Commit 66a625a (ARM: mm: proc-macros: Add generic proc/cache/tlb struct
definition macros) introduced build errors when PM_SLEEP is not enabled.
The per-CPU do_suspend/do_resume functions are defined via the
preprocessor to constant 0. However, the macros which use these were
converted to assembly, resulting in undefined references to these
functions. Fix that by moving the ! ifdef section into proc-macros.S
and deleting it from all effected proc-*.S files.
Acked-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
CONFIG_PM is now set whenever we support either runtime PM in addition
to suspend and hibernate. This causes build errors when runtime PM is
enabled on a platform, but the CPU does not have the appropriate support
for suspend.
So, switch this code to use CONFIG_PM_SLEEP rather than CONFIG_PM to
allow runtime PM to be enabled without causing build errors.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds core support for saving and restoring CPU coprocessor
registers for suspend/resume support. This contains support for suspend
with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs.
Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Tested-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 81d11955bf ("ARM: 6405/1: Handle __flush_icache_all for
CONFIG_SMP_ON_UP") added a new function to struct cpu_cache_fns:
flush_icache_all(). It also implemented this for v6 and v7 but not
for v5 and backwards. Without the function pointer in place, we
will be calling wrong cache functions.
For example with ep93xx we get following:
Unable to handle kernel paging request at virtual address ee070f38
pgd = c0004000
[ee070f38] *pgd=00000000
Internal error: Oops: 80000005 [#1] PREEMPT
last sysfs file:
Modules linked in:
CPU: 0 Not tainted (2.6.36+ #1)
PC is at 0xee070f38
LR is at __dma_alloc+0x11c/0x2d0
pc : [<ee070f38>] lr : [<c0032c8c>] psr: 60000013
sp : c581bde0 ip : 00000000 fp : c0472000
r10: c0472000 r9 : 000000d0 r8 : 00020000
r7 : 0001ffff r6 : 00000000 r5 : c0472400 r4 : c5980000
r3 : c03ab7e0 r2 : 00000000 r1 : c59a0000 r0 : c5980000
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel
Control: c000717f Table: c0004000 DAC: 00000017
Process swapper (pid: 1, stack limit = 0xc581a270)
[<c0032c8c>] (__dma_alloc+0x11c/0x2d0)
[<c0032e5c>] (dma_alloc_writecombine+0x1c/0x24)
[<c0204148>] (ep93xx_pcm_preallocate_dma_buffer+0x44/0x60)
[<c02041c0>] (ep93xx_pcm_new+0x5c/0x88)
[<c01ff188>] (snd_soc_instantiate_cards+0x8a8/0xbc0)
[<c01ff59c>] (soc_probe+0xfc/0x134)
[<c01adafc>] (platform_drv_probe+0x18/0x1c)
[<c01acca4>] (driver_probe_device+0xb0/0x16c)
[<c01ac284>] (bus_for_each_drv+0x48/0x84)
[<c01ace90>] (device_attach+0x50/0x68)
[<c01ac0f8>] (bus_probe_device+0x24/0x44)
[<c01aad7c>] (device_add+0x2fc/0x44c)
[<c01adfa8>] (platform_device_add+0x104/0x15c)
[<c0015eb8>] (simone_init+0x60/0x94)
[<c0021410>] (do_one_initcall+0xd0/0x1a4)
__dma_alloc() calls (inlined) __dma_alloc_buffer() which ends up
calling dmac_flush_range(). Now since the entries in the
arm920_cache_fns are shifted by one, we jump into address 0xee070f38
which is actually next instruction after the arm920_cache_fns
structure.
So implement flush_icache_all() for the rest of the supported CPUs
using a generic 'invalidate I cache' instruction.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When hotplug CPU is enabled, we need to keep the list of supported CPUs,
their setup functions, and __lookup_processor_type in place so that we
can find and initialize secondary CPUs. Move these into the __CPUINIT
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All implementations of cpu_proc_fin() start by disabling interrupts
and then flush caches. Rather than have every processors proc_fin()
implementation do this, move it out into generic code - and move the
cache flush past setup_mm_for_reboot() (so it can benefit from having
caches still enabled.)
This allows cpu_proc_fin() to become independent of the L1/L2 cache
types, and eventually move the L2 cache flushing into the L2 support
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
Instruction fault status register, IFSR, was introduced on ARMv6 to
provide status information about the last insturction fault. It
needed for proper prefetch abort handling.
Now we have three prefetch abort model:
* legacy - for CPUs before ARMv6. They doesn't provide neither
IFSR nor IFAR. We simulate IFSR with section translation fault
status for them to generalize code;
* ARMv6 - provides IFSR, but not IFAR;
* ARMv7 - provides both IFSR and IFAR.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There are actually only four separate implementations of set_pte_ext.
Use assembler macros to insert code for these into the proc-*.S files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The proc-*.S files have the _prefetch_abort pointer placed at the end
of the processor structure but the cpu-multi32.h defines it in the
second position. The patch also fixes the support for XSC3 and the
MMU-less CPUs (740, 7tdmi, 940, 946 and 9tdmi).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds a prefetch abort handler similar to the data abort one
and renames the latter for consistency. Initial implementation by Paul
Brook with some renaming by Catalin Marinas.
Signed-off-by: Paul Brook <paul@codesourcery.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
L_PTE_ASID is not really required to be stored in every PTE, since we
can identify it via the address passed to set_pte_at(). So, create
set_pte_ext() which takes the address of the PTE to set, the Linux
PTE value, and the additional CPU PTE bits which aren't encoded in
the Linux PTE value.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These files want to provide/access ELF hwcap information, so should
be including asm/elf.h rather than asm/procinfo.h
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (44 commits)
[ARM] 3541/2: workaround for PXA27x erratum E7
[ARM] nommu: provide a way for correct control register value selection
[ARM] 3705/1: add supersection support to ioremap()
[ARM] 3707/1: iwmmxt: use the generic thread notifier infrastructure
[ARM] 3706/2: ep93xx: add cirrus logic edb9315a support
[ARM] 3704/1: format IOP Kconfig with tabs, create more consistency
[ARM] 3703/1: Add help description for ARCH_EP80219
[ARM] 3678/1: MMC: Make OMAP MMC work
[ARM] 3677/1: OMAP: Update H2 defconfig
[ARM] 3676/1: ARM: OMAP: Fix dmtimers and timer32k to compile on OMAP1
[ARM] Add section support to ioremap
[ARM] Fix sa11x0 SDRAM selection
[ARM] Set bit 4 on section mappings correctly depending on CPU
[ARM] 3666/1: TRIZEPS4 [1/5] core
ARM: OMAP: Multiplexing for 24xx GPMC wait pin monitoring
ARM: OMAP: Fix SRAM to use MT_MEMORY instead of MT_DEVICE
ARM: OMAP: Update dmtimers
ARM: OMAP: Make clock variables static
ARM: OMAP: Fix GPMC compilation when DEBUG is defined
ARM: OMAP: Mux updates for external DMA and GPIO
...
On some CPUs, bit 4 of section mappings means "update the
cache when written to". On others, this bit is required to
be one, and others it's required to be zero. Finally, on
ARMv6 and above, setting it turns on "no execute" and prevents
speculative prefetches.
With all these combinations, no one value fits all CPUs, so we
have to pick a value depending on the CPU type, and the area
we're mapping.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Most MMU-based CPUs have a restriction on the setting of the data cache
enable and mmu enable bits in the control register, whereby if the data
cache is enabled, the MMU must also be enabled. Enabling the data
cache without the MMU is an invalid combination.
However, there are CPUs where the data cache can be enabled without the
MMU.
In order to allow these CPUs to take advantage of that, provide a
method whereby each proc-*.S file defines the control regsiter value
for use with nommu (with the MMU disabled.) Later on, when we add
support for enabling the MMU on these devices, we can adjust the
"crval" macro to also enable the data cache for nommu.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The "id(wb)BRR" suffix reports which CPU debugging options were (or
were not) selected at kernel build time. Rather than have every
proc-*.S file implement this, report the control register value,
from which this information can be deduced.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In noMMU mode, various of functions which are defined in mm/proc-*.S
is not valid or needed to be avoided. i.g. switch_mm is not needed,
just returns and this makes the I & D caches are valid which shows
great improvement of performance including task switching and IPC.
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
asm/hardware.h is not required for the majority of processor support
files, ioremap support, mm initialisation, acorn IO support, nor
the debug code (which picks up its machine specific includes via
debug-macros.S)
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move the hardware PMD and PTE page table definitions from pgtable.h
into pgtable-hwdef.h, and include pgtable-hwdef.h as necessary.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Ben Dooks
The `make buildcheck` is erroneously reporting that the .proc.info
list is referencing items in the .init section as it is not itself
postfixed with .init
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!