When a memblock allocation APIs are called with align = 0, the alignment
is implicitly set to SMP_CACHE_BYTES.
Implicit alignment is done deep in the memblock allocator and it can
come as a surprise. Not that such an alignment would be wrong even
when used incorrectly but it is better to be explicit for the sake of
clarity and the prinicple of the least surprise.
Replace all such uses of memblock APIs with the 'align' parameter
explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment
in the memblock internal allocation functions.
For the case when memblock APIs are used via helper functions, e.g. like
iommu_arena_new_node() in Alpha, the helper functions were detected with
Coccinelle's help and then manually examined and updated where
appropriate.
The direct memblock APIs users were updated using the semantic patch below:
@@
expression size, min_addr, max_addr, nid;
@@
(
|
- memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid)
|
- memblock_alloc(size, 0)
+ memblock_alloc(size, SMP_CACHE_BYTES)
|
- memblock_alloc_raw(size, 0)
+ memblock_alloc_raw(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from(size, 0, min_addr)
+ memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_nopanic(size, 0)
+ memblock_alloc_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low(size, 0)
+ memblock_alloc_low(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low_nopanic(size, 0)
+ memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from_nopanic(size, 0, min_addr)
+ memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_node(size, 0, nid)
+ memblock_alloc_node(size, SMP_CACHE_BYTES, nid)
)
[mhocko@suse.com: changelog update]
[akpm@linux-foundation.org: coding-style fixes]
[rppt@linux.ibm.com: fix missed uses of implicit alignment]
Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx
Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (132 commits)
hugetlbfs: dirty pages as they are added to pagecache
mm: export add_swap_extent()
mm: split SWP_FILE into SWP_ACTIVATED and SWP_FS
tools/testing/selftests/vm/map_fixed_noreplace.c: add test for MAP_FIXED_NOREPLACE
mm: thp: relocate flush_cache_range() in migrate_misplaced_transhuge_page()
mm: thp: fix mmu_notifier in migrate_misplaced_transhuge_page()
mm: thp: fix MADV_DONTNEED vs migrate_misplaced_transhuge_page race condition
mm/kasan/quarantine.c: make quarantine_lock a raw_spinlock_t
mm/gup: cache dev_pagemap while pinning pages
Revert "x86/e820: put !E820_TYPE_RAM regions into memblock.reserved"
mm: return zero_resv_unavail optimization
mm: zero remaining unavailable struct pages
tools/testing/selftests/vm/gup_benchmark.c: add MAP_HUGETLB option
tools/testing/selftests/vm/gup_benchmark.c: add MAP_SHARED option
tools/testing/selftests/vm/gup_benchmark.c: allow user specified file
tools/testing/selftests/vm/gup_benchmark.c: fix 'write' flag usage
mm/gup_benchmark.c: add additional pinning methods
mm/gup_benchmark.c: time put_page()
mm: don't raise MEMCG_OOM event due to failed high-order allocation
mm/page-writeback.c: fix range_cyclic writeback vs writepages deadlock
...
ARM64 has asm implementation of memchr(), memcmp(), str[r]chr(),
str[n]cmp(), str[n]len(). KASAN don't see memory accesses in asm code,
thus it can potentially miss many bugs.
Ifdef out __HAVE_ARCH_* defines of these functions when KASAN is enabled,
so the generic implementations from lib/string.c will be used.
We can't just remove the asm functions because efistub uses them. And we
can't have two non-weak functions either, so declare the asm functions as
weak.
Link: http://lkml.kernel.org/r/20180920135631.23833-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Kyeongdon Kim <kyeongdon.kim@lge.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Sync dtc with upstream version v1.4.7-14-gc86da84d30e4
- Work to get rid of direct accesses to struct device_node name and
type pointers in preparation for removing them. New helpers for
parsing DT cpu nodes and conversions to use the helpers. printk
conversions to %pOFn for printing DT node names. Most went thru
subystem trees, so this is the remainder.
- Fixes to DT child node lookups to actually be restricted to child
nodes instead of treewide.
- Refactoring of dtb targets out of arch code. This makes the support
more uniform and enables building all dtbs on c6x, microblaze, and
powerpc.
- Various DT binding updates for Renesas r8a7744 SoC
- Vendor prefixes for Facebook, OLPC
- Restructuring of some ARM binding docs moving some peripheral bindings
out of board/SoC binding files
- New "secure-chosen" binding for secure world settings on ARM
- Dual licensing of 2 DT IRQ binding headers
-----BEGIN PGP SIGNATURE-----
iQJEBAABCgAuFiEEktVUI4SxYhzZyEuo+vtdtY28YcMFAlvTKWYQHHJvYmhAa2Vy
bmVsLm9yZwAKCRD6+121jbxhw8J5EACMAnrTxWQmXfQXOZEVxztcFavH6LP8mh2e
7FZIZ38jzHXXvl81tAg1nBhzFUU/qtvqW8NDCZ9OBxKvp6PFDNhWu241ZodSB1Kw
MZWy2A9QC+qbHYCC+SB5gOT0+Py3v7LNCBa5/TxhbFd35THJM8X0FP7gmcCGX593
9Ml1rqawT4mK5XmCpczT0cXxyC4TgVtpfDWZH2KgJTR/kwXVQlOQOGZ8a1y/wrt7
8TLIe7Qy4SFRzjhwbSta1PUehyYfe4uTSsXIJ84kMvNMxinLXQtvd7t9TfsK8p/R
WjYUneJskVjtxVrMQfdV4MxyFL1YEt2mYcr0PMKIWxMCgGDAZsHPoUZmjyh/PrCI
uiZtEHn3fXpUZAV/xEHHNirJxYyQfHGiksAT+lPrUXYYLCcZ3ZmqiTEYhGoQAfH5
CQPMuxA6yXxp6bov6zJwZSTZtkXciju8aQRhUhlxIfHTqezmGYeql/bnWd+InNuR
upANLZBh6D2jTWzDyobconkCCLlVkSqDoqOx725mMl6hIcdH9d2jVX7hwRf077VI
5i3CyPSJOkSOLSdB8bAPYfBoaDtH2bthxieUrkkSbIjbwHO1H6a2lxPeG/zah0a3
ePMGhi7J84UM4VpJEi000cP+bhPumJtJrG7zxP7ldXdfAF436sQ6KRptlcpLpj5i
IwMhUQNH+g==
=335v
-----END PGP SIGNATURE-----
Merge tag 'devicetree-for-4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux
Pull Devicetree updates from Rob Herring:
"A bit bigger than normal as I've been busy this cycle.
There's a few things with dependencies and a few things subsystem
maintainers didn't pick up, so I'm taking them thru my tree.
The fixes from Johan didn't get into linux-next, but they've been
waiting for some time now and they are what's left of what subsystem
maintainers didn't pick up.
Summary:
- Sync dtc with upstream version v1.4.7-14-gc86da84d30e4
- Work to get rid of direct accesses to struct device_node name and
type pointers in preparation for removing them. New helpers for
parsing DT cpu nodes and conversions to use the helpers. printk
conversions to %pOFn for printing DT node names. Most went thru
subystem trees, so this is the remainder.
- Fixes to DT child node lookups to actually be restricted to child
nodes instead of treewide.
- Refactoring of dtb targets out of arch code. This makes the support
more uniform and enables building all dtbs on c6x, microblaze, and
powerpc.
- Various DT binding updates for Renesas r8a7744 SoC
- Vendor prefixes for Facebook, OLPC
- Restructuring of some ARM binding docs moving some peripheral
bindings out of board/SoC binding files
- New "secure-chosen" binding for secure world settings on ARM
- Dual licensing of 2 DT IRQ binding headers"
* tag 'devicetree-for-4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (78 commits)
ARM: dt: relicense two DT binding IRQ headers
power: supply: twl4030-charger: fix OF sibling-node lookup
NFC: nfcmrvl_uart: fix OF child-node lookup
net: stmmac: dwmac-sun8i: fix OF child-node lookup
net: bcmgenet: fix OF child-node lookup
drm/msm: fix OF child-node lookup
drm/mediatek: fix OF sibling-node lookup
of: Add missing exports of node name compare functions
dt-bindings: Add OLPC vendor prefix
dt-bindings: misc: bk4: Add device tree binding for Liebherr's BK4 SPI bus
dt-bindings: thermal: samsung: Add SPDX license identifier
dt-bindings: clock: samsung: Add SPDX license identifiers
dt-bindings: timer: ostm: Add R7S9210 support
dt-bindings: phy: rcar-gen2: Add r8a7744 support
dt-bindings: can: rcar_can: Add r8a7744 support
dt-bindings: timer: renesas, cmt: Document r8a7744 CMT support
dt-bindings: watchdog: renesas-wdt: Document r8a7744 support
dt-bindings: thermal: rcar: Add device tree support for r8a7744
Documentation: dt: Add binding for /secure-chosen/stdout-path
dt-bindings: arm: zte: Move sysctrl bindings to their own doc
...
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAlvPV7IUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vyaUg//WnCaRIu2oKOp8c/bplZJDW5eT10d
oYAN9qeyptU9RYrg4KBNbZL9UKGFTk3AoN5AUjrk8njxc/dY2ra/79esOvZyyYQy
qLXBvrXKg3yZnlNlnyBneGSnUVwv/kl2hZS+kmYby2YOa8AH/mhU0FIFvsnfRK2I
XvwABFm2ZYvXCqh3e5HXaHhOsR88NQ9In0AXVC7zHGqv1r/bMVn2YzPZHL/zzMrF
mS79tdBTH+shSvchH9zvfgIs+UEKvvjEJsG2liwMkcQaV41i5dZjSKTdJ3EaD/Y2
BreLxXRnRYGUkBqfcon16Yx+P6VCefDRLa+RhwYO3dxFF2N4ZpblbkIdBATwKLjL
npiGc6R8yFjTmZU0/7olMyMCm7igIBmDvWPcsKEE8R4PezwoQv6YKHBMwEaflIbl
Rv4IUqjJzmQPaA0KkRoAVgAKHxldaNqno/6G1FR2gwz+fr68p5WSYFlQ3axhvTjc
bBMJpB/fbp9WmpGJieTt6iMOI6V1pnCVjibM5ZON59WCFfytHGGpbYW05gtZEod4
d/3yRuU53JRSj3jQAQuF1B6qYhyxvv5YEtAQqIFeHaPZ67nL6agw09hE+TlXjWbE
rTQRShflQ+ydnzIfKicFgy6/53D5hq7iH2l7HwJVXbXRQ104T5DB/XHUUTr+UWQn
/Nkhov32/n6GjxQ=
=58I4
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
- Fix ASPM link_state teardown on removal (Lukas Wunner)
- Fix misleading _OSC ASPM message (Sinan Kaya)
- Make _OSC optional for PCI (Sinan Kaya)
- Don't initialize ASPM link state when ACPI_FADT_NO_ASPM is set
(Patrick Talbert)
- Remove x86 and arm64 node-local allocation for host bridge structures
(Punit Agrawal)
- Pay attention to device-specific _PXM node values (Jonathan Cameron)
- Support new Immediate Readiness bit (Felipe Balbi)
- Differentiate between pciehp surprise and safe removal (Lukas Wunner)
- Remove unnecessary pciehp includes (Lukas Wunner)
- Drop pciehp hotplug_slot_ops wrappers (Lukas Wunner)
- Tolerate PCIe Slot Presence Detect being hardwired to zero to
workaround broken hardware, e.g., the Wilocity switch/wireless device
(Lukas Wunner)
- Unify pciehp controller & slot structs (Lukas Wunner)
- Constify hotplug_slot_ops (Lukas Wunner)
- Drop hotplug_slot_info (Lukas Wunner)
- Embed hotplug_slot struct into users instead of allocating it
separately (Lukas Wunner)
- Initialize PCIe port service drivers directly instead of relying on
initcall ordering (Keith Busch)
- Restore PCI config state after a slot reset (Keith Busch)
- Save/restore DPC config state along with other PCI config state
(Keith Busch)
- Reference count devices during AER handling to avoid race issue with
concurrent hot removal (Keith Busch)
- If an Upstream Port reports ERR_FATAL, don't try to read the Port's
config space because it is probably unreachable (Keith Busch)
- During error handling, use slot-specific reset instead of secondary
bus reset to avoid link up/down issues on hotplug ports (Keith Busch)
- Restore previous AER/DPC handling that does not remove and
re-enumerate devices on ERR_FATAL (Keith Busch)
- Notify all drivers that may be affected by error recovery resets
(Keith Busch)
- Always generate error recovery uevents, even if a driver doesn't have
error callbacks (Keith Busch)
- Make PCIe link active reporting detection generic (Keith Busch)
- Support D3cold in PCIe hierarchies during system sleep and runtime,
including hotplug and Thunderbolt ports (Mika Westerberg)
- Handle hpmemsize/hpiosize kernel parameters uniformly, whether slots
are empty or occupied (Jon Derrick)
- Remove duplicated include from pci/pcie/err.c and unused variable
from cpqphp (YueHaibing)
- Remove driver pci_cleanup_aer_uncorrect_error_status() calls (Oza
Pawandeep)
- Uninline PCI bus accessors for better ftracing (Keith Busch)
- Remove unused AER Root Port .error_resume method (Keith Busch)
- Use kfifo in AER instead of a local version (Keith Busch)
- Use threaded IRQ in AER bottom half (Keith Busch)
- Use managed resources in AER core (Keith Busch)
- Reuse pcie_port_find_device() for AER injection (Keith Busch)
- Abstract AER interrupt handling to disconnect error injection (Keith
Busch)
- Refactor AER injection callbacks to simplify future improvments
(Keith Busch)
- Remove unused Netronome NFP32xx Device IDs (Jakub Kicinski)
- Use bitmap_zalloc() for dma_alias_mask (Andy Shevchenko)
- Add switch fall-through annotations (Gustavo A. R. Silva)
- Remove unused Switchtec quirk variable (Joshua Abraham)
- Fix pci.c kernel-doc warning (Randy Dunlap)
- Remove trivial PCI wrappers for DMA APIs (Christoph Hellwig)
- Add Intel GPU device IDs to spurious interrupt quirk (Bin Meng)
- Run Switchtec DMA aliasing quirk only on NTB endpoints to avoid
useless dmesg errors (Logan Gunthorpe)
- Update Switchtec NTB documentation (Wesley Yung)
- Remove redundant "default n" from Kconfig (Bartlomiej Zolnierkiewicz)
- Avoid panic when drivers enable MSI/MSI-X twice (Tonghao Zhang)
- Add PCI support for peer-to-peer DMA (Logan Gunthorpe)
- Add sysfs group for PCI peer-to-peer memory statistics (Logan
Gunthorpe)
- Add PCI peer-to-peer DMA scatterlist mapping interface (Logan
Gunthorpe)
- Add PCI configfs/sysfs helpers for use by peer-to-peer users (Logan
Gunthorpe)
- Add PCI peer-to-peer DMA driver writer's documentation (Logan
Gunthorpe)
- Add block layer flag to indicate driver support for PCI peer-to-peer
DMA (Logan Gunthorpe)
- Map Infiniband scatterlists for peer-to-peer DMA if they contain P2P
memory (Logan Gunthorpe)
- Register nvme-pci CMB buffer as PCI peer-to-peer memory (Logan
Gunthorpe)
- Add nvme-pci support for PCI peer-to-peer memory in requests (Logan
Gunthorpe)
- Use PCI peer-to-peer memory in nvme (Stephen Bates, Steve Wise,
Christoph Hellwig, Logan Gunthorpe)
- Cache VF config space size to optimize enumeration of many VFs
(KarimAllah Ahmed)
- Remove unnecessary <linux/pci-ats.h> include (Bjorn Helgaas)
- Fix VMD AERSID quirk Device ID matching (Jon Derrick)
- Fix Cadence PHY handling during probe (Alan Douglas)
- Signal Cadence Endpoint interrupts via AXI region 0 instead of last
region (Alan Douglas)
- Write Cadence Endpoint MSI interrupts with 32 bits of data (Alan
Douglas)
- Remove redundant controller tests for "device_type == pci" (Rob
Herring)
- Document R-Car E3 (R8A77990) bindings (Tho Vu)
- Add device tree support for R-Car r8a7744 (Biju Das)
- Drop unused mvebu PCIe capability code (Thomas Petazzoni)
- Add shared PCI bridge emulation code (Thomas Petazzoni)
- Convert mvebu to use shared PCI bridge emulation (Thomas Petazzoni)
- Add aardvark Root Port emulation (Thomas Petazzoni)
- Support 100MHz/200MHz refclocks for i.MX6 (Lucas Stach)
- Add initial power management for i.MX7 (Leonard Crestez)
- Add PME_Turn_Off support for i.MX7 (Leonard Crestez)
- Fix qcom runtime power management error handling (Bjorn Andersson)
- Update TI dra7xx unaligned access errata workaround for host mode as
well as endpoint mode (Vignesh R)
- Fix kirin section mismatch warning (Nathan Chancellor)
- Remove iproc PAXC slot check to allow VF support (Jitendra Bhivare)
- Quirk Keystone K2G to limit MRRS to 256 (Kishon Vijay Abraham I)
- Update Keystone to use MRRS quirk for host bridge instead of open
coding (Kishon Vijay Abraham I)
- Refactor Keystone link establishment (Kishon Vijay Abraham I)
- Simplify and speed up Keystone link training (Kishon Vijay Abraham I)
- Remove unused Keystone host_init argument (Kishon Vijay Abraham I)
- Merge Keystone driver files into one (Kishon Vijay Abraham I)
- Remove redundant Keystone platform_set_drvdata() (Kishon Vijay
Abraham I)
- Rename Keystone functions for uniformity (Kishon Vijay Abraham I)
- Add Keystone device control module DT binding (Kishon Vijay Abraham
I)
- Use SYSCON API to get Keystone control module device IDs (Kishon
Vijay Abraham I)
- Clean up Keystone PHY handling (Kishon Vijay Abraham I)
- Use runtime PM APIs to enable Keystone clock (Kishon Vijay Abraham I)
- Clean up Keystone config space access checks (Kishon Vijay Abraham I)
- Get Keystone outbound window count from DT (Kishon Vijay Abraham I)
- Clean up Keystone outbound window configuration (Kishon Vijay Abraham
I)
- Clean up Keystone DBI setup (Kishon Vijay Abraham I)
- Clean up Keystone ks_pcie_link_up() (Kishon Vijay Abraham I)
- Fix Keystone IRQ status checking (Kishon Vijay Abraham I)
- Add debug messages for all Keystone errors (Kishon Vijay Abraham I)
- Clean up Keystone includes and macros (Kishon Vijay Abraham I)
- Fix Mediatek unchecked return value from devm_pci_remap_iospace()
(Gustavo A. R. Silva)
- Fix Mediatek endpoint/port matching logic (Honghui Zhang)
- Change Mediatek Root Port Class Code to PCI_CLASS_BRIDGE_PCI (Honghui
Zhang)
- Remove redundant Mediatek PM domain check (Honghui Zhang)
- Convert Mediatek to pci_host_probe() (Honghui Zhang)
- Fix Mediatek MSI enablement (Honghui Zhang)
- Add Mediatek system PM support for MT2712 and MT7622 (Honghui Zhang)
- Add Mediatek loadable module support (Honghui Zhang)
- Detach VMD resources after stopping root bus to prevent orphan
resources (Jon Derrick)
- Convert pcitest build process to that used by other tools (iio, perf,
etc) (Gustavo Pimentel)
* tag 'pci-v4.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (140 commits)
PCI/AER: Refactor error injection fallbacks
PCI/AER: Abstract AER interrupt handling
PCI/AER: Reuse existing pcie_port_find_device() interface
PCI/AER: Use managed resource allocations
PCI: pcie: Remove redundant 'default n' from Kconfig
PCI: aardvark: Implement emulated root PCI bridge config space
PCI: mvebu: Convert to PCI emulated bridge config space
PCI: mvebu: Drop unused PCI express capability code
PCI: Introduce PCI bridge emulated config space common logic
PCI: vmd: Detach resources after stopping root bus
nvmet: Optionally use PCI P2P memory
nvmet: Introduce helper functions to allocate and free request SGLs
nvme-pci: Add support for P2P memory in requests
nvme-pci: Use PCI p2pmem subsystem to manage the CMB
IB/core: Ensure we map P2P memory correctly in rdma_rw_ctx_[init|destroy]()
block: Add PCI P2P flag for request queue
PCI/P2PDMA: Add P2P DMA driver writer's documentation
docs-rst: Add a new directory for PCI documentation
PCI/P2PDMA: Introduce configfs/sysfs enable attribute helpers
PCI/P2PDMA: Add PCI p2pmem DMA mappings to adjust the bus offset
...
Pull security subsystem updates from James Morris:
"In this patchset, there are a couple of minor updates, as well as some
reworking of the LSM initialization code from Kees Cook (these prepare
the way for ordered stackable LSMs, but are a valuable cleanup on
their own)"
* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
LSM: Don't ignore initialization failures
LSM: Provide init debugging infrastructure
LSM: Record LSM name in struct lsm_info
LSM: Convert security_initcall() into DEFINE_LSM()
vmlinux.lds.h: Move LSM_TABLE into INIT_DATA
LSM: Convert from initcall to struct lsm_info
LSM: Remove initcall tracing
LSM: Rename .security_initcall section to .lsm_info
vmlinux.lds.h: Avoid copy/paste of security_init section
LSM: Correctly announce start of LSM initialization
security: fix LSM description location
keys: Fix the use of the C++ keyword "private" in uapi/linux/keyctl.h
seccomp: remove unnecessary unlikely()
security: tomoyo: Fix obsolete function
security/capabilities: remove check for -EINVAL
Pull siginfo updates from Eric Biederman:
"I have been slowly sorting out siginfo and this is the culmination of
that work.
The primary result is in several ways the signal infrastructure has
been made less error prone. The code has been updated so that manually
specifying SEND_SIG_FORCED is never necessary. The conversion to the
new siginfo sending functions is now complete, which makes it
difficult to send a signal without filling in the proper siginfo
fields.
At the tail end of the patchset comes the optimization of decreasing
the size of struct siginfo in the kernel from 128 bytes to about 48
bytes on 64bit. The fundamental observation that enables this is by
definition none of the known ways to use struct siginfo uses the extra
bytes.
This comes at the cost of a small user space observable difference.
For the rare case of siginfo being injected into the kernel only what
can be copied into kernel_siginfo is delivered to the destination, the
rest of the bytes are set to 0. For cases where the signal and the
si_code are known this is safe, because we know those bytes are not
used. For cases where the signal and si_code combination is unknown
the bits that won't fit into struct kernel_siginfo are tested to
verify they are zero, and the send fails if they are not.
I made an extensive search through userspace code and I could not find
anything that would break because of the above change. If it turns out
I did break something it will take just the revert of a single change
to restore kernel_siginfo to the same size as userspace siginfo.
Testing did reveal dependencies on preferring the signo passed to
sigqueueinfo over si->signo, so bit the bullet and added the
complexity necessary to handle that case.
Testing also revealed bad things can happen if a negative signal
number is passed into the system calls. Something no sane application
will do but something a malicious program or a fuzzer might do. So I
have fixed the code that performs the bounds checks to ensure negative
signal numbers are handled"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
signal: Guard against negative signal numbers in copy_siginfo_from_user32
signal: Guard against negative signal numbers in copy_siginfo_from_user
signal: In sigqueueinfo prefer sig not si_signo
signal: Use a smaller struct siginfo in the kernel
signal: Distinguish between kernel_siginfo and siginfo
signal: Introduce copy_siginfo_from_user and use it's return value
signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
signal: Fail sigqueueinfo if si_signo != sig
signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
signal/unicore32: Use force_sig_fault where appropriate
signal/unicore32: Generate siginfo in ucs32_notify_die
signal/unicore32: Use send_sig_fault where appropriate
signal/arc: Use force_sig_fault where appropriate
signal/arc: Push siginfo generation into unhandled_exception
signal/ia64: Use force_sig_fault where appropriate
signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
signal/ia64: Use the generic force_sigsegv in setup_frame
signal/arm/kvm: Use send_sig_mceerr
signal/arm: Use send_sig_fault where appropriate
signal/arm: Use force_sig_fault where appropriate
...
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
Pull locking and misc x86 updates from Ingo Molnar:
"Lots of changes in this cycle - in part because locking/core attracted
a number of related x86 low level work which was easier to handle in a
single tree:
- Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
McKenney, Andrea Parri)
- lockdep scalability improvements and micro-optimizations (Waiman
Long)
- rwsem improvements (Waiman Long)
- spinlock micro-optimization (Matthew Wilcox)
- qspinlocks: Provide a liveness guarantee (more fairness) on x86.
(Peter Zijlstra)
- Add support for relative references in jump tables on arm64, x86
and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)
- Be a lot less permissive on weird (kernel address) uaccess faults
on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
Horn)
- macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
Amit)
- ... and a handful of other smaller changes as well"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
locking/lockdep: Make global debug_locks* variables read-mostly
locking/lockdep: Fix debug_locks off performance problem
locking/pvqspinlock: Extend node size when pvqspinlock is configured
locking/qspinlock_stat: Count instances of nested lock slowpaths
locking/qspinlock, x86: Provide liveness guarantee
x86/asm: 'Simplify' GEN_*_RMWcc() macros
locking/qspinlock: Rework some comments
locking/qspinlock: Re-order code
locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
futex: Replace spin_is_locked() with lockdep
locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
x86/refcount: Work around GCC inlining bug
x86/objtool: Use asm macros to work around GCC inlining bugs
...
- Core mmu_gather changes which allow tracking the levels of page-table
being cleared together with the arm64 low-level flushing routines
- Support for the new ARMv8.5 PSTATE.SSBS bit which can be used to
mitigate Spectre-v4 dynamically without trapping to EL3 firmware
- Introduce COMPAT_SIGMINSTKSZ for use in compat_sys_sigaltstack
- Optimise emulation of MRS instructions to ID_* registers on ARMv8.4
- Support for Common Not Private (CnP) translations allowing threads of
the same CPU to share the TLB entries
- Accelerated crc32 routines
- Move swapper_pg_dir to the rodata section
- Trap WFI instruction executed in user space
- ARM erratum 1188874 workaround (arch_timer)
- Miscellaneous fixes and clean-ups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlvKGdEACgkQa9axLQDI
XvGSQBAAiOH6aQABL4TB7c5KIc7C+Unjm6QCFCoaeGWoHuemnM6cFJ7RQsi0GqnP
dVEX5V/FKfmeTWO5g24Ah+MbTm3Bt6+81gywAmi1rrHhmCaCIPjT7xDqy/WsLlvt
7WtgegSGvQ7DIMj2dbfFav6+ra67qAiYZTc46jvuynVl6DrE3BCiyTDbXAWt2nzP
Xf3un4AHRbg3UEMUZTLqU5q4z0tbM6rEAZru8O0UOTnD2q7uttUqW3Ab7fpuEkkj
lEVrMWD3h8SJg+Df9CbXmCNOjh4VhwBwDb5LgO8vA/AcyV/YLEF5b2OUAk/28qwo
0GBwjqRyI4+YQ9LPg41MhGzrlnta0HCdYoeNLgLQZiDcUkuSfGhoA+MNZNOR8B08
sCWF7F6f8UIQm8KMMBiYYdlVyUYgHLsWE/1+CyeLV0oIoWT5k3c+Xe3pho9KpVb0
Co04TqMlqalry0sbevHz5c55H7iWIjB1Tpo3SxM105dVJVibXRPXkz+WZ5iPO+xa
ex2j1kjNdA/AUzrSCZ5lh22zhg0WsfwD++E5meAaJMxieim8FeZDRga43rowJ0BA
zMbSNB/+NDFZ9EhC40VaUfKk8Tkgiug9J5swv0+v7hy1QLDyydHhbOecTuIueauM
6taiT2Iuov5yFng1eonYj4htvouVF4WOhPGthFPJMOcrB9mLMhs=
=3Mc8
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from some new arm64 features and clean-ups, this also contains
the core mmu_gather changes for tracking the levels of the page table
being cleared and a minor update to the generic
compat_sys_sigaltstack() introducing COMPAT_SIGMINSKSZ.
Summary:
- Core mmu_gather changes which allow tracking the levels of
page-table being cleared together with the arm64 low-level flushing
routines
- Support for the new ARMv8.5 PSTATE.SSBS bit which can be used to
mitigate Spectre-v4 dynamically without trapping to EL3 firmware
- Introduce COMPAT_SIGMINSTKSZ for use in compat_sys_sigaltstack
- Optimise emulation of MRS instructions to ID_* registers on ARMv8.4
- Support for Common Not Private (CnP) translations allowing threads
of the same CPU to share the TLB entries
- Accelerated crc32 routines
- Move swapper_pg_dir to the rodata section
- Trap WFI instruction executed in user space
- ARM erratum 1188874 workaround (arch_timer)
- Miscellaneous fixes and clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (78 commits)
arm64: KVM: Guests can skip __install_bp_hardening_cb()s HYP work
arm64: cpufeature: Trap CTR_EL0 access only where it is necessary
arm64: cpufeature: Fix handling of CTR_EL0.IDC field
arm64: cpufeature: ctr: Fix cpu capability check for late CPUs
Documentation/arm64: HugeTLB page implementation
arm64: mm: Use __pa_symbol() for set_swapper_pgd()
arm64: Add silicon-errata.txt entry for ARM erratum 1188873
Revert "arm64: uaccess: implement unsafe accessors"
arm64: mm: Drop the unused cpu parameter
MAINTAINERS: fix bad sdei paths
arm64: mm: Use #ifdef for the __PAGETABLE_P?D_FOLDED defines
arm64: Fix typo in a comment in arch/arm64/mm/kasan_init.c
arm64: xen: Use existing helper to check interrupt status
arm64: Use daifflag_restore after bp_hardening
arm64: daifflags: Use irqflags functions for daifflags
arm64: arch_timer: avoid unused function warning
arm64: Trap WFI executed in userspace
arm64: docs: Document SSBS HWCAP
arm64: docs: Fix typos in ELF hwcaps
arm64/kprobes: remove an extra semicolon in arch_prepare_kprobe
...
enable_smccc_arch_workaround_1() passes NULL as the hyp_vecs start and
end if the HVC conduit is in use, and ARM_SMCCC_ARCH_WORKAROUND_1 is
detected.
If the guest kernel happened to be built with KVM_INDIRECT_VECTORS,
we go on to allocate a slot, memcpy() the empty workaround in and
do the appropriate cache maintenance.
This works as we always tell memcpy() the range is 0, so it never
accesses the NULL src pointer, but we still do the cache maintenance.
If hyp_vecs_start is NULL we know we're a guest, just update the fn
like the !KVM_INDIRECT_VECTORS version.
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When there is a mismatch in the CTR_EL0 field, we trap
access to CTR from EL0 on all CPUs to expose the safe
value. However, we could skip trapping on a CPU which
matches the safe value.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CTR_EL0.IDC reports the data cache clean requirements for instruction
to data coherence. However, if the field is 0, we need to check the
CLIDR_EL1 fields to detect the status of the feature. Currently we
don't do this and generate a warning with tainting the kernel, when
there is a mismatch in the field among the CPUs. Also the userspace
doesn't have a reliable way to check the CLIDR_EL1 register to check
the status.
This patch fixes the problem by checking the CLIDR_EL1 fields, when
(CTR_EL0.IDC == 0) and updates the kernel's copy of the CTR_EL0 for
the CPU with the actual status of the feature. This would allow the
sanity check infrastructure to do the proper checking of the fields
and also allow the CTR_EL0 emulation code to supply the real status
of the feature.
Now, if a CPU has raw CTR_EL0.IDC == 0 and effective IDC == 1 (with
overall system wide IDC == 1), we need to expose the real value to
the user. So, we trap CTR_EL0 access on the CPU which reports incorrect
CTR_EL0.IDC.
Fixes: commit 6ae4b6e057 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The matches() routine for a capability must honor the "scope"
passed to it and return the proper results.
i.e, when passed with SCOPE_LOCAL_CPU, it should check the
status of the capability on the current CPU. This is used by
verify_local_cpu_capabilities() on a late secondary CPU to make
sure that it's compliant with the established system features.
However, ARM64_HAS_CACHE_{IDC/DIC} always checks the system wide
registers and this could mean that a late secondary CPU could return
"true" (since the CPU hasn't updated the system wide registers yet)
and thus lead the system in an inconsistent state, where
the system assumes it has IDC/DIC feature, while the new CPU
doesn't.
Fixes: commit 6ae4b6e057 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It doesn't make sense for a perf event to be configured as a CHAIN event
in isolation, so extend the arm_pmu structure with a ->filter_match()
function to allow the backend PMU implementation to reject CHAIN events
early.
Cc: <stable@vger.kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We describe ranges of 'reserved' memory to userspace via /proc/iomem.
Commit 50d7ba36b9 ("arm64: export memblock_reserve()d regions via
/proc/iomem") updated the logic to export regions that were reserved
because their contents should be preserved. This allowed kexec-tools
to tell the difference between 'reserved' memory that must be
preserved and not overwritten, (e.g. the ACPI tables), and 'nomap'
memory that must not be touched without knowing the memory-attributes
(e.g. RAS CPER regions).
The above commit wrongly assumed that memblock_reserve() would not
be used to reserve regions that aren't memory. It turns out this is
exactly what early_init_dt_reserve_memory_arch() will do if it finds
a DT reserved-memory that was also carved out of the memory node, which
results in a WARN_ON_ONCE() and the region being reserved instead of
ignored. The ramoops description on hikey and dragonboard-410c both do
this, so we can't simply write this configuration off as "buggy firmware".
Avoid this issue by rewriting reserve_memblock_reserved_regions() so
that only the portions of reserved regions which overlap with mapped
memory are actually reserved.
Fixes: 50d7ba36b9 ("arm64: export memblock_reserve()d regions via /proc/iomem")
Reported-by: John Stultz <john.stultz@linaro.org>
Reported-by: Paolo Pisati <p.pisati@gmail.com>
CC: Akashi Takahiro <takahiro.akashi@linaro.org>
CC: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since the struct lsm_info table is not an initcall, we can just move it
into INIT_DATA like all the other tables.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: John Johansen <john.johansen@canonical.com>
Reviewed-by: James Morris <james.morris@microsoft.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
It recently came to light that userspace can execute WFI, and that
the arm64 kernel doesn't trap this event. This sounds rather benign,
but the kernel should decide when it wants to wait for an interrupt,
and not userspace.
Let's trap WFI and immediately return after having skipped the
instruction. This effectively makes WFI a rather expensive NOP.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is an extra semicolon in arch_prepare_kprobe, remove it.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When running on Cortex-A76, a timer access from an AArch32 EL0
task may end up with a corrupted value or register. The workaround for
this is to trap these accesses at EL1/EL2 and execute them there.
This only affects versions r0p0, r1p0 and r2p0 of the CPU.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Just like CNTVCT, we need to handle userspace trapping into the
kernel if we're decided that the timer wasn't fit for purpose...
64bit userspace is already dealt with, but we're missing the
equivalent compat handling.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since people seem to make a point in breaking the userspace visible
counter, we have no choice but to trap the access. We already do this
for 64bit userspace, but this is lacking for compat. Let's provide
the required handler.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We're now ready to start handling CP15 access. Let's add (empty)
arrays for both 32 and 64bit accessors, and the code that deals
with them.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Here's a /really nice/ part of the architecture: a CP15 access is
allowed to trap even if it fails its condition check, and SW must
handle it. This includes decoding the IT state if this happens in
am IT block. As a consequence, SW must also deal with advancing
the IT state machine.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instead of directly generating an UNDEF when trapping a CP15 access,
let's add a new entry point to that effect (which only generates an
UNDEF for now).
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arm64 does not define CONFIG_HAVE_ARCH_COMPILER_H, nor does it keep
anything useful in its copy of asm/compiler.h, so let's remove it
before anybody starts using it.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Use the for_each_of_cpu_node iterator to iterate over cpu nodes. This
has the side effect of defaulting to iterating using "cpu" node names in
preference to the deprecated (for FDT) device_type == "cpu".
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Add arm64_force_sig_ptrace_errno_trap for consistency with
arm64_force_sig_fault and use it where appropriate.
This adds the show_signal logic to the force_sig_errno_trap case,
where it was apparently overlooked earlier.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This will let the description be reused shortly.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The function has no more callers so remove it.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add arm64_force_sig_mceerr for consistency with arm64_force_sig_fault,
and use it in the one location that can take advantage of it.
This removes the fiddly filling out of siginfo before sending a signal
reporting an memory error to userspace.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Wrap force_sig_fault with a helper that calls arm64_show_signal
and call arm64_force_sig_fault where appropraite.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Filling in siginfo is error prone and so it is wise to use more
specialized helpers to do that work. Factor out the arm specific
unhandled signal reporting from the work of delivering a signal so
the code can be modified to use functions that take the information
to fill out siginfo as parameters.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Every caller passes in current for tsk so there is no need to pass
tsk. Instead make tsk a local variable initialized to current.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Instead of generating a struct siginfo before calling arm64_notify_die
pass the signal number, tne sicode and the fault address into
arm64_notify_die and have it call force_sig_fault instead of
force_sig_info to let the generic code generate the struct siginfo.
This keeps code passing just the needed information into
siginfo generating code, making it easier to see what
is happening and harder to get wrong. Further by letting
the generic code handle the generation of struct siginfo
it reduces the number of sites generating struct siginfo
making it possible to review them and verify that all
of the fiddly details for a structure passed to userspace
are handled properly.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
On a randomly chosen distro kernel build for arm64, vmlinux.o shows the
following sections, containing jump label entries, and the associated
RELA relocation records, respectively:
...
[38088] __jump_table PROGBITS 0000000000000000 00e19f30
000000000002ea10 0000000000000000 WA 0 0 8
[38089] .rela__jump_table RELA 0000000000000000 01fd8bb0
000000000008be30 0000000000000018 I 38178 38088 8
...
In other words, we have 190 KB worth of 'struct jump_entry' instances,
and 573 KB worth of RELA entries to relocate each entry's code, target
and key members. This means the RELA section occupies 10% of the .init
segment, and the two sections combined represent 5% of vmlinux's entire
memory footprint.
So let's switch from 64-bit absolute references to 32-bit relative
references for the code and target field, and a 64-bit relative
reference for the 'key' field (which may reside in another module or the
core kernel, which may be more than 4 GB way on arm64 when running with
KASLR enable): this reduces the size of the __jump_table by 33%, and
gets rid of the RELA section entirely.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-4-ard.biesheuvel@linaro.org
Now that deliberate writes to swapper_pg_dir are made via the fixmap, we
can defend against errant writes by moving it into the rodata section.
Since tramp_pg_dir and reserved_ttbr0 must be at a fixed offset from
swapper_pg_dir, and are not modified at runtime, these are also moved
into the rodata section. Likewise, idmap_pg_dir is not modified at
runtime, and is moved into rodata.
Signed-off-by: Jun Yao <yaojun8558363@gmail.com>
Reviewed-by: James Morse <james.morse@arm.com>
[Mark: simplify linker script, commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since the address of swapper_pg_dir is fixed for a given kernel image,
it is an attractive target for manipulation via an arbitrary write. To
mitigate this we'd like to make it read-only by moving it into the
rodata section.
We require that swapper_pg_dir is at a fixed offset from tramp_pg_dir
and reserved_ttbr0, so these will also need to move into rodata.
However, swapper_pg_dir is allocated along with some transient page
tables used for boot which we do not want to move into rodata.
As a step towards this, this patch separates the boot-time page tables
into a new init_pg_dir, and reduces swapper_pg_dir to the single page it
needs to be. This allows us to retain the relationship between
swapper_pg_dir, tramp_pg_dir, and swapper_pg_dir, while cleanly
separating these from the boot-time page tables.
The init_pg_dir holds all of the pgd/pud/pmd/pte levels needed during
boot, and all of these levels will be freed when we switch to the
swapper_pg_dir, which is initialized by the existing code in
paging_init(). Since we start off on the init_pg_dir, we no longer need
to allocate a transient page table in paging_init() in order to ensure
that swapper_pg_dir isn't live while we initialize it.
There should be no functional change as a result of this patch.
Signed-off-by: Jun Yao <yaojun8558363@gmail.com>
Reviewed-by: James Morse <james.morse@arm.com>
[Mark: place init_pg_dir after BSS, fold mm changes, commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll use a transient pgd during the primary cpu's
boot process. To make this work while allowing secondary cpus to use the
swapper_pg_dir, we need to pass the relevant TTBR1 pgd as a parameter
to __enable_mmu().
This patch updates __enable__mmu() to take this as a parameter, updating
callsites to pass swapper_pg_dir for now.
There should be no functional change as a result of this patch.
Signed-off-by: Jun Yao <yaojun8558363@gmail.com>
Reviewed-by: James Morse <james.morse@arm.com>
[Mark: simplify assembly, clarify commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Support for VGA_CONSOLE is not allowable due to commit ee23794b86
("video: vgacon: Don't build on arm64"), thus remove the associated
unused code.
Whilst PCI on arm64 would support VGA a valid screen_info structure
is missing.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Armv8.4-A extension enables MRS instruction encodings inside ESR_ELx.ISS
during exception class ESR_ELx_EC_SYS64 (0x18). This encoding can be used
to emulate MRS instructions which can avoid fetch/decode from user space
thus improving performance. This adds a new sys64_hook structure element
with applicable ESR mask/value pair for MRS instructions on various system
registers but constrained by sysreg encodings which is currently allowed
to be emulated.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MRS emulation gets triggered with exception class (0x00 or 0x18) eventually
calling the function emulate_mrs() which fetches the user space instruction
and analyses it's encodings (OP0, OP1, OP2, CRN, CRM, RT). The kernel tries
to emulate the given instruction looking into the encoding details. Going
forward these encodings can also be parsed from ESR_ELx.ISS fields without
requiring to fetch/decode faulting userspace instruction which can improve
performance. This factorizes emulate_mrs() function in a way that it can be
called directly with MRS encodings (OP0, OP1, OP2, CRN, CRM) for any given
target register which can then be used directly from 0x18 exception class.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Extracting target register from ESR.ISS encoding has already been required
at multiple instances. Just make it a macro definition and replace all the
existing use cases.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There's no need to treat mismatched cache-line sizes reported by CTR_EL0
differently to any other mismatched fields that we treat as "STRICT" in
the cpufeature code. In both cases we need to trap and emulate EL0
accesses to the register, so drop ARM64_MISMATCHED_CACHE_LINE_SIZE and
rely on ARM64_MISMATCHED_CACHE_TYPE instead.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[catalin.marinas@arm.com: move ARM64_HAS_CNP in the empty cpucaps.h slot]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.
CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.
For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().
There are a few cases we need to care of changes in TTBR0_EL1:
- a switch to idmap
- software emulated PAN
we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Memory for host controller data structures is allocated local to the node
to which the controller is associated with. This has been the behaviour
since support for ACPI was added in commit 0cb0786bac ("ARM64: PCI:
Support ACPI-based PCI host controller").
Drop the node local allocation as there is no benefit from doing so - the
usage of these structures is independent from where the controller is
located.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Instructions for modifying the PSTATE fields which were not supported
in the older toolchains (e.g, PAN, UAO) are generated using macros.
We have so far used the normal sys_reg() helper for defining the PSTATE
fields. While this works fine, it is really difficult to correlate the
code with the Arm ARM definition.
As per Arm ARM, the PSTATE fields are defined only using Op1, Op2 fields,
with fixed values for Op0, CRn. Also the CRm field has been reserved
for the Immediate value for the instruction. So using the sys_reg()
looks quite confusing.
This patch cleans up the instruction helpers by bringing them
in line with the Arm ARM definitions to make it easier to correlate
code with the document. No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The bad_mode() handler is called if we encounter an uunknown exception,
with the expectation that the subsequent call to panic() will halt the
system. Unfortunately, if the exception calling bad_mode() is taken from
EL0, then the call to die() can end up killing the current user task and
calling schedule() instead of falling through to panic().
Remove the die() call altogether, since we really want to bring down the
machine in this "impossible" case.
Signed-off-by: Hari Vyas <hari.vyas@broadcom.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
force_signal_inject() is designed to send a fatal signal to userspace,
so WARN if the current pt_regs indicates a kernel context. This can
currently happen for the undefined instruction trap, so patch that up so
we always BUG() if we didn't have a handler.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The cpu errata and feature enable callbacks are only called via their
respective arm64_cpu_capabilities structure and therefore shouldn't
exist in the global namespace.
Move the PAN, RAS and cache maintenance emulation enable callbacks into
the same files as their corresponding arm64_cpu_capabilities structures,
making them static in the process.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On CPUs with support for PSTATE.SSBS, the kernel can toggle the SSBD
state without needing to call into firmware.
This patch hooks into the existing SSBD infrastructure so that SSBS is
used on CPUs that support it, but it's all made horribly complicated by
the very real possibility of big/little systems that don't uniformly
provide the new capability.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Rather than panic() when taking an undefined instruction exception from
EL1, allow a hook to be registered in case we want to emulate the
instruction, like we will for the SSBS PSTATE manipulation instructions.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we're all merged nicely into mainline, there's no need to check
to see if PR_SPEC_STORE_BYPASS is defined.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass
Safe (SSBS) which can be used as a mitigation against Spectre variant 4.
Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS
directly, so that userspace can toggle the SSBS control without trapping
to the kernel.
This patch probes for the existence of SSBS and advertise the new instructions
to userspace if they exist.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit 23c85094fe ("proc/kcore: add vmcoreinfo note to /proc/kcore")
the kernel has exported the vmcoreinfo PT_NOTE on /proc/kcore as well
as /proc/vmcore.
arm64 only exposes it's additional arch information via
arch_crash_save_vmcoreinfo() if built with CONFIG_KEXEC, as kdump was
previously the only user of vmcoreinfo.
Move this weak function to a separate file that is built at the same
time as its caller in kernel/crash_core.c. This ensures values like
'kimage_voffset' are always present in the vmcoreinfo PT_NOTE.
CC: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a CRC32 feature bit and wire it up to the CPU id register so we
will be able to use alternatives patching for CRC32 operations.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Drop stackleak_check_alloca() for arm64 since the STACKLEAK gcc plugin now
doesn't track stack depth overflow caused by alloca().
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
cWKsrQUYcLGKZPRN
=b6+A
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
- Fix boot on Hikey-960 by avoiding an IPI with interrupts disabled
- Fix address truncation in pfn_valid() implementation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJbdp+EAAoJELescNyEwWM0Ld8H/iJqjvPwNLRC0KGL/rCQJH70
D80qlNBnwlrs2eUJTeNeRVZC+t2l9vJIoT17W938WkjxV+DSGDsfFDy3/BQ7VTji
7e33mwFBNoH+feAfMYmzht3sRlvyZ0oqXSIq/GrdZ8a4Gg/6iNVz7K1kpboBVFXp
LFnFIN4I7mNwdl1nAyNmnU081MMWfyvgRB82Xd9eS00KCAm3ueHfkwBNcwkfulDg
RT2ZXPzwd3Yxsdy3Z+r1vyXMHAw2GjcYpL5pjvHf34zMdvqkk03sMsx2yReuSR1U
M6MpNCdZfWHgMlFWbsEoEOd0g0CF5s6TQK3hBqoUEE3AUVNrQ8ixZMip326axoQ=
=C2YW
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"A couple of arm64 fixes
- Fix boot on Hikey-960 by avoiding an IPI with interrupts disabled
- Fix address truncation in pfn_valid() implementation"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mm: check for upper PAGE_SHIFT bits in pfn_valid()
arm64: Avoid calling stop_machine() when patching jump labels
Patching a jump label involves patching a single instruction at a time,
swizzling between a branch and a NOP. The architecture treats these
instructions specially, so a concurrently executing CPU is guaranteed to
see either the NOP or the branch, rather than an amalgamation of the two
instruction encodings.
However, in order to guarantee that the new instruction is visible, it
is necessary to send an IPI to the concurrently executing CPU so that it
discards any previously fetched instructions from its pipeline. This
operation therefore cannot be completed from a context with IRQs
disabled, but this is exactly what happens on the jump label path where
the hotplug lock is held and irqs are subsequently disabled by
stop_machine_cpuslocked(). This results in a deadlock during boot on
Hikey-960.
Due to the architectural guarantees around patching NOPs and branches,
we don't actually need to stop_machine() at all on the jump label path,
so we can avoid the deadlock by using the "nosync" variant of our
instruction patching routine.
Fixes: 693350a799 ("arm64: insn: Don't fallback on nosync path for general insn patching")
Reported-by: Tuomas Tynkkynen <tuomas.tynkkynen@iki.fi>
Reported-by: John Stultz <john.stultz@linaro.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Tuomas Tynkkynen <tuomas@tuxera.com>
Tested-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- verify depmod is installed before modules_install
- support build salt in case build ids must be unique between builds
- allow users to specify additional host compiler flags via HOST*FLAGS,
and rename internal variables to KBUILD_HOST*FLAGS
- update buildtar script to drop vax support, add arm64 support
- update builddeb script for better debarch support
- document the pit-fall of if_changed usage
- fix parallel build of UML with O= option
- make 'samples' target depend on headers_install to fix build errors
- remove deprecated host-progs variable
- add a new coccinelle script for refcount_t vs atomic_t check
- improve double-test coccinelle script
- misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbdFZ0AAoJED2LAQed4NsGcHYP/23txxk3GRP7O4UkfPw9Rtky
MHiXTgcoy2vbG+l12BgzWX+qFii8XTUe3dQtK4HnGQFUIBtEBV/hpZPJtxfgGSev
Zou5cv1kr5rNzTkCn//TG3O6/WIkTBCe2hahDCtmGDI3kd/cPK4dHbU/q6KpaqIJ
qzZYBXIvCeu2GM8idQoCRrwdMpgu1pBz1gz2sDje1yHH2toI7T6cXHRLQDgx+HPq
LIP7W9GUsoDdXjecvPD51LiW89E6BUxETBh5Ft9r9uzwB5ylQQMcw6Qyu2DiYDUX
PPsHCMiolYV+Ttcy+vj/67KOvKmEaFotssck+RD/xDCF17zKhRkup+YM8kPLHTVZ
TcAUZadbnT6U/s2W6GFwvVbN/P7cc3aif+aNCC/Pl23yagp3pydlSCocYxQgiVR7
/rx48haYDEgu/MJ1X0dOpSO0ErY7zu2OoAlNerW+D9QizwbP+WtZO/CJH8SxQRuN
dQ1xmyNrie+ODgi9tbc4eBrsb+1rioX927TP5MbJcfXt5CTsxDmIqop5XwyYIoQN
ZWWlzC8Ii3P2trAVpBgM2IEbngSxwr6T9Wbf1ScJnPKr/o1rq+pBk49cYstTz3kQ
OwJ8gPwUrkW4R+hlD7L6mL/WcrKzZBQS0Ij1QW2kVSEhRrsKo99psE1/rGehnHu9
KGB0LYYCqGSOHR4zOjg0
=VjfG
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- verify depmod is installed before modules_install
- support build salt in case build ids must be unique between builds
- allow users to specify additional host compiler flags via HOST*FLAGS,
and rename internal variables to KBUILD_HOST*FLAGS
- update buildtar script to drop vax support, add arm64 support
- update builddeb script for better debarch support
- document the pit-fall of if_changed usage
- fix parallel build of UML with O= option
- make 'samples' target depend on headers_install to fix build errors
- remove deprecated host-progs variable
- add a new coccinelle script for refcount_t vs atomic_t check
- improve double-test coccinelle script
- misc cleanups and fixes
* tag 'kbuild-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits)
coccicheck: return proper error code on fail
Coccinelle: doubletest: reduce side effect false positives
kbuild: remove deprecated host-progs variable
kbuild: make samples really depend on headers_install
um: clean up archheaders recipe
kbuild: add %asm-generic to no-dot-config-targets
um: fix parallel building with O= option
scripts: Add Python 3 support to tracing/draw_functrace.py
builddeb: Add automatic support for sh{3,4}{,eb} architectures
builddeb: Add automatic support for riscv* architectures
builddeb: Add automatic support for m68k architecture
builddeb: Add automatic support for or1k architecture
builddeb: Add automatic support for sparc64 architecture
builddeb: Add automatic support for mips{,64}r6{,el} architectures
builddeb: Add automatic support for mips64el architecture
builddeb: Add automatic support for ppc64 and powerpcspe architectures
builddeb: Introduce functions to simplify kconfig tests in set_debarch
builddeb: Drop check for 32-bit s390
builddeb: Change architecture detection fallback to use dpkg-architecture
builddeb: Skip architecture detection when KBUILD_DEBARCH is set
...
A bunch of good stuff in here:
- Wire up support for qspinlock, replacing our trusty ticket lock code
- Add an IPI to flush_icache_range() to ensure that stale instructions
fetched into the pipeline are discarded along with the I-cache lines
- Support for the GCC "stackleak" plugin
- Support for restartable sequences, plus an arm64 port for the selftest
- Kexec/kdump support on systems booting with ACPI
- Rewrite of our syscall entry code in C, which allows us to zero the
GPRs on entry from userspace
- Support for chained PMU counters, allowing 64-bit event counters to be
constructed on current CPUs
- Ensure scheduler topology information is kept up-to-date with CPU
hotplug events
- Re-enable support for huge vmalloc/IO mappings now that the core code
has the correct hooks to use break-before-make sequences
- Miscellaneous, non-critical fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJbbV41AAoJELescNyEwWM0WoEIALhrKtsIn6vqFlSs/w6aDuJL
cMWmFxjTaKLmIq2+cJIdFLOJ3CH80Pu9gB+nEv/k+cZdCTfUVKfRf28HTpmYWsht
bb4AhdHMC7yFW752BHk+mzJspeC8h/2Rm8wMuNVplZ3MkPrwo3vsiuJTofLhVL/y
BihlU3+5sfBvCYIsWnuEZIev+/I/s/qm1ASiqIcKSrFRZP6VTt5f9TC75vFI8seW
7yc3odKb0CArexB8yBjiPNziehctQF42doxQyL45hezLfWw4qdgHOSiwyiOMxEz9
Fwwpp8Tx33SKLNJgqoqYznGW9PhYJ7n2Kslv19uchJrEV+mds82vdDNaWRULld4=
=kQn6
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A bunch of good stuff in here. Worth noting is that we've pulled in
the x86/mm branch from -tip so that we can make use of the core
ioremap changes which allow us to put down huge mappings in the
vmalloc area without screwing up the TLB. Much of the positive
diffstat is because of the rseq selftest for arm64.
Summary:
- Wire up support for qspinlock, replacing our trusty ticket lock
code
- Add an IPI to flush_icache_range() to ensure that stale
instructions fetched into the pipeline are discarded along with the
I-cache lines
- Support for the GCC "stackleak" plugin
- Support for restartable sequences, plus an arm64 port for the
selftest
- Kexec/kdump support on systems booting with ACPI
- Rewrite of our syscall entry code in C, which allows us to zero the
GPRs on entry from userspace
- Support for chained PMU counters, allowing 64-bit event counters to
be constructed on current CPUs
- Ensure scheduler topology information is kept up-to-date with CPU
hotplug events
- Re-enable support for huge vmalloc/IO mappings now that the core
code has the correct hooks to use break-before-make sequences
- Miscellaneous, non-critical fixes and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (90 commits)
arm64: alternative: Use true and false for boolean values
arm64: kexec: Add comment to explain use of __flush_icache_range()
arm64: sdei: Mark sdei stack helper functions as static
arm64, kaslr: export offset in VMCOREINFO ELF notes
arm64: perf: Add cap_user_time aarch64
efi/libstub: Only disable stackleak plugin for arm64
arm64: drop unused kernel_neon_begin_partial() macro
arm64: kexec: machine_kexec should call __flush_icache_range
arm64: svc: Ensure hardirq tracing is updated before return
arm64: mm: Export __sync_icache_dcache() for xen-privcmd
drivers/perf: arm-ccn: Use devm_ioremap_resource() to map memory
arm64: Add support for STACKLEAK gcc plugin
arm64: Add stack information to on_accessible_stack
drivers/perf: hisi: update the sccl_id/ccl_id when MT is supported
arm64: fix ACPI dependencies
rseq/selftests: Add support for arm64
arm64: acpi: fix alignment fault in accessing ACPI
efi/arm: map UEFI memory map even w/o runtime services enabled
efi/arm: preserve early mapping of UEFI memory map longer for BGRT
drivers: acpi: add dependency of EFI for arm64
...
Pull perf update from Thomas Gleixner:
"The perf crowd presents:
Kernel updates:
- Removal of jprobes
- Cleanup and consolidatation the handling of kprobes
- Cleanup and consolidation of hardware breakpoints
- The usual pile of fixes and updates to PMUs and event descriptors
Tooling updates:
- Updates and improvements all over the place. Nothing outstanding,
just the (good) boring incremental grump work"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
perf trace: Do not require --no-syscalls to suppress strace like output
perf bpf: Include uapi/linux/bpf.h from the 'perf trace' script's bpf.h
perf tools: Allow overriding MAX_NR_CPUS at compile time
perf bpf: Show better message when failing to load an object
perf list: Unify metric group description format with PMU event description
perf vendor events arm64: Update ThunderX2 implementation defined pmu core events
perf cs-etm: Generate branch sample for CS_ETM_TRACE_ON packet
perf cs-etm: Generate branch sample when receiving a CS_ETM_TRACE_ON packet
perf cs-etm: Support dummy address value for CS_ETM_TRACE_ON packet
perf cs-etm: Fix start tracing packet handling
perf build: Fix installation directory for eBPF
perf c2c report: Fix crash for empty browser
perf tests: Fix indexing when invoking subtests
perf trace: Beautify the AF_INET & AF_INET6 'socket' syscall 'protocol' args
perf trace beauty: Add beautifiers for 'socket''s 'protocol' arg
perf trace beauty: Do not print NULL strarray entries
perf beauty: Add a generator for IPPROTO_ socket's protocol constants
tools include uapi: Grab a copy of linux/in.h
perf tests: Fix complex event name parsing
perf evlist: Fix error out while applying initial delay and LBR
...
Pull genirq updates from Thomas Gleixner:
"The irq departement provides:
- A synchronization fix for free_irq() to synchronize just the
removed interrupt thread on shared interrupt lines.
- Consolidate the multi low level interrupt entry handling and mvoe
it to the generic code instead of adding yet another copy for
RISC-V
- Refactoring of the ARM LPI allocator and LPI exposure to the
hypervisor
- Yet another interrupt chip driver for the JZ4725B SoC
- Speed up for /proc/interrupts as people seem to love reading this
file with high frequency
- Miscellaneous fixes and updates"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
irqchip/gic-v3-its: Make its_lock a raw_spin_lock_t
genirq/irqchip: Remove MULTI_IRQ_HANDLER as it's now obselete
openrisc: Use the new GENERIC_IRQ_MULTI_HANDLER
arm64: Use the new GENERIC_IRQ_MULTI_HANDLER
ARM: Convert to GENERIC_IRQ_MULTI_HANDLER
irqchip: Port the ARM IRQ drivers to GENERIC_IRQ_MULTI_HANDLER
irqchip/gic-v3-its: Reduce minimum LPI allocation to 1 for PCI devices
dt-bindings: irqchip: renesas-irqc: Document r8a77980 support
dt-bindings: irqchip: renesas-irqc: Document r8a77470 support
irqchip/ingenic: Add support for the JZ4725B SoC
irqchip/stm32: Add exti0 translation for stm32mp1
genirq: Remove redundant NULL pointer check in __free_irq()
irqchip/gic-v3-its: Honor hypervisor enforced LPI range
irqchip/gic-v3: Expose GICD_TYPER in the rdist structure
irqchip/gic-v3-its: Drop chunk allocation compatibility
irqchip/gic-v3-its: Move minimum LPI requirements to individual busses
irqchip/gic-v3-its: Use full range of LPIs
irqchip/gic-v3-its: Refactor LPI allocator
genirq: Synchronize only with single thread on free_irq()
genirq: Update code comments wrt recycled thread_mask
...
Return statements in functions returning bool should use true or false
instead of an integer value. This code was detected with the help of
Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- GICv3 ITS LPI allocation revamp
- GICv3 support for hypervisor-enforced LPI range
- GICv3 ITS conversion to raw spinlock
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltoBXMVHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDyUYP/1feAq3F7ZmhCIZka4c6y/m4EBpq
BjWEEgOAGMEyyB4s98flsRtZcEUxxp6CqEXo2FgCsd1Nj+og7oA7vwOlqy3aGzsi
9f/Z5Wi6SlG06lH5tmYNkyVbGk2tE3s2FzkH5Rg8qZGk+X3OCOdNs/+G20pYAkSp
ESePWSapbQUJSExJ1MqzfdHFidtVA1V+ev8BKdIp2ykl1NRae8LJeKHIbqac49Ym
JclfCLFpQM1M1ElB9j0E8hAvZhz10oOz7TtBR737O/1QEifVyFqGBckPzldvwIJM
zZ+nR+Yzj1ruD109xwaF1iKy9AinZWhiqrtN7UXJ3jwHtNih+sy0R6FQ38GMNoOC
0K02n/qStR5xglGr4BmAcWlOuFtBYWfz6HpSVMqaTWWmOxHEiqS6pXtEA+dV/YyI
wHLbo0YzpWTQm6t1+b/PoByAJ0/hOcD1nOD57b+NGjX7tZV0sGjpGsecvFhTSywh
BN3COBi9k/FOBrOTGDX1qUAI+mEf76vc2BAC+BkkoiiMg3WlY0E9qfQJguUxHdrb
0LS3lDZoHCNoz8RZLrUyenTT0NYGcjPGUTinMDJWG79VGXOWFexTDdCuX0kF90CK
1Zie3O6lrTYolmaiyLUxwukKp1SVUyoA5IpKVwfDJQYUhEfk27yvlzg2MBMcHDRA
uy3QSkmjx9vw/sAu
=gKw8
-----END PGP SIGNATURE-----
Merge tag 'irqchip-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/core
Pull irqchip updates from Marc Zyngier:
- GICv3 ITS LPI allocation revamp
- GICv3 support for hypervisor-enforced LPI range
- GICv3 ITS conversion to raw spinlock
Now that we understand the deadlock arising from flush_icache_range()
on the kexec crash kernel path, add a comment to justify the use of
__flush_icache_range() here.
Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The SDEI stack helper functions are only used by _on_sdei_stack() and
refer to symbols (e.g. sdei_stack_normal_ptr) that are only defined if
CONFIG_VMAP_STACK=y.
Mark these functions as static, so we don't run into errors at link-time
due to references to undefined symbols. Stick all the parameters onto
the same line whilst we're passing through.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Include KASLR offset in arm64 VMCOREINFO ELF notes to assist in
debugging. vmcore parsing in user-space already expects this value in
the notes and we are providing it for portability of those existing
tools with x86.
Ideally we would like core code to do this (so that way this
information won't be missed when an architecture adds KASLR support),
but mips has CONFIG_RANDOMIZE_BASE, and doesn't provide kaslr_offset(),
so I am not sure if this is needed for mips (and other such similar arch
cases in future). So, lets keep this architecture specific for now.
As an example of a user-space use-case, consider the
makedumpfile user-space utility which will need fixup to use this
KASLR offset to work with cases where we need to find a way to
translate symbol address from vmlinux to kernel run time address
in case of KASLR boot on arm64.
I have already submitted the makedumpfile user-space patch upstream
and the maintainer has suggested to wait for the kernel changes to be
included (see [0]).
I tested this on my qualcomm amberwing board both for KASLR and
non-KASLR boot cases:
Without this patch:
# cat > scrub.conf << EOF
[vmlinux]
erase jiffies
erase init_task.utime
for tsk in init_task.tasks.next within task_struct:tasks
erase tsk.utime
endfor
EOF
# makedumpfile --split -d 31 -x vmlinux --config scrub.conf vmcore dumpfile_{1,2,3}
readpage_elf: Attempt to read non-existent page at 0xffffa8a5bf180000.
readmem: type_addr: 1, addr:ffffa8a5bf180000, size:8
vaddr_to_paddr_arm64: Can't read pgd
readmem: Can't convert a virtual address(ffff0000092a542c) to physical
address.
readmem: type_addr: 0, addr:ffff0000092a542c, size:390
check_release: Can't get the address of system_utsname
After this patch check_release() is ok, and also we are able to erase
symbol from vmcore (I checked this with kernel 4.18.0-rc4+):
# makedumpfile --split -d 31 -x vmlinux --config scrub.conf vmcore dumpfile_{1,2,3}
The kernel version is not supported.
The makedumpfile operation may be incomplete.
Checking for memory holes : [100.0 %] \
Checking for memory holes : [100.0 %] |
Checking foExcluding unnecessary pages : [100.0 %]
\
Excluding unnecessary pages : [100.0 %] \
The dumpfiles are saved to dumpfile_1, dumpfile_2, and dumpfile_3.
makedumpfile Completed.
[0] https://www.spinics.net/lists/kexec/msg21195.html
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It is useful to get the running time of a thread. Doing so in an
efficient manner can be important for performance of user applications.
Avoiding system calls in `clock_gettime` when handling
CLOCK_THREAD_CPUTIME_ID is important. Other clocks are handled in the
VDSO, but CLOCK_THREAD_CPUTIME_ID falls back on the system call.
CLOCK_THREAD_CPUTIME_ID is not handled in the VDSO since it would have
costs associated with maintaining updated user space accessible time
offsets. These offsets have to be updated everytime the a thread is
scheduled/descheduled. However, for programs regularly checking the
running time of a thread, this is a performance improvement.
This patch takes a middle ground, and adds support for cap_user_time an
optional feature of the perf_event API. This way costs are only
incurred when the perf_event api is enabled. This is done the same way
as it is in x86.
Ultimately this allows calculating the thread running time in userspace
on aarch64 as follows (adapted from perf_event_open manpage):
u32 seq, time_mult, time_shift;
u64 running, count, time_offset, quot, rem, delta;
struct perf_event_mmap_page *pc;
pc = buf; // buf is the perf event mmaped page as documented in the API.
if (pc->cap_usr_time) {
do {
seq = pc->lock;
barrier();
running = pc->time_running;
count = readCNTVCT_EL0(); // Read ARM hardware clock.
time_offset = pc->time_offset;
time_mult = pc->time_mult;
time_shift = pc->time_shift;
barrier();
} while (pc->lock != seq);
quot = (count >> time_shift);
rem = count & (((u64)1 << time_shift) - 1);
delta = time_offset + quot * time_mult +
((rem * time_mult) >> time_shift);
running += delta;
// running now has the current nanosecond level thread time.
}
Summary of changes in the patch:
For aarch64 systems, make arch_perf_update_userpage update the timing
information stored in the perf_event page. Requiring the following
calculations:
- Calculate the appropriate time_mult, and time_shift factors to convert
ticks to nano seconds for the current clock frequency.
- Adjust the mult and shift factors to avoid shift factors of 32 bits.
(possibly unnecessary)
- The time_offset userspace should apply when doing calculations:
negative the current sched time (now), because time_running and
time_enabled fields of the perf_event page have just been updated.
Toggle bits to appropriate values:
- Enable cap_user_time
Signed-off-by: Michael O'Farrell <micpof@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
machine_kexec flushes the reboot_code_buffer from the icache
after stopping the other cpus.
Commit 3b8c9f1cdf ("arm64: IPI each CPU after invalidating the I-cache
for kernel mappings") added an IPI call to flush_icache_range, which
causes a hang here, so replace the call with __flush_icache_range
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We always run userspace with interrupts enabled, but with the recent
conversion of the syscall entry/exit code to C, we don't inform the
hardirq tracing code that interrupts are about to become enabled by
virtue of restoring the EL0 SPSR.
This patch ensures that trace_hardirqs_on() is called on the syscall
return path when we return to the assembly code with interrupts still
disabled.
Fixes: f37099b699 ("arm64: convert syscall trace logic to C")
Reported-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Pull in arm perf updates, including support for 64-bit (chained) event
counters and some non-critical fixes for some of the system PMU drivers.
Signed-off-by: Will Deacon <will.deacon@arm.com>
This adds support for the STACKLEAK gcc plugin to arm64 by implementing
stackleak_check_alloca(), based heavily on the x86 version, and adding the
two helpers used by the stackleak common code: current_top_of_stack() and
on_thread_stack(). The stack erasure calls are made at syscall returns.
Additionally, this disables the plugin in hypervisor and EFI stub code,
which are out of scope for the protection.
Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for enabling the stackleak plugin on arm64,
we need a way to get the bounds of the current stack. Extend
on_accessible_stack to get this information.
Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
[will: folded in fix for allmodconfig build breakage w/ sdei]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit d3aec8a28b ("arm64: capabilities: Restrict KPTI
detection to boot-time CPUs") we rely on errata flags being already
populated during feature enumeration. The order of errata and
features was flipped as part of commit ed478b3f9e ("arm64:
capabilities: Group handling of features and errata workarounds").
Return to the orginal order of errata and feature evaluation to
ensure errata flags are present during feature evaluation.
Fixes: ed478b3f9e ("arm64: capabilities: Group handling of
features and errata workarounds")
CC: Suzuki K Poulose <suzuki.poulose@arm.com>
CC: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Dirk Mueller <dmueller@suse.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is a fix against the issue that crash dump kernel may hang up
during booting, which can happen on any ACPI-based system with "ACPI
Reclaim Memory."
(kernel messages after panic kicked off kdump)
(snip...)
Bye!
(snip...)
ACPI: Core revision 20170728
pud=000000002e7d0003, *pmd=000000002e7c0003, *pte=00e8000039710707
Internal error: Oops: 96000021 [#1] SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.14.0-rc6 #1
task: ffff000008d05180 task.stack: ffff000008cc0000
PC is at acpi_ns_lookup+0x25c/0x3c0
LR is at acpi_ds_load1_begin_op+0xa4/0x294
(snip...)
Process swapper/0 (pid: 0, stack limit = 0xffff000008cc0000)
Call trace:
(snip...)
[<ffff0000084a6764>] acpi_ns_lookup+0x25c/0x3c0
[<ffff00000849b4f8>] acpi_ds_load1_begin_op+0xa4/0x294
[<ffff0000084ad4ac>] acpi_ps_build_named_op+0xc4/0x198
[<ffff0000084ad6cc>] acpi_ps_create_op+0x14c/0x270
[<ffff0000084acfa8>] acpi_ps_parse_loop+0x188/0x5c8
[<ffff0000084ae048>] acpi_ps_parse_aml+0xb0/0x2b8
[<ffff0000084a8e10>] acpi_ns_one_complete_parse+0x144/0x184
[<ffff0000084a8e98>] acpi_ns_parse_table+0x48/0x68
[<ffff0000084a82cc>] acpi_ns_load_table+0x4c/0xdc
[<ffff0000084b32f8>] acpi_tb_load_namespace+0xe4/0x264
[<ffff000008baf9b4>] acpi_load_tables+0x48/0xc0
[<ffff000008badc20>] acpi_early_init+0x9c/0xd0
[<ffff000008b70d50>] start_kernel+0x3b4/0x43c
Code: b9008fb9 2a000318 36380054 32190318 (b94002c0)
---[ end trace c46ed37f9651c58e ]---
Kernel panic - not syncing: Fatal exception
Rebooting in 10 seconds..
(diagnosis)
* This fault is a data abort, alignment fault (ESR=0x96000021)
during reading out ACPI table.
* Initial ACPI tables are normally stored in system ram and marked as
"ACPI Reclaim memory" by the firmware.
* After the commit f56ab9a5b7 ("efi/arm: Don't mark ACPI reclaim
memory as MEMBLOCK_NOMAP"), those regions are differently handled
as they are "memblock-reserved", without NOMAP bit.
* So they are now excluded from device tree's "usable-memory-range"
which kexec-tools determines based on a current view of /proc/iomem.
* When crash dump kernel boots up, it tries to accesses ACPI tables by
mapping them with ioremap(), not ioremap_cache(), in acpi_os_ioremap()
since they are no longer part of mapped system ram.
* Given that ACPI accessor/helper functions are compiled in without
unaligned access support (ACPI_MISALIGNMENT_NOT_SUPPORTED),
any unaligned access to ACPI tables can cause a fatal panic.
With this patch, acpi_os_ioremap() always honors memory attribute
information provided by the firmware (EFI) and retaining cacheability
allows the kernel safe access to ACPI tables.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by and Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There has been some confusion around what is necessary to prevent kexec
overwriting important memory regions. memblock: reserve, or nomap?
Only memblock nomap regions are reported via /proc/iomem, kexec's
user-space doesn't know about memblock_reserve()d regions.
Until commit f56ab9a5b7 ("efi/arm: Don't mark ACPI reclaim memory
as MEMBLOCK_NOMAP") the ACPI tables were nomap, now they are reserved
and thus possible for kexec to overwrite with the new kernel or initrd.
But this was always broken, as the UEFI memory map is also reserved
and not marked as nomap.
Exporting both nomap and reserved memblock types is a nuisance as
they live in different memblock structures which we can't walk at
the same time.
Take a second walk over memblock.reserved and add new 'reserved'
subnodes for the memblock_reserved() regions that aren't already
described by the existing code. (e.g. Kernel Code)
We use reserve_region_with_split() to find the gaps in existing named
regions. This handles the gap between 'kernel code' and 'kernel data'
which is memblock_reserve()d, but already partially described by
request_standard_resources(). e.g.:
| 80000000-dfffffff : System RAM
| 80080000-80ffffff : Kernel code
| 81000000-8158ffff : reserved
| 81590000-8237efff : Kernel data
| a0000000-dfffffff : Crash kernel
| e00f0000-f949ffff : System RAM
reserve_region_with_split needs kzalloc() which isn't available when
request_standard_resources() is called, use an initcall.
Reported-by: Bhupesh Sharma <bhsharma@redhat.com>
Reported-by: Tyler Baicar <tbaicar@codeaurora.org>
Suggested-by: Akashi Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: James Morse <james.morse@arm.com>
Fixes: d28f6df130 ("arm64/kexec: Add core kexec support")
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
CC: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It's possible for userspace to control idx. Sanitize idx when using it
as an array index, to inhibit the potential spectre-v1 write gadget.
Found by smatch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The vDSO needs to have a unique build id in a similar manner
to the kernel and modules. Use the build salt macro.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
syscall_trace_{enter,exit} are only called from C code, so drop the
asmlinkage qualifier from their definitions.
Signed-off-by: Will Deacon <will.deacon@arm.com>
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for converting to pt_regs syscall wrappers, convert our
existing compat wrappers to C. This will allow the pt_regs wrappers to
be automatically generated, and will allow for the compat register
manipulation to be folded in with the pt_regs accesses.
To avoid confusion with the upcoming pt_regs wrappers and existing
compat wrappers provided by core code, the C wrappers are renamed to
compat_sys_aarch32_<syscall>.
With the assembly wrappers gone, we can get rid of entry32.S and the
associated boilerplate.
Note that these must call the ksys_* syscall entry points, as the usual
sys_* entry points will be modified to take a single pt_regs pointer
argument.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We don't currently annotate our mmap implementation as a syscall, as we
need to do to use pt_regs syscall wrappers.
Let's mark it as a real syscall.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We don't currently annotate our various sigreturn functions as syscalls,
as we need to do to use pt_regs syscall wrappers.
Let's mark them as real syscalls.
For compat_sys_sigreturn and compat_sys_rt_sigreturn, this changes the
return type from int to long, matching the prototypes in sys32.c.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With pt_regs syscall wrappers, the calling convention for
sys_personality() will change. Use ksys_personality(), which is
functionally equivalent.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Our syscall tables are aligned to 4096 bytes, which allowed their
addresses to be generated with a single adrp in entry.S. This has the
unfortunate property of wasting space in .rodata for the necessary
padding.
Now that the address is generated by C code, we can rely on the compiler
to do the right thing, and drop the alignemnt.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We can zero GPRs x0 - x29 upon entry from EL0 to make it harder for
userspace to control values consumed by speculative gadgets.
We don't blat x30, since this is stashed much later, and we'll blat it
before invoking C code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that all of the syscall logic works on the saved pt_regs, apply_ssbd
can safely corrupt x0-x3 in the entry paths, and we no longer need to
restore them. So let's remove the logic doing so.
With that logic gone, we can fold the branch target into the macro, so
that callers need not deal with this. GAS provides \@, which provides a
unique value per macro invocation, which we can use to create a unique
label.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that syscalls are invoked with pt_regs, we no longer need to ensure
that the argument regsiters are live in the entry assembly, and it's
fine to not restore them after context_tracking_user_exit() has
corrupted them.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the syscall invocation logic is in C, we can migrate the rest
of the syscall entry logic over, so that the entry assembly needn't look
at the register values at all.
The SVE reset across syscall logic now unconditionally clears TIF_SVE,
but sve_user_disable() will only write back to CPACR_EL1 when SVE is
actually enabled.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently syscall tracing is a tricky assembly state machine, which can
be rather difficult to follow, and even harder to modify. Before we
start fiddling with it for pt_regs syscalls, let's convert it to C.
This is not intended to have any functional change.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As a first step towards invoking syscalls with a pt_regs argument,
convert the raw syscall invocation logic to C. We end up with a bit more
register shuffling, but the unified invocation logic means we can unify
the tracing paths, too.
Previously, assembly had to open-code calls to ni_sys() when the system
call number was out-of-bounds for the relevant syscall table. This case
is now handled by invoke_syscall(), and the assembly no longer need to
handle this case explicitly. This allows the tracing paths to be
simplified and unified, as we no longer need the __ni_sys_trace path and
the __sys_trace_return label.
This only converts the invocation of the syscall. The rest of the
syscall triage and tracing is left in assembly for now, and will be
converted in subsequent patches.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for invoking arbitrary syscalls from C code, let's define
a type for an arbitrary syscall, matching the parameter passing rules of
the AAPCS.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64 sigreturn* syscall handlers are non-standard. Rather than
taking a number of user parameters in registers as per the AAPCS,
they expect the pt_regs as their sole argument.
To make this work, we override the syscall definitions to invoke
wrappers written in assembly, which mov the SP into x0, and branch to
their respective C functions.
On other architectures (such as x86), the sigreturn* functions take no
argument and instead use current_pt_regs() to acquire the user
registers. This requires less boilerplate code, and allows for other
features such as interposing C code in this path.
This patch takes the same approach for arm64.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tentatively-reviewed-by: Dave Martin <dave.martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In subsequent patches, we'll want to make use of sve_user_enable() and
sve_user_disable() outside of kernel/fpsimd.c. Let's move these to
<asm/fpsimd.h> where we can make use of them.
To avoid ifdeffery in sequences like:
if (system_supports_sve() && some_condition)
sve_user_disable();
... empty stubs are provided when support for SVE is not enabled. Note
that system_supports_sve() contains as IS_ENABLED(CONFIG_ARM64_SVE), so
the sve_user_disable() call should be optimized away entirely when
CONFIG_ARM64_SVE is not selected.
To ensure that this is the case, the stub definitions contain a
BUILD_BUG(), as we do for other stubs for which calls should always be
optimized away when the relevant config option is not selected.
At the same time, the include list of <asm/fpsimd.h> is sorted while
adding <asm/sysreg.h>.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have sysreg_clear_set(), we can use this instead of
change_cpacr().
Note that the order of the set and clear arguments differs between
change_cpacr() and sysreg_clear_set(), so these are flipped as part of
the conversion. Also, sve_user_enable() redundantly clears
CPACR_EL1_ZEN_EL0EN before setting it; this is removed for clarity.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have sysreg_clear_set(), we can consistently use this
instead of config_sctlr_el1().
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In do_notify_resume, we manipulate thread_flags as a 32-bit unsigned
int, whereas thread_info::flags is a 64-bit unsigned long, and elsewhere
(e.g. in the entry assembly) we manipulate the flags as a 64-bit
quantity.
For consistency, and to avoid problems if we end up with more than 32
flags, let's make do_notify_resume take the flags as a 64-bit unsigned
long.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This reverts commit 7e7df71fd5.
When unwinding out of the IRQ stack and onto the interrupted EL1 stack,
we cannot rely on the frame pointer being strictly increasing, as this
could terminate the backtrace early depending on how the stacks have
been allocated.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Implement calls to rseq_signal_deliver, rseq_handle_notify_resume
and rseq_syscall so that we can select HAVE_RSEQ on arm64.
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add support for 64bit event by using chained event counters
and 64bit cycle counters.
PMUv3 allows chaining a pair of adjacent 32-bit counters, effectively
forming a 64-bit counter. The low/even counter is programmed to count
the event of interest, and the high/odd counter is programmed to count
the CHAIN event, taken when the low/even counter overflows.
For CPU cycles, when 64bit mode is requested, the cycle counter
is used in 64bit mode. If the cycle counter is not available,
falls back to chaining.
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64 PMU updates the event counters and reprograms the
counters in the overflow IRQ handler without disabling the
PMU. This could potentially cause skews in for group counters,
where the overflowed counters may potentially loose some event
counts, while they are reprogrammed. To prevent this, disable
the PMU while we process the counter overflows and enable it
right back when we are done.
This patch also moves the PMU stop/start routines to avoid a
forward declaration.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
armv8pmu_select_counter always returns the passed idx. So
let us make that void and get rid of the pointless checks.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The armpmu uses get_event_idx callback to allocate an event
counter for a given event, which marks the selected counter
as "used". Now, when we delete the counter, the arm_pmu goes
ahead and clears the "used" bit and then invokes the "clear_event_idx"
call back, which kind of splits the job between the core code
and the backend. To keep things tidy, mandate the implementation
of clear_event_idx() and add it for exisiting backends.
This will be useful for adding the chained event support, where
we leave the event idx maintenance to the backend.
Also, when an event is removed from the PMU, reset the hw.idx
to indicate that a counter is not allocated for this event,
to help the backends do better checks. This will be also used
for the chain counter support.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Convert the {read/write}_counter APIs to handle 64bit values
to enable supporting chained event counters. The backends still
use 32bit values and we pass them 32bit values only. So in effect
there are no functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Each PMU defines their max_period of the counter as the maximum
value that can be counted. Since all the PMU backends support
32bit counters by default, let us remove the redundant field.
No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Current ACPI ARM64 NUMA initialization code in
acpi_numa_gicc_affinity_init()
carries out NUMA nodes creation and cpu<->node mappings at the same time
in the arch backend so that a single SRAT walk is needed to parse both
pieces of information. This implies that the cpu<->node mappings must
be stashed in an array (sized NR_CPUS) so that SMP code can later use
the stashed values to avoid another SRAT table walk to set-up the early
cpu<->node mappings.
If the kernel is configured with a NR_CPUS value less than the actual
processor entries in the SRAT (and MADT), the logic in
acpi_numa_gicc_affinity_init() is broken in that the cpu<->node mapping
is only carried out (and stashed for future use) only for a number of
SRAT entries up to NR_CPUS, which do not necessarily correspond to the
possible cpus detected at SMP initialization in
acpi_map_gic_cpu_interface() (ie MADT and SRAT processor entries order
is not enforced), which leaves the kernel with broken cpu<->node
mappings.
Furthermore, given the current ACPI NUMA code parsing logic in
acpi_numa_gicc_affinity_init(), PXM domains for CPUs that are not parsed
because they exceed NR_CPUS entries are not mapped to NUMA nodes (ie the
PXM corresponding node is not created in the kernel) leaving the system
with a broken NUMA topology.
Rework the ACPI ARM64 NUMA initialization process so that the NUMA
nodes creation and cpu<->node mappings are decoupled. cpu<->node
mappings are moved to SMP initialization code (where they are needed),
at the cost of an extra SRAT walk so that ACPI NUMA mappings can be
batched before being applied, fixing current parsing pitfalls.
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: John Garry <john.garry@huawei.com>
Fixes: d8b47fca8c ("arm64, ACPI, NUMA: NUMA support based on SRAT and
SLIT")
Link: http://lkml.kernel.org/r/1527768879-88161-2-git-send-email-xiexiuqi@huawei.com
Reported-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages. This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.
ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.
On such a system, we can then safely sidestep any form of dcache
management.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit 37c3ec2d81 ("arm64: topology: divorce MC scheduling domain from
core_siblings") selected the smallest of LLC, socket siblings, and NUMA
node siblings to ensure that the sched domain we build for the MC layer
isn't larger than the DIE above it or it's shrunk to the socket or NUMA
node if LLC exist acrosis NUMA node/chiplets.
Commit acd32e52e4e0 ("arm64: topology: Avoid checking numa mask for
scheduler MC selection") reverted the NUMA siblings checks since the
CPU topology masks weren't updated on hotplug at that time.
This patch re-introduces numa mask check as the CPU and NUMA topology
is now updated in hotplug paths. Effectively, this patch does the
partial revert of commit acd32e52e4e0.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Similar to core_sibling and thread_sibling, it's better to align and
rename llc_siblings to llc_sibling.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We already repopulate the information on CPU hotplug-in, so we can safely
remove the CPU topology and NUMA cpumap information during CPU hotplug
out operation. This will help to provide the correct cpumask for
scheduler domains.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It's incorrect to iterate over all the possible CPUs to update the
sibling masks when any CPU is hotplugged in. In case the topology
siblings masks of the CPU is removed when is it hotplugged out, we
end up updating those masks when one of it's sibling is powered up
again. This will provide inconsistent view.
Further, since the CPU calling update_sibling_masks is yet to be set
online, there's no need to compare itself with each online CPU when
updating the siblings masks.
This patch restricts updation of sibling masks only for CPUs that are
already online. It also the drops the unnecessary cpuid check.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds support to remove all the CPU topology information using
clear_cpu_topology and also resetting the sibling information on other
sibling CPUs. This will be used in cpu_disable so that all the topology
sibling information is removed on CPU hotplug out.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently numa_clear_node removes both cpu information from the NUMA
node cpumap as well as the NUMA node id from the cpu. Similarly
numa_store_cpu_info updates both percpu nodeid and NUMA cpumap.
However we need to retain the numa node id for the cpu and only remove
the cpu information from the numa node cpumap during CPU hotplug out.
The same can be extended for hotplugging in the CPU.
This patch separates out numa_{add,remove}_cpu from numa_clear_node and
numa_store_cpu_info.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently reset_cpu_topology clears all the CPU topology information
and resets to default values. However we may need to just clear the
information when we hotplug out the CPU. In preparation to add the
support the same, let's refactor reset_cpu_topology to just reset
the information and move clearing out the topology information to
clear_cpu_topology.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The ERRATA_MIDR_REV_RANGE macro assigns ARM64_CPUCAP_LOCAL_CPU_ERRATUM
to the '.type' field of the 'struct arm64_cpu_capabilities', so there's
no need to assign it explicitly as well.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Patching kernel instructions at runtime requires other CPUs to undergo
a context synchronisation event via an explicit ISB or an IPI in order
to ensure that the new instructions are visible. This is required even
for "hotpatch" instructions such as NOP and BL, so avoid optimising in
this case and always go via stop_machine() when performing general
patching.
ftrace isn't quite as strict, so it can continue to call the nosync
code directly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
When invalidating the instruction cache for a kernel mapping via
flush_icache_range(), it is also necessary to flush the pipeline for
other CPUs so that instructions fetched into the pipeline before the
I-cache invalidation are discarded. For example, if module 'foo' is
unloaded and then module 'bar' is loaded into the same area of memory,
a CPU could end up executing instructions from 'foo' when branching into
'bar' if these instructions were fetched into the pipeline before 'foo'
was unloaded.
Whilst this is highly unlikely to occur in practice, particularly as
any exception acts as a context-synchronizing operation, following the
letter of the architecture requires us to execute an ISB on each CPU
in order for the new instruction stream to be visible.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.
To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The SPSR_ELx format for exceptions taken from AArch32 is slightly
different to the AArch32 PSR format.
Map between the two in the compat ptrace code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 7206dc93a5 ("arm64: Expose Arm v8.4 features")
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The SPSR_ELx format for exceptions taken from AArch32 differs from the
AArch32 PSR format. Thus, we must translate between the two when setting
up a compat sigframe, or restoring context from a compat sigframe.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 7206dc93a5 ("arm64: Expose Arm v8.4 features")
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently valid_user_regs() treats SPSR_ELx.DIT as a RES0 bit, causing
it to be zeroed upon exception return, rather than preserved. Thus, code
relying on DIT will not function as expected, and may expose an
unexpected timing sidechannel.
Let's remove DIT from the set of RES0 bits, such that it is preserved.
At the same time, the related comment is updated to better describe the
situation, and to take into account the most recent documentation of
SPSR_ELx, in ARM DDI 0487C.a.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 7206dc93a5 ("arm64: Expose Arm v8.4 features")
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Track mismatches in the cache type register (CTR_EL0), other
than the D/I min line sizes and trap user accesses if there are any.
Fixes: be68a8aaf9 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If there is a mismatch in the I/D min line size, we must
always use the system wide safe value both in applications
and in the kernel, while performing cache operations. However,
we have been checking more bits than just the min line sizes,
which triggers false negatives. We may need to trap the user
accesses in such cases, but not necessarily patch the kernel.
This patch fixes the check to do the right thing as advertised.
A new capability will be added to check mismatches in other
fields and ensure we trap the CTR accesses.
Fixes: be68a8aaf9 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently machine_kexec() doesn't reset to EL2 in the case of a
crashdump kernel. This leaves potentially dodgy state active at EL2, and
means that if the crashdump kernel attempts to online secondary CPUs,
these will be booted as mismatched ELs.
Let's reset to EL2, as we do in all other cases, and simplify things. If
EL2 state is corrupt, things are already sufficiently bad that kdump is
unlikely to work, and it's best-effort regardless.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The implementation of flush_icache_range() includes instruction sequences
which are themselves patched at runtime, so it is not safe to call from
the patching framework.
This patch reworks the alternatives cache-flushing code so that it rolls
its own internal D-cache maintenance using DC CIVAC before invalidating
the entire I-cache after all alternatives have been applied at boot.
Modules don't cause any issues, since flush_icache_range() is safe to
call by the time they are loaded.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Rohit Khanna <rokhanna@nvidia.com>
Cc: Alexander Van Brunt <avanbrunt@nvidia.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Migrate to the new API in order to remove arch_validate_hwbkpt_settings()
that clumsily mixes up architecture validation and commit.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joel Fernandes <joel.opensrc@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1529981939-8231-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can't pass the breakpoint directly on arch_check_bp_in_kernelspace()
anymore because its architecture internal datas (struct arch_hw_breakpoint)
are not yet filled by the time we call the function, and most
implementation need this backend to be up to date. So arrange the
function to take the probing struct instead.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joel Fernandes <joel.opensrc@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1529981939-8231-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We inspect __kpti_forced early on as part of the cpufeature enable
callback which remaps the swapper page table using non-global entries.
Ensure that __kpti_forced has been updated to reflect the kpti=
command-line option before we start using it.
Fixes: ea1e3de85e ("arm64: entry: Add fake CPU feature for unmapping the kernel at EL0")
Cc: <stable@vger.kernel.org> # 4.16.x-
Reported-by: Wei Xu <xuwei5@hisilicon.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Wei Xu <xuwei5@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Clear current_kprobe and enable preemption in kprobe
even if pre_handler returns !0.
This simplifies function override using kprobes.
Jprobe used to require to keep the preemption disabled and
keep current_kprobe until it returned to original function
entry. For this reason kprobe_int3_handler() and similar
arch dependent kprobe handers checks pre_handler result
and exit without enabling preemption if the result is !0.
After removing the jprobe, Kprobes does not need to
keep preempt disabled even if user handler returns !0
anymore.
But since the function override handler in error-inject
and bpf is also returns !0 if it overrides a function,
to balancing the preempt count, it enables preemption
and reset current kprobe by itself.
That is a bad design that is very buggy. This fixes
such unbalanced preempt-count and current_kprobes setting
in kprobes, bpf and error-inject.
Note: for powerpc and x86, this removes all preempt_disable
from kprobe_ftrace_handler because ftrace callbacks are
called under preempt disabled.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-snps-arc@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Link: https://lore.kernel.org/lkml/152942494574.15209.12323837825873032258.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't call the ->break_handler() from the arm64 kprobes code,
because it was only used by jprobes which got removed.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/lkml/152942474231.15209.17684808374429473004.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can't call function trace hook before setup percpu offset.
When entering secondary_start_kernel(), percpu offset has not
been initialized. So this lead hotplug malfunction.
Here is the flow to reproduce this bug:
echo 0 > /sys/devices/system/cpu/cpu1/online
echo function > /sys/kernel/debug/tracing/current_tracer
echo 1 > /sys/kernel/debug/tracing/tracing_on
echo 1 > /sys/devices/system/cpu/cpu1/online
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Zhizhou Zhang <zhizhouzhang@asrmicro.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Additional struct_size() conversions (Matthew, Kees)
- Explicitly reported overflow fixes (Silvio, Kees)
- Add missing kvcalloc() function (Kees)
- Treewide conversions of allocators to use either 2-factor argument
variant when available, or array_size() and array3_size() as needed (Kees)
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsgVtMWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJhsJEACLYe2EbwLFJz7emOT1KUGK5R1b
oVxJog0893WyMqgk9XBlA2lvTBRBYzR3tzsadfYo87L3VOBzazUv0YZaweJb65sF
bAvxW3nY06brhKKwTRed1PrMa1iG9R63WISnNAuZAq7+79mN6YgW4G6YSAEF9lW7
oPJoPw93YxcI8JcG+dA8BC9w7pJFKooZH4gvLUSUNl5XKr8Ru5YnWcV8F+8M4vZI
EJtXFmdlmxAledUPxTSCIojO8m/tNOjYTreBJt9K1DXKY6UcgAdhk75TRLEsp38P
fPvMigYQpBDnYz2pi9ourTgvZLkffK1OBZ46PPt8BgUZVf70D6CBg10vK47KO6N2
zreloxkMTrz5XohyjfNjYFRkyyuwV2sSVrRJqF4dpyJ4NJQRjvyywxIP4Myifwlb
ONipCM1EjvQjaEUbdcqKgvlooMdhcyxfshqJWjHzXB6BL22uPzq5jHXXugz8/ol8
tOSM2FuJ2sBLQso+szhisxtMd11PihzIZK9BfxEG3du+/hlI+2XgN7hnmlXuA2k3
BUW6BSDhab41HNd6pp50bDJnL0uKPWyFC6hqSNZw+GOIb46jfFcQqnCB3VZGCwj3
LH53Be1XlUrttc/NrtkvVhm4bdxtfsp4F7nsPFNDuHvYNkalAVoC3An0BzOibtkh
AtfvEeaPHaOyD8/h2Q==
=zUUp
-----END PGP SIGNATURE-----
Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull more overflow updates from Kees Cook:
"The rest of the overflow changes for v4.18-rc1.
This includes the explicit overflow fixes from Silvio, further
struct_size() conversions from Matthew, and a bug fix from Dan.
But the bulk of it is the treewide conversions to use either the
2-factor argument allocators (e.g. kmalloc(a * b, ...) into
kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a *
b) into vmalloc(array_size(a, b)).
Coccinelle was fighting me on several fronts, so I've done a bunch of
manual whitespace updates in the patches as well.
Summary:
- Error path bug fix for overflow tests (Dan)
- Additional struct_size() conversions (Matthew, Kees)
- Explicitly reported overflow fixes (Silvio, Kees)
- Add missing kvcalloc() function (Kees)
- Treewide conversions of allocators to use either 2-factor argument
variant when available, or array_size() and array3_size() as needed
(Kees)"
* tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits)
treewide: Use array_size in f2fs_kvzalloc()
treewide: Use array_size() in f2fs_kzalloc()
treewide: Use array_size() in f2fs_kmalloc()
treewide: Use array_size() in sock_kmalloc()
treewide: Use array_size() in kvzalloc_node()
treewide: Use array_size() in vzalloc_node()
treewide: Use array_size() in vzalloc()
treewide: Use array_size() in vmalloc()
treewide: devm_kzalloc() -> devm_kcalloc()
treewide: devm_kmalloc() -> devm_kmalloc_array()
treewide: kvzalloc() -> kvcalloc()
treewide: kvmalloc() -> kvmalloc_array()
treewide: kzalloc_node() -> kcalloc_node()
treewide: kzalloc() -> kcalloc()
treewide: kmalloc() -> kmalloc_array()
mm: Introduce kvcalloc()
video: uvesafb: Fix integer overflow in allocation
UBIFS: Fix potential integer overflow in allocation
leds: Use struct_size() in allocation
Convert intel uncore to struct_size
...
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
regions for vGIC redistributor
* s390: cleanups for nested, clock handling, crypto, storage keys and
control register bits
* x86: many bugfixes, implement more Hyper-V super powers,
implement lapic_timer_advance_ns even when the LAPIC timer
is emulated using the processor's VMX preemption timer. Two
security-related bugfixes at the top of the branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
+5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
=H5zI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small update for KVM:
ARM:
- lazy context-switching of FPSIMD registers on arm64
- "split" regions for vGIC redistributor
s390:
- cleanups for nested
- clock handling
- crypto
- storage keys
- control register bits
x86:
- many bugfixes
- implement more Hyper-V super powers
- implement lapic_timer_advance_ns even when the LAPIC timer is
emulated using the processor's VMX preemption timer.
- two security-related bugfixes at the top of the branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
kvm: fix typo in flag name
kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
KVM: x86: introduce linear_{read,write}_system
kvm: nVMX: Enforce cpl=0 for VMX instructions
kvm: nVMX: Add support for "VMWRITE to any supported field"
kvm: nVMX: Restrict VMX capability MSR changes
KVM: VMX: Optimize tscdeadline timer latency
KVM: docs: nVMX: Remove known limitations as they do not exist now
KVM: docs: mmu: KVM support exposing SLAT to guests
kvm: no need to check return value of debugfs_create functions
kvm: Make VM ioctl do valloc for some archs
kvm: Change return type to vm_fault_t
KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
KVM: introduce kvm_make_vcpus_request_mask() API
KVM: x86: hyperv: do rep check for each hypercall separately
...
- Spectre v4 mitigation (Speculative Store Bypass Disable) support for
arm64 using SMC firmware call to set a hardware chicken bit
- ACPI PPTT (Processor Properties Topology Table) parsing support and
enable the feature for arm64
- Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The
primary motivation is Scalable Vector Extensions which requires more
space on the signal frame than the currently defined MINSIGSTKSZ
- ARM perf patches: allow building arm-cci as module, demote dev_warn()
to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups
- cmpwait() WFE optimisation to avoid some spurious wakeups
- L1_CACHE_BYTES reverted back to 64 (for performance reasons that have
to do with some network allocations) while keeping ARCH_DMA_MINALIGN
to 128. cache_line_size() returns the actual hardware Cache Writeback
Granule
- Turn LSE atomics on by default in Kconfig
- Kernel fault reporting tidying
- Some #include and miscellaneous cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlsaoqsACgkQa9axLQDI
XvH+8RAAqRCrEtkNPS7zxHyMK/D2cxSy9EVtlJ1sxhmsONEe5t5MDTWX9byobQ5A
PAKMSQBQgUvecqHLOtD7SJWef1il30zgWmc/yPcgNv3OsA1Au7j2g3ht/Drw+N5I
Vy0aOUEtw+Jzs7y/CJyl6lufSkkOzszOujt2Nybiz6omztOrwkW9isKnURzQBNj5
gquZI35h604YJ9F0TqS6ZqU7tNcuB9q02FxvVBpLmb83jP4jSEjYACUJwVVxvEAB
UXjdD4N130rRXDS5OMRWo5+4SAj+kPYhdVYEvaDx7xTOIRHhXK05GlJbsUAc5E6l
xy810fH5Dm0diYpVvYWTA5J+BU1jNOvCys5zKWl7gs2P8YB59PdqY4M2YBPNGb5H
PaVgq73TZAsww6ZInbZlK+wZOIxZZIOf//Z+QKn6EPtu3RmzIFWwyttTj01w1E3i
LhjcUoGnvxJFcMoCr59ihDwfP9nkCVrNc4REOGaWDk6L/t/bOfaZfDz+OCGbwQdL
akCFKZI6q5O/no+YfhtdtNFpCQb/Bo1J88KuotICRXq8z4vO41zIG53bi97W8QeG
rCBiX0NxUxYJ3ybus7kZHTmMGieMyEHP28n12QffwvJj4vJBsUXQBrV8hclx0djZ
HMt7iPi/0BW6nVV7ngIgN3cdCpaDCEGRsfO4Ch0rFZrC9UbYQnE=
=uums
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from the core arm64 and perf changes, the Spectre v4 mitigation
touches the arm KVM code and the ACPI PPTT support touches drivers/
(acpi and cacheinfo). I should have the maintainers' acks in place.
Summary:
- Spectre v4 mitigation (Speculative Store Bypass Disable) support
for arm64 using SMC firmware call to set a hardware chicken bit
- ACPI PPTT (Processor Properties Topology Table) parsing support and
enable the feature for arm64
- Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The
primary motivation is Scalable Vector Extensions which requires
more space on the signal frame than the currently defined
MINSIGSTKSZ
- ARM perf patches: allow building arm-cci as module, demote
dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous
cleanups
- cmpwait() WFE optimisation to avoid some spurious wakeups
- L1_CACHE_BYTES reverted back to 64 (for performance reasons that
have to do with some network allocations) while keeping
ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual
hardware Cache Writeback Granule
- Turn LSE atomics on by default in Kconfig
- Kernel fault reporting tidying
- Some #include and miscellaneous cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (53 commits)
arm64: Fix syscall restarting around signal suppressed by tracer
arm64: topology: Avoid checking numa mask for scheduler MC selection
ACPI / PPTT: fix build when CONFIG_ACPI_PPTT is not enabled
arm64: cpu_errata: include required headers
arm64: KVM: Move VCPU_WORKAROUND_2_FLAG macros to the top of the file
arm64: signal: Report signal frame size to userspace via auxv
arm64/sve: Thin out initialisation sanity-checks for sve_max_vl
arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_ID
arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests
arm64: KVM: Add ARCH_WORKAROUND_2 support for guests
arm64: KVM: Add HYP per-cpu accessors
arm64: ssbd: Add prctl interface for per-thread mitigation
arm64: ssbd: Introduce thread flag to control userspace mitigation
arm64: ssbd: Restore mitigation status on CPU resume
arm64: ssbd: Skip apply_ssbd if not using dynamic mitigation
arm64: ssbd: Add global mitigation state accessor
arm64: Add 'ssbd' command-line option
arm64: Add ARCH_WORKAROUND_2 probing
arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2
arm64: Call ARCH_WORKAROUND_2 on transitions between EL0 and EL1
...
Commit 17c2895 ("arm64: Abstract syscallno manipulation") abstracts
out the pt_regs.syscallno value for a syscall cancelled by a tracer
as NO_SYSCALL, and provides helpers to set and check for this
condition. However, the way this was implemented has the
unintended side-effect of disabling part of the syscall restart
logic.
This comes about because the second in_syscall() check in
do_signal() re-evaluates the "in a syscall" condition based on the
updated pt_regs instead of the original pt_regs. forget_syscall()
is explicitly called prior to the second check in order to prevent
restart logic in the ret_to_user path being spuriously triggered,
which means that the second in_syscall() check always yields false.
This triggers a failure in
tools/testing/selftests/seccomp/seccomp_bpf.c, when using ptrace to
suppress a signal that interrups a nanosleep() syscall.
Misbehaviour of this type is only expected in the case where a
tracer suppresses a signal and the target process is either being
single-stepped or the interrupted syscall attempts to restart via
-ERESTARTBLOCK.
This patch restores the old behaviour by performing the
in_syscall() check only once at the start of the function.
Fixes: 17c2895860 ("arm64: Abstract syscallno manipulation")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reported-by: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.14.x-
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>