mirror of https://gitee.com/openkylin/linux.git
384 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
David Rientjes | 356ff8a9a7 |
Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask"
This reverts commit |
|
David Rientjes | 2f0799a0ff |
mm, thp: restore node-local hugepage allocations
This is a full revert of |
|
Michal Hocko | 89c83fb539 |
mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask
THP allocation mode is quite complex and it depends on the defrag mode. This complexity is hidden in alloc_hugepage_direct_gfpmask from a large part currently. The NUMA special casing (namely __GFP_THISNODE) is however independent and placed in alloc_pages_vma currently. This both adds an unnecessary branch to all vma based page allocation requests and it makes the code more complex unnecessarily as well. Not to mention that e.g. shmem THP used to do the node reclaiming unconditionally regardless of the defrag mode until recently. This was not only unexpected behavior but it was also hardly a good default behavior and I strongly suspect it was just a side effect of the code sharing more than a deliberate decision which suggests that such a layering is wrong. Get rid of the thp special casing from alloc_pages_vma and move the logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the resulting gfp mask only when the direct reclaim is not requested and when there is no explicit numa binding to preserve the current logic. Please note that there's also a slight difference wrt MPOL_BIND now. The previous code would avoid using __GFP_THISNODE if the local node was outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided for all MPOL_BIND policies. So there's a difference that if local node is actually allowed by the bind policy's nodemask, previously __GFP_THISNODE would be added, but now it won't be. From the behavior POV this is still correct because the policy nodemask is used. Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrea Arcangeli | ac5b2c1891 |
mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings
THP allocation might be really disruptive when allocated on NUMA system with the local node full or hard to reclaim. Stefan has posted an allocation stall report on 4.12 based SLES kernel which suggests the same issue: kvm: page allocation stalls for 194572ms, order:9, mode:0x4740ca(__GFP_HIGHMEM|__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE|__GFP_MOVABLE|__GFP_DIRECT_RECLAIM), nodemask=(null) kvm cpuset=/ mems_allowed=0-1 CPU: 10 PID: 84752 Comm: kvm Tainted: G W 4.12.0+98-ph <a href="/view.php?id=1" title="[geschlossen] Integration Ramdisk" class="resolved">0000001</a> SLE15 (unreleased) Hardware name: Supermicro SYS-1029P-WTRT/X11DDW-NT, BIOS 2.0 12/05/2017 Call Trace: dump_stack+0x5c/0x84 warn_alloc+0xe0/0x180 __alloc_pages_slowpath+0x820/0xc90 __alloc_pages_nodemask+0x1cc/0x210 alloc_pages_vma+0x1e5/0x280 do_huge_pmd_wp_page+0x83f/0xf00 __handle_mm_fault+0x93d/0x1060 handle_mm_fault+0xc6/0x1b0 __do_page_fault+0x230/0x430 do_page_fault+0x2a/0x70 page_fault+0x7b/0x80 [...] Mem-Info: active_anon:126315487 inactive_anon:1612476 isolated_anon:5 active_file:60183 inactive_file:245285 isolated_file:0 unevictable:15657 dirty:286 writeback:1 unstable:0 slab_reclaimable:75543 slab_unreclaimable:2509111 mapped:81814 shmem:31764 pagetables:370616 bounce:0 free:32294031 free_pcp:6233 free_cma:0 Node 0 active_anon:254680388kB inactive_anon:1112760kB active_file:240648kB inactive_file:981168kB unevictable:13368kB isolated(anon):0kB isolated(file):0kB mapped:280240kB dirty:1144kB writeback:0kB shmem:95832kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 81225728kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no Node 1 active_anon:250583072kB inactive_anon:5337144kB active_file:84kB inactive_file:0kB unevictable:49260kB isolated(anon):20kB isolated(file):0kB mapped:47016kB dirty:0kB writeback:4kB shmem:31224kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 31897600kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no The defrag mode is "madvise" and from the above report it is clear that the THP has been allocated for MADV_HUGEPAGA vma. Andrea has identified that the main source of the problem is __GFP_THISNODE usage: : The problem is that direct compaction combined with the NUMA : __GFP_THISNODE logic in mempolicy.c is telling reclaim to swap very : hard the local node, instead of failing the allocation if there's no : THP available in the local node. : : Such logic was ok until __GFP_THISNODE was added to the THP allocation : path even with MPOL_DEFAULT. : : The idea behind the __GFP_THISNODE addition, is that it is better to : provide local memory in PAGE_SIZE units than to use remote NUMA THP : backed memory. That largely depends on the remote latency though, on : threadrippers for example the overhead is relatively low in my : experience. : : The combination of __GFP_THISNODE and __GFP_DIRECT_RECLAIM results in : extremely slow qemu startup with vfio, if the VM is larger than the : size of one host NUMA node. This is because it will try very hard to : unsuccessfully swapout get_user_pages pinned pages as result of the : __GFP_THISNODE being set, instead of falling back to PAGE_SIZE : allocations and instead of trying to allocate THP on other nodes (it : would be even worse without vfio type1 GUP pins of course, except it'd : be swapping heavily instead). Fix this by removing __GFP_THISNODE for THP requests which are requesting the direct reclaim. This effectivelly reverts |
|
zhong jiang | dedf2c73b8 |
mm/mempolicy.c: use match_string() helper to simplify the code
match_string() returns the index of an array for a matching string, which can be used intead of open coded implementation. Link: http://lkml.kernel.org/r/1536988365-50310-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrea Arcangeli | 3b9aadf727 |
userfaultfd: allow get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) to trigger userfaults
get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) called a get_user_pages that would not be waiting for userfaults before failing and it would hit on a SIGBUS instead. Using get_user_pages_locked/unlocked instead will allow get_mempolicy to allow userfaults to resolve the fault and fill the hole, before grabbing the node id of the page. If the user calls get_mempolicy() with MPOL_F_ADDR | MPOL_F_NODE for an address inside an area managed by uffd and there is no page at that address, the page allocation from within get_mempolicy() will fail because get_user_pages() does not allow for page fault retry required for uffd; the user will get SIGBUS. With this patch, the page fault will be resolved by the uffd and the get_mempolicy() will continue normally. Background: Via code review, previously the syscall would have returned -EFAULT (vm_fault_to_errno), now it will block and wait for an userfault (if it's waken before the fault is resolved it'll still -EFAULT). This way get_mempolicy will give a chance to an "unaware" app to be compliant with userfaults. The reason this visible change is that becoming "userfault compliant" cannot regress anything: all other syscalls including read(2)/write(2) had to become "userfault compliant" long time ago (that's one of the things userfaultfd can do that PROT_NONE and trapping segfaults can't). So this is just one more syscall that become "userfault compliant" like all other major ones already were. This has been happening on virtio-bridge dpdk process which just called get_mempolicy on the guest space post live migration, but before the memory had a chance to be migrated to destination. I didn't run an strace to be able to show the -EFAULT going away, but I've the confirmation of the below debug aid information (only visible with CONFIG_DEBUG_VM=y) going away with the patch: [20116.371461] FAULT_FLAG_ALLOW_RETRY missing 0 [20116.371464] CPU: 1 PID: 13381 Comm: vhost-events Not tainted 4.17.12-200.fc28.x86_64 #1 [20116.371465] Hardware name: LENOVO 20FAS2BN0A/20FAS2BN0A, BIOS N1CET54W (1.22 ) 02/10/2017 [20116.371466] Call Trace: [20116.371473] dump_stack+0x5c/0x80 [20116.371476] handle_userfault.cold.37+0x1b/0x22 [20116.371479] ? remove_wait_queue+0x20/0x60 [20116.371481] ? poll_freewait+0x45/0xa0 [20116.371483] ? do_sys_poll+0x31c/0x520 [20116.371485] ? radix_tree_lookup_slot+0x1e/0x50 [20116.371488] shmem_getpage_gfp+0xce7/0xe50 [20116.371491] ? page_add_file_rmap+0x1a/0x2c0 [20116.371493] shmem_fault+0x78/0x1e0 [20116.371495] ? filemap_map_pages+0x3a1/0x450 [20116.371498] __do_fault+0x1f/0xc0 [20116.371500] __handle_mm_fault+0xe2e/0x12f0 [20116.371502] handle_mm_fault+0xda/0x200 [20116.371504] __get_user_pages+0x238/0x790 [20116.371506] get_user_pages+0x3e/0x50 [20116.371510] kernel_get_mempolicy+0x40b/0x700 [20116.371512] ? vfs_write+0x170/0x1a0 [20116.371515] __x64_sys_get_mempolicy+0x21/0x30 [20116.371517] do_syscall_64+0x5b/0x160 [20116.371520] entry_SYSCALL_64_after_hwframe+0x44/0xa9 The above harmless debug message (not a kernel crash, just a dump_stack()) is shown with CONFIG_DEBUG_VM=y to more quickly identify and improve kernel spots that may have to become "userfaultfd compliant" like this one (without having to run an strace and search for syscall misbehavior). Spots like the above are more closer to a kernel bug for the non-cooperative usages that Mike focuses on, than for for dpdk qemu-cooperative usages that reproduced it, but it's still nicer to get this fixed for dpdk too. The part of the patch that caused me to think is only the implementation issue of mpol_get, but it looks like it should work safe no matter the kind of mempolicy structure that is (the default static policy also starts at 1 so it'll go to 2 and back to 1 without crashing everything at 0). [rppt@linux.vnet.ibm.com: changelog addition] http://lkml.kernel.org/r/20180904073718.GA26916@rapoport-lnx Link: http://lkml.kernel.org/r/20180831214848.23676-1-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Pavel Tatashin | c1093b746c |
mm: access zone->node via zone_to_nid() and zone_set_nid()
zone->node is configured only when CONFIG_NUMA=y, so it is a good idea to have inline functions to access this field in order to avoid ifdef's in c files. Link: http://lkml.kernel.org/r/20180730101757.28058-3-osalvador@techadventures.net Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrew Morton | a670468f5e |
mm: zero out the vma in vma_init()
Rather than in vm_area_alloc(). To ensure that the various oddball stack-based vmas are in a good state. Some of the callers were zeroing them out, others were not. Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 2c4541e24c |
mm: use vma_init() to initialize VMAs on stack and data segments
Make sure to initialize all VMAs properly, not only those which come from vm_area_cachep. Link: http://lkml.kernel.org/r/20180724121139.62570-3-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 94723aafb9 |
mm: unclutter THP migration
THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 666feb21a0 |
mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | a49bd4d716 |
mm, numa: rework do_pages_move
Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | 642e7fd233 |
Merge branch 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux
Pull removal of in-kernel calls to syscalls from Dominik Brodowski: "System calls are interaction points between userspace and the kernel. Therefore, system call functions such as sys_xyzzy() or compat_sys_xyzzy() should only be called from userspace via the syscall table, but not from elsewhere in the kernel. At least on 64-bit x86, it will likely be a hard requirement from v4.17 onwards to not call system call functions in the kernel: It is better to use use a different calling convention for system calls there, where struct pt_regs is decoded on-the-fly in a syscall wrapper which then hands processing over to the actual syscall function. This means that only those parameters which are actually needed for a specific syscall are passed on during syscall entry, instead of filling in six CPU registers with random user space content all the time (which may cause serious trouble down the call chain). Those x86-specific patches will be pushed through the x86 tree in the near future. Moreover, rules on how data may be accessed may differ between kernel data and user data. This is another reason why calling sys_xyzzy() is generally a bad idea, and -- at most -- acceptable in arch-specific code. This patchset removes all in-kernel calls to syscall functions in the kernel with the exception of arch/. On top of this, it cleans up the three places where many syscalls are referenced or prototyped, namely kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h" * 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits) bpf: whitelist all syscalls for error injection kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions kernel/sys_ni: sort cond_syscall() entries syscalls/x86: auto-create compat_sys_*() prototypes syscalls: sort syscall prototypes in include/linux/compat.h net: remove compat_sys_*() prototypes from net/compat.h syscalls: sort syscall prototypes in include/linux/syscalls.h kexec: move sys_kexec_load() prototype to syscalls.h x86/sigreturn: use SYSCALL_DEFINE0 x86: fix sys_sigreturn() return type to be long, not unsigned long x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm() mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead() mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff() mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64() fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate() fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate() fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid() kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare() ... |
|
Dominik Brodowski | af03c4acb7 |
mm: add kernel_[sg]et_mempolicy() helpers; remove in-kernel calls to syscalls
Using the mm-internal kernel_[sg]et_mempolicy() helper allows us to get rid of the mm-internal calls to the sys_[sg]et_mempolicy() syscalls. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
|
Dominik Brodowski | e7dc9ad6e9 |
mm: add kernel_mbind() helper; remove in-kernel call to syscall
Using the mm-internal kernel_mbind() helper allows us to get rid of the mm-internal call to the sys_mbind() syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
|
Dominik Brodowski | b6e9b0babb |
mm: add kernel_migrate_pages() helper, move compat syscall to mm/mempolicy.c
Move compat_sys_migrate_pages() to mm/mempolicy.c and make it call a newly introduced helper -- kernel_migrate_pages() -- instead of the syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
|
Yisheng Xie | 8970a63e96 |
mm/mempolicy.c: avoid use uninitialized preferred_node
Alexander reported a use of uninitialized memory in __mpol_equal(),
which is caused by incorrect use of preferred_node.
When mempolicy in mode MPOL_PREFERRED with flags MPOL_F_LOCAL, it uses
numa_node_id() instead of preferred_node, however, __mpol_equal() uses
preferred_node without checking whether it is MPOL_F_LOCAL or not.
[akpm@linux-foundation.org: slight comment tweak]
Link: http://lkml.kernel.org/r/4ebee1c2-57f6-bcb8-0e2d-1833d1ee0bb7@huawei.com
Fixes:
|
|
Michal Hocko | 389c8178d0 |
hugetlb, mbind: fall back to default policy if vma is NULL
Dan Carpenter has noticed that mbind migration callback (new_page) can get a NULL vma pointer and choke on it inside alloc_huge_page_vma which relies on the VMA to get the hstate. We used to BUG_ON this case but the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the mbind hugetlb migration". The proper way to handle this is to get the hstate from the migrated page and rely on huge_node (resp. get_vma_policy) do the right thing with null VMA. We are currently falling back to the default mempolicy in that case which is in line what THP path is doing here. Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | ebd6372358 |
hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb pages. alloc_huge_page_noerr uses alloc_huge_page which is a highlevel allocation function which has to take care of reserves, overcommit or hugetlb cgroup accounting. None of that is really required for the page migration because the new page is only temporal and either will replace the original page or it will be dropped. This is essentially as for other migration call paths and there shouldn't be any reason to handle mbind in a special way. The current implementation is even suboptimal because the migration might fail just because the hugetlb cgroup limit is reached, or the overcommit is saturated. Fix this by making mbind like other hugetlb migration paths. Add a new migration helper alloc_huge_page_vma as a wrapper around alloc_huge_page_nodemask with additional mempolicy handling. alloc_huge_page_noerr has no more users and it can go. Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yisheng Xie | 0486a38bcc |
mm/mempolicy: add nodes_empty check in SYSC_migrate_pages
As in manpage of migrate_pages, the errno should be set to EINVAL when none of the node IDs specified by new_nodes are on-line and allowed by the process's current cpuset context, or none of the specified nodes contain memory. However, when test by following case: new_nodes = 0; old_nodes = 0xf; ret = migrate_pages(pid, old_nodes, new_nodes, MAX); The ret will be 0 and no errno is set. As the new_nodes is empty, we should expect EINVAL as documented. To fix the case like above, this patch check whether target nodes AND current task_nodes is empty, and then check whether AND node_states[N_MEMORY] is empty. Link: http://lkml.kernel.org/r/1510882624-44342-4-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Chris Salls <salls@cs.ucsb.edu> Cc: Christopher Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tan Xiaojun <tanxiaojun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yisheng Xie | 56521e7a02 |
mm/mempolicy: fix the check of nodemask from user
As Xiaojun reported the ltp of migrate_pages01 will fail on arm64 system which has 4 nodes[0...3], all have memory and CONFIG_NODES_SHIFT=2: migrate_pages01 0 TINFO : test_invalid_nodes migrate_pages01 14 TFAIL : migrate_pages_common.c:45: unexpected failure - returned value = 0, expected: -1 migrate_pages01 15 TFAIL : migrate_pages_common.c:55: call succeeded unexpectedly In this case the test_invalid_nodes of migrate_pages01 will call: SYSC_migrate_pages as: migrate_pages(0, , {0x0000000000000001}, 64, , {0x0000000000000010}, 64) = 0 The new nodes specifies one or more node IDs that are greater than the maximum supported node ID, however, the errno is not set to EINVAL as expected. As man pages of set_mempolicy[1], mbind[2], and migrate_pages[3] mentioned, when nodemask specifies one or more node IDs that are greater than the maximum supported node ID, the errno should set to EINVAL. However, get_nodes only check whether the part of bits [BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES), maxnode) is zero or not, and remain [MAX_NUMNODES, BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES) unchecked. This patch is to check the bits of [MAX_NUMNODES, maxnode) in get_nodes to let migrate_pages set the errno to EINVAL when nodemask specifies one or more node IDs that are greater than the maximum supported node ID, which follows the manpage's guide. [1] http://man7.org/linux/man-pages/man2/set_mempolicy.2.html [2] http://man7.org/linux/man-pages/man2/mbind.2.html [3] http://man7.org/linux/man-pages/man2/migrate_pages.2.html Link: http://lkml.kernel.org/r/1510882624-44342-3-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Reported-by: Tan Xiaojun <tanxiaojun@huawei.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Chris Salls <salls@cs.ucsb.edu> Cc: Christopher Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yisheng Xie | 66f308ed7d |
mm/mempolicy: remove redundant check in get_nodes
We have already checked whether maxnode is a page worth of bits, by: maxnode > PAGE_SIZE*BITS_PER_BYTE So no need to check it once more. Link: http://lkml.kernel.org/r/1510882624-44342-2-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Chris Salls <salls@cs.ucsb.edu> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christopher Lameter <cl@linux.com> Cc: Tan Xiaojun <tanxiaojun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kemi Wang | 4518085e12 |
mm, sysctl: make NUMA stats configurable
This is the second step which introduces a tunable interface that allow numa stats configurable for optimizing zone_statistics(), as suggested by Dave Hansen and Ying Huang. ========================================================================= When page allocation performance becomes a bottleneck and you can tolerate some possible tool breakage and decreased numa counter precision, you can do: echo 0 > /proc/sys/vm/numa_stat In this case, numa counter update is ignored. We can see about *4.8%*(185->176) drop of cpu cycles per single page allocation and reclaim on Jesper's page_bench01 (single thread) and *8.1%*(343->315) drop of cpu cycles per single page allocation and reclaim on Jesper's page_bench03 (88 threads) running on a 2-Socket Broadwell-based server (88 threads, 126G memory). Benchmark link provided by Jesper D Brouer (increase loop times to 10000000): https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench ========================================================================= When page allocation performance is not a bottleneck and you want all tooling to work, you can do: echo 1 > /proc/sys/vm/numa_stat This is system default setting. Many thanks to Michal Hocko, Dave Hansen, Ying Huang and Vlastimil Babka for comments to help improve the original patch. [keescook@chromium.org: make sure mutex is a global static] Link: http://lkml.kernel.org/r/20171107213809.GA4314@beast Link: http://lkml.kernel.org/r/1508290927-8518-1-git-send-email-kemi.wang@intel.com Signed-off-by: Kemi Wang <kemi.wang@intel.com> Signed-off-by: Kees Cook <keescook@chromium.org> Reported-by: Jesper Dangaard Brouer <brouer@redhat.com> Suggested-by: Dave Hansen <dave.hansen@intel.com> Suggested-by: Ying Huang <ying.huang@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christopher Lameter <cl@linux.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Otto Ebeling | 3136746619 |
Unify migrate_pages and move_pages access checks
Commit
|
|
Andrey Ryabinin | de55c8b251 |
mm/mempolicy: fix NUMA_INTERLEAVE_HIT counter
Commit |
|
Anshuman Khandual | 149728e913 |
mm/mempolicy.c: remove BUG_ON() checks for VMA inside mpol_misplaced()
VMA and its address bounds checks are too late in this function. They must have been verified earlier in the page fault sequence. Hence just remove them. Link: http://lkml.kernel.org/r/20170901130137.7617-1-khandual@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Laurent Dufour | 98c70baad4 |
mm: remove useless vma parameter to offset_il_node
While reading the code I found that offset_il_node() has a vm_area_struct pointer parameter which is unused. Link: http://lkml.kernel.org/r/1502899755-23146-1-git-send-email-ldufour@linux.vnet.ibm.com Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Naoya Horiguchi | c863379849 |
mm: mempolicy: mbind and migrate_pages support thp migration
This patch enables thp migration for mbind(2) and migrate_pages(2). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Naoya Horiguchi | 88aaa2a1d7 |
mm: mempolicy: add queue_pages_required()
Patch series "mm: page migration enhancement for thp", v9. Motivations: 1. THP migration becomes important in the upcoming heterogeneous memory systems. As David Nellans from NVIDIA pointed out from other threads (http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1349227.html), future GPUs or other accelerators will have their memory managed by operating systems. Moving data into and out of these memory nodes efficiently is critical to applications that use GPUs or other accelerators. Existing page migration only supports base pages, which has a very low memory bandwidth utilization. My experiments (see below) show THP migration can migrate pages more efficiently. 2. Base page migration vs THP migration throughput. Here are cross-socket page migration results from calling move_pages() syscall: In x86_64, a Intel two-socket E5-2640v3 box, - single 4KB base page migration takes 62.47 us, using 0.06 GB/s BW, - single 2MB THP migration takes 658.54 us, using 2.97 GB/s BW, - 512 4KB base page migration takes 1987.38 us, using 0.98 GB/s BW. In ppc64, a two-socket Power8 box, - single 64KB base page migration takes 49.3 us, using 1.24 GB/s BW, - single 16MB THP migration takes 2202.17 us, using 7.10 GB/s BW, - 256 64KB base page migration takes 2543.65 us, using 6.14 GB/s BW. THP migration can give us 3x and 1.15x throughput over base page migration in x86_64 and ppc64 respectivley. You can test it out by using the code here: https://github.com/x-y-z/thp-migration-bench 3. Existing page migration splits THP before migration and cannot guarantee the migrated pages are still contiguous. Contiguity is always what GPUs and accelerators look for. Without THP migration, khugepaged needs to do extra work to reassemble the migrated pages back to THPs. This patch (of 10): Introduce a separate check routine related to MPOL_MF_INVERT flag. This patch just does cleanup, no behavioral change. Link: http://lkml.kernel.org/r/20170717193955.20207-2-zi.yan@sent.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
zhong jiang | 73223e4e2e |
mm/mempolicy: fix use after free when calling get_mempolicy
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled. The related call trace is as follows.
BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
Read of size 2 by task syz-executor1/798
INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
__slab_alloc+0x768/0x970
kmem_cache_alloc+0x2e7/0x450
mpol_new.part.2+0x74/0x160
mpol_new+0x66/0x80
SyS_mbind+0x267/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
__slab_free+0x495/0x8e0
kmem_cache_free+0x2f3/0x4c0
__mpol_put+0x2b/0x40
SyS_mbind+0x383/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600
Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk.
Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........
Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
Memory state around the buggy address:
ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc
!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem. do_get_mempolicy,
however, drops the lock midway while we can still access it later.
Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since
|
|
Michal Hocko | 0f55685627 |
mm, migration: do not trigger OOM killer when migrating memory
Page migration (for memory hotplug, soft_offline_page or mbind) needs to allocate a new memory. This can trigger an oom killer if the target memory is depleated. Although quite unlikely, still possible, especially for the memory hotplug (offlining of memoery). Up to now we didn't really have reasonable means to back off. __GFP_NORETRY can fail just too easily and __GFP_THISNODE sticks to a single node and that is not suitable for all callers. But now that we have __GFP_RETRY_MAYFAIL we should use it. It is preferable to fail the migration than disrupt the system by killing some processes. Link: http://lkml.kernel.org/r/20170623085345.11304-7-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | e0dd7d53a6 |
mm, mempolicy: don't check cpuset seqlock where it doesn't matter
Two wrappers of __alloc_pages_nodemask() are checking task->mems_allowed_seq themselves to retry allocation that has raced with a cpuset update. This has been shown to be ineffective in preventing premature OOM's which can happen in __alloc_pages_slowpath() long before it returns back to the wrappers to detect the race at that level. Previous patches have made __alloc_pages_slowpath() more robust, so we can now simply remove the seqlock checking in the wrappers to prevent further wrong impression that it can actually help. Link: http://lkml.kernel.org/r/20170517081140.30654-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 213980c0f2 |
mm, mempolicy: simplify rebinding mempolicies when updating cpusets
Commit |
|
Vlastimil Babka | 04ec6264f2 |
mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist pointer as one of its parameters. All of its callers directly or indirectly obtain the zonelist via node_zonelist() using a preferred node id and gfp_mask. We can make the code a bit simpler by doing the zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node id instead (gfp_mask is already another parameter). There are some code size benefits thanks to removal of inlined node_zonelist(): bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952) This will also make things simpler if we proceed with converting cpusets to zonelists. Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 45816682b2 |
mm, mempolicy: stop adjusting current->il_next in mpol_rebind_nodemask()
The task->il_next variable stores the next allocation node id for task's MPOL_INTERLEAVE policy. mpol_rebind_nodemask() updates interleave and bind mempolicies due to changing cpuset mems. Currently it also tries to make sure that current->il_next is valid within the updated nodemask. This is bogus, because 1) we are updating potentially any task's mempolicy, not just current, and 2) we might be updating a per-vma mempolicy, not task one. The interleave_nodes() function that uses il_next can cope fine with the value not being within the currently allowed nodes, so this hasn't manifested as an actual issue. We can remove the need for updating il_next completely by changing it to il_prev and store the node id of the previous interleave allocation instead of the next id. Then interleave_nodes() can calculate the next id using the current nodemask and also store it as il_prev, except when querying the next node via do_get_mempolicy(). Link: http://lkml.kernel.org/r/20170517081140.30654-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chris Salls | cf01fb9985 |
mm/mempolicy.c: fix error handling in set_mempolicy and mbind.
In the case that compat_get_bitmap fails we do not want to copy the bitmap to the user as it will contain uninitialized stack data and leak sensitive data. Signed-off-by: Chris Salls <salls@cs.ucsb.edu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Ingo Molnar | f719ff9bce |
sched/headers: Prepare to move the task_lock()/unlock() APIs to <linux/sched/task.h>
But first update the code that uses these facilities with the new header. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ingo Molnar | 6a3827d750 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/numa_balancing.h>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/numa_balancing.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ingo Molnar | 6e84f31522 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Vlastimil Babka | d51e9894d2 |
mm/mempolicy.c: do not put mempolicy before using its nodemask
Since commit |
|
Linus Torvalds | 7c0f6ba682 |
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Piotr Kwapulinski | 8d303e44e9 |
mm/mempolicy.c: forbid static or relative flags for local NUMA mode
The MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES flags are irrelevant when setting them for MPOL_LOCAL NUMA memory policy via set_mempolicy or mbind. Return the "invalid argument" from set_mempolicy and mbind whenever any of these flags is passed along with MPOL_LOCAL. It is consistent with MPOL_PREFERRED passed with empty nodemask. It slightly shortens the execution time in paths where these flags are used e.g. when trying to rebind the NUMA nodes for changes in cgroups cpuset mems (mpol_rebind_preferred()) or when just printing the mempolicy structure (/proc/PID/numa_maps). Isolated tests done. Link: http://lkml.kernel.org/r/20161027163037.4089-1-kwapulinski.piotr@gmail.com Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Liang Chen <liangchen.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Nathan Zimmer <nzimmer@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 6d8409580b |
mm, mempolicy: clean up __GFP_THISNODE confusion in policy_zonelist
__GFP_THISNODE is documented to enforce the allocation to be satisified from the requested node with no fallbacks or placement policy enforcements. policy_zonelist seemingly breaks this semantic if the current policy is MPOL_MBIND and instead of taking the node it will fallback to the first node in the mask if the requested one is not in the mask. This is confusing to say the least because it fact we shouldn't ever go that path. First tasks shouldn't be scheduled on CPUs with nodes outside of their mempolicy binding. And secondly policy_zonelist is called only from 3 places: - huge_zonelist - never should do __GFP_THISNODE when going this path - alloc_pages_vma - which shouldn't depend on __GFP_THISNODE either - alloc_pages_current - which uses default_policy id __GFP_THISNODE is used So we shouldn't even need to care about this possibility and can drop the confusing code. Let's keep a WARN_ON_ONCE in place to catch potential users and fix them up properly (aka use a different allocation function which ignores mempolicy). [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20161013125958.32155-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | fd60775aea |
mm, thp: avoid unlikely branches for split_huge_pmd
While doing MADV_DONTNEED on a large area of thp memory, I noticed we encountered many unlikely() branches in profiles for each backing hugepage. This is because zap_pmd_range() would call split_huge_pmd(), which rechecked the conditions that were already validated, but as part of an unlikely() branch. Avoid the unlikely() branch when in a context where pmd is known to be good for __split_huge_pmd() directly. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Lorenzo Stoakes | 768ae309a9 |
mm: replace get_user_pages() write/force parameters with gup_flags
This removes the 'write' and 'force' from get_user_pages() and replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers as use of this flag can result in surprising behaviour (and hence bugs) within the mm subsystem. Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Christian König <christian.koenig@amd.com> Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aneesh Kumar K.V | c9634cf012 |
mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the zonelist. This makes it more readable. No functionality change by this patch. Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | c11600e4fe |
mm, mempolicy: task->mempolicy must be NULL before dropping final reference
KASAN allocates memory from the page allocator as part of
kmem_cache_free(), and that can reference current->mempolicy through any
number of allocation functions. It needs to be NULL'd out before the
final reference is dropped to prevent a use-after-free bug:
BUG: KASAN: use-after-free in alloc_pages_current+0x363/0x370 at addr ffff88010b48102c
CPU: 0 PID: 15425 Comm: trinity-c2 Not tainted 4.8.0-rc2+ #140
...
Call Trace:
dump_stack
kasan_object_err
kasan_report_error
__asan_report_load2_noabort
alloc_pages_current <-- use after free
depot_save_stack
save_stack
kasan_slab_free
kmem_cache_free
__mpol_put <-- free
do_exit
This patch sets current->mempolicy to NULL before dropping the final
reference.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1608301442180.63329@chino.kir.corp.google.com
Fixes:
|
|
Mel Gorman | 599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | 800d8c63b2 |
shmem: add huge pages support
Here's basic implementation of huge pages support for shmem/tmpfs. It's all pretty streight-forward: - shmem_getpage() allcoates huge page if it can and try to inserd into radix tree with shmem_add_to_page_cache(); - shmem_add_to_page_cache() puts the page onto radix-tree if there's space for it; - shmem_undo_range() removes huge pages, if it fully within range. Partial truncate of huge pages zero out this part of THP. This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE) behaviour. As we don't really create hole in this case, lseek(SEEK_HOLE) may have inconsistent results depending what pages happened to be allocated. - no need to change shmem_fault: core-mm will map an compound page as huge if VMA is suitable; Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Naoya Horiguchi | 337d9abf1c |
mm: thp: check pmd_trans_unstable() after split_huge_pmd()
split_huge_pmd() doesn't guarantee that the pmd is normal pmd pointing to pte entries, which can be checked with pmd_trans_unstable(). Some callers make this assertion and some do it differently and some not, so let's do it in a unified manner. Link: http://lkml.kernel.org/r/1464741400-12143-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |