The main change here is a significant head.S rework that allows us to
boot on machines with physical memory at a really high address without
having to increase our mapped VA range. Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJVLnQpAAoJELescNyEwWM03RIH/iwcDc0MBZgkwfD5cnY+29p4
m89lMDo3SyGQT4NynHSw7P3R7c3zULmI+9hmJMw/yfjjjL6m7X+vVAF3xj1Am4Al
OzCqYLHyFnlRktzJ6dWeF1Ese7tWqPpxn+OCXgYNpz/r5MfF/HhlyX/qNzAQPKrw
ZpDvnt44DgUfweqjTbwQUg2wkyCRjmz57MQYxDcmJStdpHIu24jWOvDIo3OJGjyS
L49I9DU6DGUhkISZmmBE0T7vmKMD1BcgI7OIzX2WIqn521QT+GSLMhRxaHmK1s1V
A8gaMTwpo0xFhTAt7sbw/5+2663WmfRdZI+FtduvORsoxX6KdDn7DH1NQixIm8s=
=+F0I
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here are the core arm64 updates for 4.1.
Highlights include a significant rework to head.S (allowing us to boot
on machines with physical memory at a really high address), an AES
performance boost on Cortex-A57 and the ability to run a 32-bit
userspace with 64k pages (although this requires said userspace to be
built with a recent binutils).
The head.S rework spilt over into KVM, so there are some changes under
arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
In particular, the linker script changes caused us some issues in
-next, so there are a few merge commits where we had to apply fixes on
top of a stable branch.
Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
arm64: fix midr range for Cortex-A57 erratum 832075
arm64: errata: add workaround for cortex-a53 erratum #845719
arm64: Use bool function return values of true/false not 1/0
arm64: defconfig: updates for 4.1
arm64: Extract feature parsing code from cpu_errata.c
arm64: alternative: Allow immediate branch as alternative instruction
arm64: insn: Add aarch64_insn_decode_immediate
ARM: kvm: round HYP section to page size instead of log2 upper bound
ARM: kvm: assert on HYP section boundaries not actual code size
arm64: head.S: ensure idmap_t0sz is visible
arm64: pmu: add support for interrupt-affinity property
dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
arm64: head.S: ensure visibility of page tables
arm64: KVM: use ID map with increased VA range if required
arm64: mm: increase VA range of identity map
ARM: kvm: implement replacement for ld's LOG2CEIL()
arm64: proc: remove unused cpu_get_pgd macro
arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
arm64: remove __calc_phys_offset
arm64: merge __enable_mmu and __turn_mmu_on
...
init_mm isn't a normal mm: it has swapper_pg_dir as its pgd (which
contains kernel mappings) and is used as the active_mm for the idle
thread.
When restoring the pgd after an EFI call, we write current->active_mm
into TTBR0. If the current task is actually the idle thread (e.g. when
initialising the EFI RTC before entering userspace), then the TLB can
erroneously populate itself with junk global entries as a result of
speculative table walks.
When we do eventually return to userspace, the task can end up hitting
these junk mappings leading to lockups, corruption or crashes.
This patch fixes the problem in the same way as the CPU suspend code by
ensuring that we never switch to the init_mm in efi_set_pgd and instead
point TTBR0 at the zero page. A check is also added to cpu_switch_mm to
BUG if we get passed swapper_pg_dir.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: f3cdfd239d ("arm64/efi: move SetVirtualAddressMap() to UEFI stub")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cpu_get_pgd isn't used anywhere and is Probably Not What You Want.
Remove it before anybody decides to use it.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The current soft_restart() and setup_restart implementations incorrectly
assume that compiler will not spill/fill values to/from stack. However
this assumption seems to be wrong, revealed by the disassembly of the
currently existing code (v3.16) built with Linaro GCC 4.9-2014.05.
ffffffc000085224 <soft_restart>:
ffffffc000085224: a9be7bfd stp x29, x30, [sp,#-32]!
ffffffc000085228: 910003fd mov x29, sp
ffffffc00008522c: f9000fa0 str x0, [x29,#24]
ffffffc000085230: 94003d21 bl ffffffc0000946b4 <setup_mm_for_reboot>
ffffffc000085234: 94003b33 bl ffffffc000093f00 <flush_cache_all>
ffffffc000085238: 94003dfa bl ffffffc000094a20 <cpu_cache_off>
ffffffc00008523c: 94003b31 bl ffffffc000093f00 <flush_cache_all>
ffffffc000085240: b0003321 adrp x1, ffffffc0006ea000 <reset_devices>
ffffffc000085244: f9400fa0 ldr x0, [x29,#24] ----> spilled addr
ffffffc000085248: f942fc22 ldr x2, [x1,#1528] ----> global memstart_addr
ffffffc00008524c: f0000061 adrp x1, ffffffc000094000 <__inval_cache_range+0x40>
ffffffc000085250: 91290021 add x1, x1, #0xa40
ffffffc000085254: 8b010041 add x1, x2, x1
ffffffc000085258: d2c00802 mov x2, #0x4000000000 // #274877906944
ffffffc00008525c: 8b020021 add x1, x1, x2
ffffffc000085260: d63f0020 blr x1
...
Here the compiler generates memory accesses after the cache is disabled,
loading stale values for the spilled value and global variable. As we cannot
control when the compiler will access memory we must rewrite the
functions in assembly to stash values we need in registers prior to
disabling the cache, avoiding the use of memory.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arun Chandran <achandran@mvista.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Power management software requires the kernel to save and restore
CPU registers while going through suspend and resume operations
triggered by kernel subsystems like CPU idle and suspend to RAM.
This patch implements code that provides save and restore mechanism
for the arm v8 implementation. Memory for the context is passed as
parameter to both cpu_do_suspend and cpu_do_resume functions, and allows
the callers to implement context allocation as they deem fit.
The registers that are saved and restored correspond to the registers set
actually required by the kernel to be up and running which represents a
subset of v8 ISA.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
This patch adds AArch64 CPU specific functionality. It assumes that the
implementation is generic to AArch64 and does not require specific
identification. Different CPU implementations may require the setting of
various ACTLR_EL1 bits but such information is not currently available
and it should ideally be pushed to firmware.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>