has
handled the pending exception and that it should be dequeued. In the
event that the L1 guest tries to run a nested (L2) guest immediately
after this and the L2 guest decrementer is negative (which is loaded
by L1 before making the H_ENTER_NESTED hcall), then the pending
decrementer exception isn't cleared and the L2 entry is blocked since
L1 has a pending exception, even though L1 may have already handled
the exception and written a positive value for it's decrementer. This
results in a loop of L1 trying to enter the L2 guest and L0 blocking
the entry since L1 has an interrupt pending with the outcome being
that L2 never gets to run and hangs.
Fix this by clearing any pending decrementer exceptions when L1 makes
the H_ENTER_NESTED hcall since it won't do this if it's decrementer
has gone negative, and anyway it's decrementer has been communicated
to L0 in the hdec_expires field and L0 will return control to L1 when
this goes negative by delivering an H_DECREMENTER exception.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9 the decrementer can operate in large decrementer mode where
the decrementer is 56 bits and signed extended to 64 bits. When not
operating in this mode the decrementer behaves as a 32 bit decrementer
which is NOT signed extended (as on POWER8).
Currently when reading a guest decrementer value we don't take into
account whether the large decrementer is enabled or not, and this
means the value will be incorrect when the guest is not using the
large decrementer. Fix this by sign extending the value read when the
guest isn't using the large decrementer.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The sprgs are a set of 4 general purpose sprs provided for software use.
SPRG3 is special in that it can also be read from userspace. Thus it is
used on linux to store the cpu and numa id of the process to speed up
syscall access to this information.
This register is overwritten with the guest value on kvm guest entry,
and so needs to be restored on exit again. Thus restore the value on
the guest exit path in kvmhv_p9_guest_entry().
Cc: stable@vger.kernel.org # v4.20+
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the HV KVM code takes the kvm->lock around calls to
kvm_for_each_vcpu() and kvm_get_vcpu_by_id() (which can call
kvm_for_each_vcpu() internally). However, that leads to a lock
order inversion problem, because these are called in contexts where
the vcpu mutex is held, but the vcpu mutexes nest within kvm->lock
according to Documentation/virtual/kvm/locking.txt. Hence there
is a possibility of deadlock.
To fix this, we simply don't take the kvm->lock mutex around these
calls. This is safe because the implementations of kvm_for_each_vcpu()
and kvm_get_vcpu_by_id() have been designed to be able to be called
locklessly.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the HV KVM code uses kvm->lock in conjunction with a flag,
kvm->arch.mmu_ready, to synchronize MMU setup and hold off vcpu
execution until the MMU-related data structures are ready. However,
this means that kvm->lock is being taken inside vcpu->mutex, which
is contrary to Documentation/virtual/kvm/locking.txt and results in
lockdep warnings.
To fix this, we add a new mutex, kvm->arch.mmu_setup_lock, which nests
inside the vcpu mutexes, and is taken in the places where kvm->lock
was taken that are related to MMU setup.
Additionally we take the new mutex in the vcpu creation code at the
point where we are creating a new vcore, in order to provide mutual
exclusion with kvmppc_update_lpcr() and ensure that an update to
kvm->arch.lpcr doesn't get missed, which could otherwise lead to a
stale vcore->lpcr value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch from the powerpc tree to get
patches which touch both general powerpc code and KVM code, one of
which is a prerequisite for following patches.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On POWER9 and later processors where the host can schedule vcpus on a
per thread basis, there is a streamlined entry path used when the guest
is radix. This entry path saves/restores the fp and vr state in
kvmhv_p9_guest_entry() by calling store_[fp/vr]_state() and
load_[fp/vr]_state(). This is the same as the old entry path however the
old entry path also saved/restored the VRSAVE register, which isn't done
in the new entry path.
This means that the vrsave register is now volatile across guest exit,
which is an incorrect change in behaviour.
Fix this by saving/restoring the vrsave register in kvmhv_p9_guest_entry().
This restores the old, correct, behaviour.
Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host
in SMT1 mode, KVM will run guest VCPUs on offline secondary threads.
If those guests are in radix mode, we fail to load the LPID and flush
the TLB if necessary, leading to the guest crashing with an
unsupported MMU fault. This arises from commit 9a4506e11b ("KVM:
PPC: Book3S HV: Make radix handle process scoped LPID flush in C,
with relocation on", 2018-05-17), which didn't consider the case
where indep_threads_mode = N.
For simplicity, this makes the real-mode guest entry path flush the
TLB in the same place for both radix and hash guests, as we did before
9a4506e11b, though the code is now C code rather than assembly code.
We also have the radix TLB flush open-coded rather than calling
radix__local_flush_tlb_lpid_guest(), because the TLB flush can be
called in real mode, and in real mode we don't want to invoke the
tracepoint code.
Fixes: 9a4506e11b ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
I made the same typo when trying to grep for uses of smp_wmb and figured
I might as well fix it.
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The trace_hardirqs_on() sets current->hardirqs_enabled and from here
the lockdep assumes interrupts are enabled although they are remain
disabled until the context switches to the guest. Consequent
srcu_read_lock() checks the flags in rcu_lock_acquire(), observes
disabled interrupts and prints a warning (see below).
This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to
prevent lockdep from being confused.
DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280
[...]
NIP [c000000000185b84] check_flags.part.25+0x224/0x280
LR [c000000000185b80] check_flags.part.25+0x220/0x280
Call Trace:
[c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable)
[c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260
[c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv]
[c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv]
[c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70
Instruction dump:
419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5
3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
---[ end trace 31180adcc848993e ]---
possible reason: unannotated irqs-off.
irq event stamp: 1025
hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>] (null)
Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Implement a virtual mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.
The in-kernel handler halves the time to handle this H_CALL compared to
handling it in userspace for a radix guest.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>