This removes the 'write' and 'force' from get_user_pages_remote() and
replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' from get_user_pages() and replaces
them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers
as use of this flag can result in surprising behaviour (and hence bugs)
within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' from get_vaddr_frames() and
replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' use from get_user_pages_locked()
and replaces them with 'gup_flags' to make the use of FOLL_FORCE
explicit in callers as use of this flag can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the 'write' and 'force' use from get_user_pages_unlocked()
and replaces them with 'gup_flags' to make the use of FOLL_FORCE
explicit in callers as use of this flag can result in surprising
behaviour (and hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the redundant 'write' and 'force' parameters from
__get_user_pages_unlocked() to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the redundant 'write' and 'force' parameters from
__get_user_pages_locked() to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an ancient bug that was actually attempted to be fixed once
(badly) by me eleven years ago in commit 4ceb5db975 ("Fix
get_user_pages() race for write access") but that was then undone due to
problems on s390 by commit f33ea7f404 ("fix get_user_pages bug").
In the meantime, the s390 situation has long been fixed, and we can now
fix it by checking the pte_dirty() bit properly (and do it better). The
s390 dirty bit was implemented in abf09bed3c ("s390/mm: implement
software dirty bits") which made it into v3.9. Earlier kernels will
have to look at the page state itself.
Also, the VM has become more scalable, and what used a purely
theoretical race back then has become easier to trigger.
To fix it, we introduce a new internal FOLL_COW flag to mark the "yes,
we already did a COW" rather than play racy games with FOLL_WRITE that
is very fundamental, and then use the pte dirty flag to validate that
the FOLL_COW flag is still valid.
Reported-and-tested-by: Phil "not Paul" Oester <kernel@linuxace.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
pa/A7CNQwibIV6YD8+/p
=1dUK
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
Pull percpu updates from Tejun Heo:
- Nick improved generic implementations of percpu operations which
modify the variable and return so that they calculate the physical
address only once.
- percpu_ref percpu <-> atomic mode switching improvements. The
patchset was originally posted about a year ago but fell through the
crack.
- misc non-critical fixes.
* 'for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
mm/percpu.c: fix potential memory leakage for pcpu_embed_first_chunk()
mm/percpu.c: correct max_distance calculation for pcpu_embed_first_chunk()
percpu: eliminate two sparse warnings
percpu: improve generic percpu modify-return implementation
percpu-refcount: init ->confirm_switch member properly
percpu_ref: allow operation mode switching operations to be called concurrently
percpu_ref: restructure operation mode switching
percpu_ref: unify staggered atomic switching wait behavior
percpu_ref: reorganize __percpu_ref_switch_to_atomic() and relocate percpu_ref_switch_to_atomic()
percpu_ref: remove unnecessary RCU grace period for staggered atomic switching confirmation
This affectively reverts commit 377ccbb483 ("Makefile: Mute warning
for __builtin_return_address(>0) for tracing only") because it turns out
that it really isn't tracing only - it's all over the tree.
We already also had the warning disabled separately for mm/usercopy.c
(which this commit also removes), and it turns out that we will also
want to disable it for get_lock_parent_ip(), that is used for at least
TRACE_IRQFLAGS. Which (when enabled) ends up being all over the tree.
Steven Rostedt had a patch that tried to limit it to just the config
options that actually triggered this, but quite frankly, the extra
complexity and abstraction just isn't worth it. We have never actually
had a case where the warning is actually useful, so let's just disable
it globally and not worry about it.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of the kmemleak_*() callbacks in memblock, bootmem, CMA convert a
physical address to a virtual one using __va(). However, such physical
addresses may sometimes be located in highmem and using __va() is
incorrect, leading to inconsistent object tracking in kmemleak.
The following functions have been added to the kmemleak API and they take
a physical address as the object pointer. They only perform the
corresponding action if the address has a lowmem mapping:
kmemleak_alloc_phys
kmemleak_free_part_phys
kmemleak_not_leak_phys
kmemleak_ignore_phys
The affected calling places have been updated to use the new kmemleak
API.
Link: http://lkml.kernel.org/r/1471531432-16503-1-git-send-email-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Vignesh R <vigneshr@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
Pull vfs xattr updates from Al Viro:
"xattr stuff from Andreas
This completes the switch to xattr_handler ->get()/->set() from
->getxattr/->setxattr/->removexattr"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Remove {get,set,remove}xattr inode operations
xattr: Stop calling {get,set,remove}xattr inode operations
vfs: Check for the IOP_XATTR flag in listxattr
xattr: Add __vfs_{get,set,remove}xattr helpers
libfs: Use IOP_XATTR flag for empty directory handling
vfs: Use IOP_XATTR flag for bad-inode handling
vfs: Add IOP_XATTR inode operations flag
vfs: Move xattr_resolve_name to the front of fs/xattr.c
ecryptfs: Switch to generic xattr handlers
sockfs: Get rid of getxattr iop
sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
kernfs: Switch to generic xattr handlers
hfs: Switch to generic xattr handlers
jffs2: Remove jffs2_{get,set,remove}xattr macros
xattr: Remove unnecessary NULL attribute name check
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull splice fixups from Al Viro:
"A couple of fixups for interaction of pipe-backed iov_iter with
O_DIRECT reads + constification of a couple of primitives in uio.h
missed by previous rounds.
Kudos to davej - his fuzzing has caught those bugs"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
[btrfs] fix check_direct_IO() for non-iovec iterators
constify iov_iter_count() and iter_is_iovec()
fix ITER_PIPE interaction with direct_IO
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
Pull protection keys syscall interface from Thomas Gleixner:
"This is the final step of Protection Keys support which adds the
syscalls so user space can actually allocate keys and protect memory
areas with them. Details and usage examples can be found in the
documentation.
The mm side of this has been acked by Mel"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Update documentation
x86/mm/pkeys: Do not skip PKRU register if debug registers are not used
x86/pkeys: Fix pkeys build breakage for some non-x86 arches
x86/pkeys: Add self-tests
x86/pkeys: Allow configuration of init_pkru
x86/pkeys: Default to a restrictive init PKRU
pkeys: Add details of system call use to Documentation/
generic syscalls: Wire up memory protection keys syscalls
x86: Wire up protection keys system calls
x86/pkeys: Allocation/free syscalls
x86/pkeys: Make mprotect_key() mask off additional vm_flags
mm: Implement new pkey_mprotect() system call
x86/pkeys: Add fault handling for PF_PK page fault bit
by making sure we call iov_iter_advance() on original
iov_iter even if direct_IO (done on its copy) has returned 0.
It's a no-op for old iov_iter flavours and does the right thing
(== truncation of the stuff we'd allocated, but not filled) in
ITER_PIPE case. Failures (e.g. -EIO) get caught and dealt with
by cleanup in generic_file_read_iter().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Merge updates from Andrew Morton:
- fsnotify updates
- ocfs2 updates
- all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (127 commits)
console: don't prefer first registered if DT specifies stdout-path
cred: simpler, 1D supplementary groups
CREDITS: update Pavel's information, add GPG key, remove snail mail address
mailmap: add Johan Hovold
.gitattributes: set git diff driver for C source code files
uprobes: remove function declarations from arch/{mips,s390}
spelling.txt: "modeled" is spelt correctly
nmi_backtrace: generate one-line reports for idle cpus
arch/tile: adopt the new nmi_backtrace framework
nmi_backtrace: do a local dump_stack() instead of a self-NMI
nmi_backtrace: add more trigger_*_cpu_backtrace() methods
min/max: remove sparse warnings when they're nested
Documentation/filesystems/proc.txt: add more description for maps/smaps
mm, proc: fix region lost in /proc/self/smaps
proc: fix timerslack_ns CAP_SYS_NICE check when adjusting self
proc: add LSM hook checks to /proc/<tid>/timerslack_ns
proc: relax /proc/<tid>/timerslack_ns capability requirements
meminfo: break apart a very long seq_printf with #ifdefs
seq/proc: modify seq_put_decimal_[u]ll to take a const char *, not char
proc: faster /proc/*/status
...
These inode operations are no longer used; remove them.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Allow some seq_puts removals by taking a string instead of a single
char.
[akpm@linux-foundation.org: update vmstat_show(), per Joe]
Link: http://lkml.kernel.org/r/667e1cf3d436de91a5698170a1e98d882905e956.1470704995.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Joe Perches <joe@perches.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the huge page is added to the page cahce (huge_add_to_page_cache),
the page private flag will be cleared. since this code
(remove_inode_hugepages) will only be called for pages in the page
cahce, PagePrivate(page) will always be false.
The patch remove the code without any functional change.
Link: http://lkml.kernel.org/r/1475113323-29368-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we do warn only about allocation failures but small
allocations are basically nofail and they might loop in the page
allocator for a long time. Especially when the reclaim cannot make any
progress - e.g. GFP_NOFS cannot invoke the oom killer and rely on a
different context to make a forward progress in case there is a lot
memory used by filesystems.
Give us at least a clue when something like this happens and warn about
allocations which take more than 10s. Print the basic allocation
context information along with the cumulative time spent in the
allocation as well as the allocation stack. Repeat the warning after
every 10 seconds so that we know that the problem is permanent rather
than ephemeral.
Link: http://lkml.kernel.org/r/20160929084407.7004-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc_failed is currently used from the page and vmalloc
allocators. This is a good reuse of the code except that vmalloc would
appreciate a slightly different warning message. This is already
handled by the fmt parameter except that
"%s: page allocation failure: order:%u, mode:%#x(%pGg)"
is printed anyway. This might be quite misleading because it might be a
vmalloc failure which leads to the warning while the page allocator is
not the culprit here. Fix this by always using the fmt string and only
print the context that makes sense for the particular context (e.g.
order makes only very little sense for the vmalloc context).
Rename the function to not miss any user and also because a later patch
will reuse it also for !failure cases.
Link: http://lkml.kernel.org/r/20160929084407.7004-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We triggered a deadloop in truncate_inode_pages_range() on 32 bits
architecture with the test case bellow:
...
fd = open();
write(fd, buf, 4096);
preadv64(fd, &iovec, 1, 0xffffffff000);
ftruncate(fd, 0);
...
Then ftruncate() will not return forever.
The filesystem used in this case is ubifs, but it can be triggered on
many other filesystems.
When preadv64() is called with offset=0xffffffff000, a page with
index=0xffffffff will be added to the radix tree of ->mapping. Then
this page can be found in ->mapping with pagevec_lookup(). After that,
truncate_inode_pages_range(), which is called in ftruncate(), will fall
into an infinite loop:
- find a page with index=0xffffffff, since index>=end, this page won't
be truncated
- index++, and index become 0
- the page with index=0xffffffff will be found again
The data type of index is unsigned long, so index won't overflow to 0 on
64 bits architecture in this case, and the dead loop won't happen.
Since truncate_inode_pages_range() is executed with holding lock of
inode->i_rwsem, any operation related with this lock will be blocked,
and a hung task will happen, e.g.:
INFO: task truncate_test:3364 blocked for more than 120 seconds.
...
call_rwsem_down_write_failed+0x17/0x30
generic_file_write_iter+0x32/0x1c0
ubifs_write_iter+0xcc/0x170
__vfs_write+0xc4/0x120
vfs_write+0xb2/0x1b0
SyS_write+0x46/0xa0
The page with index=0xffffffff added to ->mapping is useless. Fix this
by checking the read position before allocating pages.
Link: http://lkml.kernel.org/r/1475151010-40166-1-git-send-email-fangwei1@huawei.com
Signed-off-by: Wei Fang <fangwei1@huawei.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid making ifdef get pretty unwieldy if many ARCHs support gigantic
page. No functional change with this patch.
Link: http://lkml.kernel.org/r/1475227569-63446-2-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have received a hard to explain oom report from a customer. The oom
triggered regardless there is a lot of free memory:
PoolThread invoked oom-killer: gfp_mask=0x280da, order=0, oom_adj=0, oom_score_adj=0
PoolThread cpuset=/ mems_allowed=0-7
Pid: 30055, comm: PoolThread Tainted: G E X 3.0.101-80-default #1
Call Trace:
dump_trace+0x75/0x300
dump_stack+0x69/0x6f
dump_header+0x8e/0x110
oom_kill_process+0xa6/0x350
out_of_memory+0x2b7/0x310
__alloc_pages_slowpath+0x7dd/0x820
__alloc_pages_nodemask+0x1e9/0x200
alloc_pages_vma+0xe1/0x290
do_anonymous_page+0x13e/0x300
do_page_fault+0x1fd/0x4c0
page_fault+0x25/0x30
[...]
active_anon:1135959151 inactive_anon:1051962 isolated_anon:0
active_file:13093 inactive_file:222506 isolated_file:0
unevictable:262144 dirty:2 writeback:0 unstable:0
free:432672819 slab_reclaimable:7917 slab_unreclaimable:95308
mapped:261139 shmem:166297 pagetables:2228282 bounce:0
[...]
Node 0 DMA free:15896kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15672kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 2892 775542 775542
Node 0 DMA32 free:2783784kB min:28kB low:32kB high:40kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:2961572kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 772650 772650
Node 0 Normal free:8120kB min:8160kB low:10200kB high:12240kB active_anon:779334960kB inactive_anon:2198744kB active_file:0kB inactive_file:180kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:791193600kB mlocked:131072kB dirty:0kB writeback:0kB mapped:372940kB shmem:361480kB slab_reclaimable:4536kB slab_unreclaimable:68472kB kernel_stack:10104kB pagetables:1414820kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2280 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 1 Normal free:476718144kB min:8192kB low:10240kB high:12288kB active_anon:307623696kB inactive_anon:283620kB active_file:10392kB inactive_file:69908kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:4kB writeback:0kB mapped:257208kB shmem:189896kB slab_reclaimable:3868kB slab_unreclaimable:44756kB kernel_stack:1848kB pagetables:1369432kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 2 Normal free:386002452kB min:8192kB low:10240kB high:12288kB active_anon:398563752kB inactive_anon:68184kB active_file:10292kB inactive_file:29936kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:32084kB shmem:776kB slab_reclaimable:6888kB slab_unreclaimable:60056kB kernel_stack:8208kB pagetables:1282880kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 3 Normal free:196406760kB min:8192kB low:10240kB high:12288kB active_anon:587445640kB inactive_anon:164396kB active_file:5716kB inactive_file:709844kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:291776kB shmem:111416kB slab_reclaimable:5152kB slab_unreclaimable:44516kB kernel_stack:2168kB pagetables:1455956kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 4 Normal free:425338880kB min:8192kB low:10240kB high:12288kB active_anon:359695204kB inactive_anon:43216kB active_file:5748kB inactive_file:14772kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:24708kB shmem:1120kB slab_reclaimable:1884kB slab_unreclaimable:41060kB kernel_stack:1856kB pagetables:1100208kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 5 Normal free:11140kB min:8192kB low:10240kB high:12288kB active_anon:784240872kB inactive_anon:1217164kB active_file:28kB inactive_file:48kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:11408kB shmem:0kB slab_reclaimable:2008kB slab_unreclaimable:49220kB kernel_stack:1360kB pagetables:531600kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1202 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 6 Normal free:243395332kB min:8192kB low:10240kB high:12288kB active_anon:542015544kB inactive_anon:40208kB active_file:968kB inactive_file:8484kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:0kB writeback:0kB mapped:19992kB shmem:496kB slab_reclaimable:1672kB slab_unreclaimable:37052kB kernel_stack:2088kB pagetables:750264kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 7 Normal free:10768kB min:8192kB low:10240kB high:12288kB active_anon:784916936kB inactive_anon:192316kB active_file:19228kB inactive_file:56852kB unevictable:131072kB isolated(anon):0kB isolated(file):0kB present:794296320kB mlocked:131072kB dirty:4kB writeback:0kB mapped:34440kB shmem:4kB slab_reclaimable:5660kB slab_unreclaimable:36100kB kernel_stack:1328kB pagetables:1007968kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
So all nodes but Node 0 have a lot of free memory which should suggest
that there is an available memory especially when mems_allowed=0-7. One
could speculate that a massive process has managed to terminate and free
up a lot of memory while racing with the above allocation request.
Although this is highly unlikely it cannot be ruled out.
A further debugging, however shown that the faulting process had
mempolicy (not cpuset) to bind to Node 0. We cannot see that
information from the report though. mems_allowed turned out to be more
confusing than really helpful.
Fix this by always priting the nodemask. It is either mempolicy mask
(and non-null) or the one defined by the cpusets. The new output for
the above oom report would be
PoolThread invoked oom-killer: gfp_mask=0x280da(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=0, order=0, oom_adj=0, oom_score_adj=0
This patch doesn't touch show_mem and the node filtering based on the
cpuset node mask because mempolicy is always a subset of cpusets and
seeing the full cpuset oom context might be helpful for tunning more
specific mempolicies inside cpusets (e.g. when they turn out to be too
restrictive). To prevent from ugly ifdefs the mask is printed even for
!NUMA configurations but this should be OK (a single node will be
printed).
Link: http://lkml.kernel.org/r/20160930214146.28600-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Sellami Abdelkader <abdelkader.sellami@sap.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Sellami Abdelkader <abdelkader.sellami@sap.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old code was always doing:
vma->vm_end = next->vm_end
vma_rb_erase(next) // in __vma_unlink
vma->vm_next = next->vm_next // in __vma_unlink
next = vma->vm_next
vma_gap_update(next)
The new code still does the above for remove_next == 1 and 2, but for
remove_next == 3 it has been changed and it does:
next->vm_start = vma->vm_start
vma_rb_erase(vma) // in __vma_unlink
vma_gap_update(next)
In the latter case, while unlinking "vma", validate_mm_rb() is told to
ignore "vma" that is being removed, but next->vm_start was reduced
instead. So for the new case, to avoid the false positive from
validate_mm_rb, it should be "next" that is ignored when "vma" is
being unlinked.
"vma" and "next" in the above comment, considered pre-swap().
Link: http://lkml.kernel.org/r/1474492522-2261-4-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Shaun Tancheff <shaun.tancheff@seagate.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cases are three not two.
Link: http://lkml.kernel.org/r/1474492522-2261-3-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If next would be NULL we couldn't reach such code path.
Link: http://lkml.kernel.org/r/1474309513-20313-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rmap_walk can access vm_page_prot (and potentially vm_flags in the
pte/pmd manipulations). So it's not safe to wait the caller to update
the vm_page_prot/vm_flags after vma_merge returned potentially removing
the "next" vma and extending the "current" vma over the
next->vm_start,vm_end range, but still with the "current" vma
vm_page_prot, after releasing the rmap locks.
The vm_page_prot/vm_flags must be transferred from the "next" vma to the
current vma while vma_merge still holds the rmap locks.
The side effect of this race condition is pte corruption during migrate
as remove_migration_ptes when run on a address of the "next" vma that
got removed, used the vm_page_prot of the current vma.
migrate mprotect
------------ -------------
migrating in "next" vma
vma_merge() # removes "next" vma and
# extends "current" vma
# current vma is not with
# vm_page_prot updated
remove_migration_ptes
read vm_page_prot of current "vma"
establish pte with wrong permissions
vm_set_page_prot(vma) # too late!
change_protection in the old vma range
only, next range is not updated
This caused segmentation faults and potentially memory corruption in
heavy mprotect loads with some light page migration caused by compaction
in the background.
Hugh Dickins pointed out the comment about the Odd case 8 in vma_merge
which confirms the case 8 is only buggy one where the race can trigger,
in all other vma_merge cases the above cannot happen.
This fix removes the oddness factor from case 8 and it converts it from:
AAAA
PPPPNNNNXXXX -> PPPPNNNNNNNN
to:
AAAA
PPPPNNNNXXXX -> PPPPXXXXXXXX
XXXX has the right vma properties for the whole merged vma returned by
vma_adjust, so it solves the problem fully. It has the added benefits
that the callers could stop updating vma properties when vma_merge
succeeds however the callers are not updated by this patch (there are
bits like VM_SOFTDIRTY that still need special care for the whole range,
as the vma merging ignores them, but as long as they're not processed by
rmap walks and instead they're accessed with the mmap_sem at least for
reading, they are fine not to be updated within vma_adjust before
releasing the rmap_locks).
Link: http://lkml.kernel.org/r/1474309513-20313-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Aditya Mandaleeka <adityam@microsoft.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm->highest_vm_end doesn't need any update.
After finally removing the oddness from vma_merge case 8 that was
causing:
1) constant risk of trouble whenever anybody would check vma fields
from rmap_walks, like it happened when page migration was
introduced and it read the vma->vm_page_prot from a rmap_walk
2) the callers of vma_merge to re-initialize any value different from
the current vma, instead of vma_merge() more reliably returning a
vma that already matches all fields passed as parameter
.. it is also worth to take the opportunity of cleaning up superfluous
code in vma_adjust(), that if not removed adds up to the hard
readability of the function.
Link: http://lkml.kernel.org/r/1474492522-2261-5-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated
concurrently and this prevents the risk of reading intermediate values.
Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to Hugh's suggestion, alloc_stable_node() with GFP_KERNEL can
in rare cases cause a hung task warning.
At present, if alloc_stable_node() allocation fails, two break_cows may
want to allocate a couple of pages, and the issue will come up when free
memory is under pressure.
We fix it by adding __GFP_HIGH to GFP, to grant access to memory
reserves, increasing the likelihood of allocation success.
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/1474354484-58233-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For every pfn aligned to minimum_order, dissolve_free_huge_pages() will
call dissolve_free_huge_page() which takes the hugetlb spinlock, even if
the page is not huge at all or a hugepage that is in-use.
Improve this by doing the PageHuge() and page_count() checks already in
dissolve_free_huge_pages() before calling dissolve_free_huge_page(). In
dissolve_free_huge_page(), when holding the spinlock, those checks need
to be revalidated.
Link: http://lkml.kernel.org/r/20160926172811.94033-4-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.
Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs. h->resv_huge_pages. Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.
This addresses several issues with hugepages and memory offline. While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.
The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.
This patch (of 3):
dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.
When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly. In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().
To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page(). This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely. Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b4def3509d ("mm, nobootmem: clean-up of free_low_memory_core_early()")
removed the unnecessary nodeid argument, after that, this comment
becomes more confused. We should move it to the right place.
Fixes: b4def3509d ("mm, nobootmem: clean-up of free_low_memory_core_early()")
Link: http://lkml.kernel.org/r/1473996082-14603-1-git-send-email-wanlong.gao@gmail.com
Signed-off-by: Wanlong Gao <wanlong.gao@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every other dentry_operations instance is const, and this one might as
well be.
Link: http://lkml.kernel.org/r/1473890528-7009-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup core and the memory controller need to track socket ownership
for different purposes, but the tracking sites being entirely different
is kind of ugly.
Be a better citizen and rename the memory controller callbacks to match
the cgroup core callbacks, then move them to the same place.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160914194846.11153-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
So they are CONFIG_DEBUG_VM-only and more informative.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: David S. Miller <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Joe Perches <joe@perches.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c32b3cbe0d ("oom, PM: make OOM detection in the freezer path
raceless") inserted a WARN_ON() into pagefault_out_of_memory() in order
to warn when we raced with disabling the OOM killer.
Now, patch "oom, suspend: fix oom_killer_disable vs. pm suspend
properly" introduced a timeout for oom_killer_disable(). Even if we
raced with disabling the OOM killer and the system is OOM livelocked,
the OOM killer will be enabled eventually (in 20 seconds by default) and
the OOM livelock will be solved. Therefore, we no longer need to warn
when we raced with disabling the OOM killer.
Link: http://lkml.kernel.org/r/1473442120-7246-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fragmentation index and the vm.extfrag_threshold sysctl is meant as a
heuristic to prevent excessive compaction for costly orders (i.e. THP).
It's unlikely to make any difference for non-costly orders, especially
with the default threshold. But we cannot afford any uncertainty for
the non-costly orders where the only alternative to successful
reclaim/compaction is OOM. After the recent patches we are guaranteed
maximum effort without heuristics from compaction before deciding OOM,
and fragindex is the last remaining heuristic. Therefore skip fragindex
altogether for non-costly orders.
Suggested-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20160926162025.21555-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction_zonelist_suitable() function tries to determine if
compaction will be able to proceed after sufficient reclaim, i.e.
whether there are enough reclaimable pages to provide enough order-0
freepages for compaction.
This addition of reclaimable pages to the free pages works well for the
order-0 watermark check, but in the fragmentation index check we only
consider truly free pages. Thus we can get fragindex value close to 0
which indicates failure do to lack of memory, and wrongly decide that
compaction won't be suitable even after reclaim.
Instead of trying to somehow adjust fragindex for reclaimable pages,
let's just skip it from compaction_zonelist_suitable().
Link: http://lkml.kernel.org/r/20160926162025.21555-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The should_reclaim_retry() makes decisions based on no_progress_loops,
so it makes sense to also update the counter there. It will be also
consistent with should_compact_retry() and compaction_retries. No
functional change.
[hillf.zj@alibaba-inc.com: fix missing pointer dereferences]
Link: http://lkml.kernel.org/r/20160926162025.21555-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several people have reported premature OOMs for order-2 allocations
(stack) due to OOM rework in 4.7. In the scenario (parallel kernel
build and dd writing to two drives) many pageblocks get marked as
Unmovable and compaction free scanner struggles to isolate free pages.
Joonsoo Kim pointed out that the free scanner skips pageblocks that are
not movable to prevent filling them and forcing non-movable allocations
to fallback to other pageblocks. Such heuristic makes sense to help
prevent long-term fragmentation, but premature OOMs are relatively more
urgent problem. As a compromise, this patch disables the heuristic only
for the ultimate compaction priority.
Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz
Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Reported-by: Olaf Hering <olaf@aepfle.de>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new ultimate compaction priority disables some heuristics, which may
result in excessive cost. This is fine for non-costly orders where we
want to try hard before resulting for OOM, but might be disruptive for
costly orders which do not trigger OOM and should generally have some
fallback. Thus, we disable the full priority for costly orders.
Suggested-by: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During reclaim/compaction loop, compaction priority can be increased by
the should_compact_retry() function, but the current code is not
optimal. Priority is only increased when compaction_failed() is true,
which means that compaction has scanned the whole zone. This may not
happen even after multiple attempts with a lower priority due to
parallel activity, so we might needlessly struggle on the lower
priorities and possibly run out of compaction retry attempts in the
process.
After this patch we are guaranteed at least one attempt at the highest
compaction priority even if we exhaust all retries at the lower
priorities.
Link: http://lkml.kernel.org/r/20160906135258.18335-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "reintroduce compaction feedback for OOM decisions".
After several people reported OOM's for order-2 allocations in 4.7 due
to Michal Hocko's OOM rework, he reverted the part that considered
compaction feedback [1] in the decisions to retry reclaim/compaction.
This was to provide a fix quickly for 4.8 rc and 4.7 stable series,
while mmotm had an almost complete solution that instead improved
compaction reliability.
This series completes the mmotm solution and reintroduces the compaction
feedback into OOM decisions. The first two patches restore the state of
mmotm before the temporary solution was merged, the last patch should be
the missing piece for reliability. The third patch restricts the
hardened compaction to non-costly orders, since costly orders don't
result in OOMs in the first place.
[1] http://marc.info/?i=20160822093249.GA14916%40dhcp22.suse.cz%3E
This patch (of 4):
Commit 6b4e3181d7 ("mm, oom: prevent premature OOM killer invocation
for high order request") was intended as a quick fix of OOM regressions
for 4.8 and stable 4.7.x kernels. For a better long-term solution, we
still want to consider compaction feedback, which should be possible
after some more improvements in the following patches.
This reverts commit 6b4e3181d7.
Link: http://lkml.kernel.org/r/20160906135258.18335-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0. Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device. If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture. For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11. But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4. The increased height causes unnecessary radix tree
descending and increased cache footprint.
This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache. In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.
Use the whole swap entry as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,
Use the swap offset as key,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,
Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm_insert_mixed() unlike vm_insert_pfn_prot() and vmf_insert_pfn_pmd(),
fails to check the pgprot_t it uses for the mapping against the one
recorded in the memtype tracking tree. Add the missing call to
track_pfn_insert() to preclude cases where incompatible aliased mappings
are established for a given physical address range.
Link: http://lkml.kernel.org/r/147328717909.35069.14256589123570653697.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_count_precharge() and mem_cgroup_move_charge() both call
walk_page_range() on the range 0 to ~0UL, neither provide a pte_hole
callback, which causes the current implementation to skip non-vma
regions. This is all fine but follow up changes would like to make
walk_page_range more generic so it is better to be explicit about which
range to traverse so let's use highest_vm_end to explicitly traverse
only user mmaped memory.
[mhocko@kernel.org: rewrote changelog]
Link: http://lkml.kernel.org/r/1472655897-22532-1-git-send-email-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current kernel code, we only call node_set_state(cpu_to_node(cpu),
N_CPU) when a cpu is hot plugged. But we do not set the node state for
N_CPU when the cpus are brought online during boot.
So this could lead to failure when we check to see if a node contains
cpu with node_state(node_id, N_CPU).
One use case is in the node_reclaime function:
/*
* Only run node reclaim on the local node or on nodes that do
* not
* have associated processors. This will favor the local
* processor
* over remote processors and spread off node memory allocations
* as wide as possible.
*/
if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id !=
numa_node_id())
return NODE_RECLAIM_NOSCAN;
I instrumented the kernel to call this function after boot and it always
returns 0 on a x86 desktop machine until I apply the attached patch.
int num_cpu_node(void)
{
int i, nr_cpu_nodes = 0;
for_each_node(i) {
if (node_state(i, N_CPU))
++ nr_cpu_nodes;
}
return nr_cpu_nodes;
}
Fix this by checking each node for online CPU when we initialize
vmstat that's responsible for maintaining node state.
Link: http://lkml.kernel.org/r/20160829175922.GA21775@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: <Huang@linux.intel.com>
Cc: Ying <ying.huang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size.
This feature relies on both mmap virtual address and FS block (i.e.
physical address) to be aligned by the pmd page size. Users can use
mkfs options to specify FS to align block allocations. However,
aligning mmap address requires code changes to existing applications for
providing a pmd-aligned address to mmap().
For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1].
It calls mmap() with a NULL address, which needs to be changed to
provide a pmd-aligned address for testing with DAX pmd mappings.
Changing all applications that call mmap() with NULL is undesirable.
Add thp_get_unmapped_area(), which can be called by filesystem's
get_unmapped_area to align an mmap address by the pmd size for a DAX
file. It calls the default handler, mm->get_unmapped_area(), to find a
range and then aligns it for a DAX file.
The patch is based on Matthew Wilcox's change that allows adding support
of the pud page size easily.
[1]: https://github.com/axboe/fio/blob/master/engines/mmap.c
Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When one vma was with flag VM_LOCKED|VM_LOCKONFAULT (by invoking
mlock2(,MLOCK_ONFAULT)), it can again be populated with mlock() with
VM_LOCKED flag only.
There is a hole in mlock_fixup() which increase mm->locked_vm twice even
the two operations are on the same vma and both with VM_LOCKED flags.
The issue can be reproduced by following code:
mlock2(p, 1024 * 64, MLOCK_ONFAULT); //VM_LOCKED|VM_LOCKONFAULT
mlock(p, 1024 * 64); //VM_LOCKED
Then check the increase VmLck field in /proc/pid/status(to 128k).
When vma is set with different vm_flags, and the new vm_flags is with
VM_LOCKED, it is not necessarily be a "new locked" vma. This patch
corrects this bug by prevent mm->locked_vm from increment when old
vm_flags is already VM_LOCKED.
Link: http://lkml.kernel.org/r/1472554781-9835-3-git-send-email-wei.guo.simon@gmail.com
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Simon Guo <wei.guo.simon@gmail.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In do_mlock(), the check against locked memory limitation has a hole
which will fail following cases at step 3):
1) User has a memory chunk from addressA with 50k, and user mem lock
rlimit is 64k.
2) mlock(addressA, 30k)
3) mlock(addressA, 40k)
The 3rd step should have been allowed since the 40k request is
intersected with the previous 30k at step 2), and the 3rd step is
actually for mlock on the extra 10k memory.
This patch checks vma to caculate the actual "new" mlock size, if
necessary, and ajust the logic to fix this issue.
[akpm@linux-foundation.org: clean up comment layout]
[wei.guo.simon@gmail.com: correct a typo in count_mm_mlocked_page_nr()]
Link: http://lkml.kernel.org/r/1473325970-11393-2-git-send-email-wei.guo.simon@gmail.com
Link: http://lkml.kernel.org/r/1472554781-9835-2-git-send-email-wei.guo.simon@gmail.com
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Cc: Alexey Klimov <klimov.linux@gmail.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Simon Guo <wei.guo.simon@gmail.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the lumpy reclaim is gone there is no source of higher order pages
if CONFIG_COMPACTION=n except for the order-0 pages reclaim which is
unreliable for that purpose to say the least. Hitting an OOM for
!costly higher order requests is therefore all not that hard to imagine.
We are trying hard to not invoke OOM killer as much as possible but
there is simply no reliable way to detect whether more reclaim retries
make sense.
Disabling COMPACTION is not widespread but it seems that some users
might have disable the feature without realizing full consequences
(mostly along with disabling THP because compaction used to be THP
mainly thing). This patch just adds a note if the OOM killer was
triggered by higher order request with compaction disabled. This will
help us identifying possible misconfiguration right from the oom report
which is easier than to always keep in mind that somebody might have
disabled COMPACTION without a good reason.
Link: http://lkml.kernel.org/r/20160830111632.GD23963@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
File pages use a set of radix tree tags (DIRTY, TOWRITE, WRITEBACK,
etc.) to accelerate finding the pages with a specific tag in the radix
tree during inode writeback. But for anonymous pages in the swap cache,
there is no inode writeback. So there is no need to find the pages with
some writeback tags in the radix tree. It is not necessary to touch
radix tree writeback tags for pages in the swap cache.
Per Rik van Riel's suggestion, a new flag AS_NO_WRITEBACK_TAGS is
introduced for address spaces which don't need to update the writeback
tags. The flag is set for swap caches. It may be used for DAX file
systems, etc.
With this patch, the swap out bandwidth improved 22.3% (from ~1.2GB/s to
~1.48GBps) in the vm-scalability swap-w-seq test case with 8 processes.
The test is done on a Xeon E5 v3 system. The swap device used is a RAM
simulated PMEM (persistent memory) device. The improvement comes from
the reduced contention on the swap cache radix tree lock. To test
sequential swapping out, the test case uses 8 processes, which
sequentially allocate and write to the anonymous pages until RAM and
part of the swap device is used up.
Details of comparison is as follow,
base base+patch
---------------- --------------------------
%stddev %change %stddev
\ | \
2506952 ± 2% +28.1% 3212076 ± 7% vm-scalability.throughput
1207402 ± 7% +22.3% 1476578 ± 6% vmstat.swap.so
10.86 ± 12% -23.4% 8.31 ± 16% perf-profile.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list
10.82 ± 13% -33.1% 7.24 ± 14% perf-profile.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_zone_memcg
10.36 ± 11% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.__test_set_page_writeback.bdev_write_page.__swap_writepage.swap_writepage
10.52 ± 12% -100.0% 0.00 ± -1% perf-profile.cycles-pp._raw_spin_lock_irqsave.test_clear_page_writeback.end_page_writeback.page_endio.pmem_rw_page
Link: http://lkml.kernel.org/r/1472578089-5560-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ___alloc_bootmem_node_nopanic(), replace kzalloc() by kzalloc_node()
in order to allocate memory within given node preferentially when slab
is available
Link: http://lkml.kernel.org/r/1f487f12-6af4-5e4f-a28c-1de2361cdcd8@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following bugs:
- the same ARCH_LOW_ADDRESS_LIMIT statements are duplicated between
header and relevant source
- don't ensure ARCH_LOW_ADDRESS_LIMIT perhaps defined by ARCH in
asm/processor.h is preferred over default in linux/bootmem.h
completely since the former header isn't included by the latter
Link: http://lkml.kernel.org/r/e046aeaa-e160-6d9e-dc1b-e084c2fd999f@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The total reserved memory in a system is accounted but not available for
use use outside mm/memblock.c. By exposing the total reserved memory,
systems can better calculate the size of large hashes.
Link: http://lkml.kernel.org/r/1472476010-4709-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently arch specific code can reserve memory blocks but
alloc_large_system_hash() may not take it into consideration when sizing
the hashes. This can lead to bigger hash than required and lead to no
available memory for other purposes. This is specifically true for
systems with CONFIG_DEFERRED_STRUCT_PAGE_INIT enabled.
One approach to solve this problem would be to walk through the memblock
regions and calculate the available memory and base the size of hash
system on the available memory.
The other approach would be to depend on the architecture to provide the
number of pages that are reserved. This change provides hooks to allow
the architecture to provide the required info.
Link: http://lkml.kernel.org/r/1472476010-4709-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the existing enums instead of hardcoded index when looking at the
zonelist. This makes it more readable. No functionality change by this
patch.
Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom reaper was skipped for an mm which is shared with the kernel thread
(aka use_mm()). The primary concern was that such a kthread might want
to read from the userspace memory and see zero page as a result of the
oom reaper action. This is no longer a problem after "mm: make sure
that kthreads will not refault oom reaped memory" because any attempt to
fault in when the MMF_UNSTABLE is set will result in SIGBUS and so the
target user should see an error. This means that we can finally allow
oom reaper also to tasks which share their mm with kthreads.
Link: http://lkml.kernel.org/r/1472119394-11342-10-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are only few use_mm() users in the kernel right now. Most of them
write to the target memory but vhost driver relies on
copy_from_user/get_user from a kernel thread context. This makes it
impossible to reap the memory of an oom victim which shares the mm with
the vhost kernel thread because it could see a zero page unexpectedly
and theoretically make an incorrect decision visible outside of the
killed task context.
To quote Michael S. Tsirkin:
: Getting an error from __get_user and friends is handled gracefully.
: Getting zero instead of a real value will cause userspace
: memory corruption.
The vhost kernel thread is bound to an open fd of the vhost device which
is not tight to the mm owner life cycle in general. The device fd can
be inherited or passed over to another process which means that we
really have to be careful about unexpected memory corruption because
unlike for normal oom victims the result will be visible outside of the
oom victim context.
Make sure that no kthread context (users of use_mm) can ever see
corrupted data because of the oom reaper and hook into the page fault
path by checking MMF_UNSTABLE mm flag. __oom_reap_task_mm will set the
flag before it starts unmapping the address space while the flag is
checked after the page fault has been handled. If the flag is set then
SIGBUS is triggered so any g-u-p user will get a error code.
Regular tasks do not need this protection because all which share the mm
are killed when the mm is reaped and so the corruption will not outlive
them.
This patch shouldn't have any visible effect at this moment because the
OOM killer doesn't invoke oom reaper for tasks with mm shared with
kthreads yet.
Link: http://lkml.kernel.org/r/1472119394-11342-9-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no users of exit_oom_victim on !current task anymore so enforce
the API to always work on the current.
Link: http://lkml.kernel.org/r/1472119394-11342-8-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7407054209 ("oom, suspend: fix oom_reaper vs.
oom_killer_disable race") has workaround an existing race between
oom_killer_disable and oom_reaper by adding another round of
try_to_freeze_tasks after the oom killer was disabled. This was the
easiest thing to do for a late 4.7 fix. Let's fix it properly now.
After "oom: keep mm of the killed task available" we no longer have to
call exit_oom_victim from the oom reaper because we have stable mm
available and hide the oom_reaped mm by MMF_OOM_SKIP flag. So let's
remove exit_oom_victim and the race described in the above commit
doesn't exist anymore if.
Unfortunately this alone is not sufficient for the oom_killer_disable
usecase because now we do not have any reliable way to reach
exit_oom_victim (the victim might get stuck on a way to exit for an
unbounded amount of time). OOM killer can cope with that by checking mm
flags and move on to another victim but we cannot do the same for
oom_killer_disable as we would lose the guarantee of no further
interference of the victim with the rest of the system. What we can do
instead is to cap the maximum time the oom_killer_disable waits for
victims. The only current user of this function (pm suspend) already
has a concept of timeout for back off so we can reuse the same value
there.
Let's drop set_freezable for the oom_reaper kthread because it is no
longer needed as the reaper doesn't wake or thaw any processes.
Link: http://lkml.kernel.org/r/1472119394-11342-7-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After "oom: keep mm of the killed task available" we can safely detect
an oom victim by checking task->signal->oom_mm so we do not need the
signal_struct counter anymore so let's get rid of it.
This alone wouldn't be sufficient for nommu archs because
exit_oom_victim doesn't hide the process from the oom killer anymore.
We can, however, mark the mm with a MMF flag in __mmput. We can reuse
MMF_OOM_REAPED and rename it to a more generic MMF_OOM_SKIP.
Link: http://lkml.kernel.org/r/1472119394-11342-6-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_reap_task has to call exit_oom_victim in order to make sure that the
oom vicim will not block the oom killer for ever. This is, however,
opening new problems (e.g oom_killer_disable exclusion - see commit
7407054209 ("oom, suspend: fix oom_reaper vs. oom_killer_disable
race")). exit_oom_victim should be only called from the victim's
context ideally.
One way to achieve this would be to rely on per mm_struct flags. We
already have MMF_OOM_REAPED to hide a task from the oom killer since
"mm, oom: hide mm which is shared with kthread or global init". The
problem is that the exit path:
do_exit
exit_mm
tsk->mm = NULL;
mmput
__mmput
exit_oom_victim
doesn't guarantee that exit_oom_victim will get called in a bounded
amount of time. At least exit_aio depends on IO which might get blocked
due to lack of memory and who knows what else is lurking there.
This patch takes a different approach. We remember tsk->mm into the
signal_struct and bind it to the signal struct life time for all oom
victims. __oom_reap_task_mm as well as oom_scan_process_thread do not
have to rely on find_lock_task_mm anymore and they will have a reliable
reference to the mm struct. As a result all the oom specific
communication inside the OOM killer can be done via tsk->signal->oom_mm.
Increasing the signal_struct for something as unlikely as the oom killer
is far from ideal but this approach will make the code much more
reasonable and long term we even might want to move task->mm into the
signal_struct anyway. In the next step we might want to make the oom
killer exclusion and access to memory reserves completely independent
which would be also nice.
Link: http://lkml.kernel.org/r/1472119394-11342-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mm, oom_reaper: do not attempt to reap a task twice" tried to give the
OOM reaper one more chance to retry using MMF_OOM_NOT_REAPABLE flag.
But the usefulness of the flag is rather limited and actually never
shown in practice. If the flag is set, it means that the holder of
mm->mmap_sem cannot call up_write() due to presumably being blocked at
unkillable wait waiting for other thread's memory allocation. But since
one of threads sharing that mm will queue that mm immediately via
task_will_free_mem() shortcut (otherwise, oom_badness() will select the
same mm again due to oom_score_adj value unchanged), retrying
MMF_OOM_NOT_REAPABLE mm is unlikely helpful.
Let's always set MMF_OOM_REAPED.
Link: http://lkml.kernel.org/r/1472119394-11342-3-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fortify oom killer even more", v2.
This patch (of 9):
__oom_reap_task() can be simplified a bit if it receives a valid mm from
oom_reap_task() which also uses that mm when __oom_reap_task() failed.
We can drop one find_lock_task_mm() call and also make the
__oom_reap_task() code flow easier to follow. Moreover, this will make
later patch in the series easier to review. Pinning mm's mm_count for
longer time is not really harmful because this will not pin much memory.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/1472119394-11342-2-git-send-email-mhocko@kernel.org
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a code clean up patch without functionality changes. The
swap_cluster_list data structure and its operations are introduced to
provide some better encapsulation for the free cluster and discard
cluster list operations. This avoid some code duplication, improved the
code readability, and reduced the total line number.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1472067356-16004-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a fatal signal has been received, fail immediately instead of trying
to read more data.
If wait_on_page_locked_killable() was interrupted then this page is most
likely is not PageUptodate() and in this case do_generic_file_read()
will fail after lock_page_killable().
See also commit ebded02788 ("mm: filemap: avoid unnecessary calls to
lock_page when waiting for IO to complete during a read")
[oleg@redhat.com: changelog addition]
Link: http://lkml.kernel.org/r/63068e8e-8bee-b208-8441-a3c39a9d9eb6@sandisk.com
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a memory waste problem if we define field on struct page_ext by
hard-coding. Entry size of struct page_ext includes the size of those
fields even if it is disabled at runtime. Now, extra memory request at
runtime is possible so page_owner don't need to define it's own fields
by hard-coding.
This patch removes hard-coded define and uses extra memory for storing
page_owner information in page_owner. Most of code are just mechanical
changes.
Link: http://lkml.kernel.org/r/1471315879-32294-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until now, if some page_ext users want to use it's own field on
page_ext, it should be defined in struct page_ext by hard-coding. It
has a problem that wastes memory in following situation.
struct page_ext {
#ifdef CONFIG_A
int a;
#endif
#ifdef CONFIG_B
int b;
#endif
};
Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int. It's undesirable
result so this patch tries to fix it.
To solve above problem, this patch implements to support extra space
allocation at runtime. When need() callback returns true, it's extra
memory requirement is summed to entry size of page_ext. Also, offset
for each user's extra memory space is returned. With this offset, user
can use this extra space and there is no need to define needed field on
page_ext by hard-coding.
This patch only implements an infrastructure. Following patch will use
it for page_owner which is only user having it's own fields on page_ext.
Link: http://lkml.kernel.org/r/1471315879-32294-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here, 'offset' means entry index in page_ext array. Following patch
will use 'offset' for field offset in each entry so rename current
'offset' to prevent confusion.
Link: http://lkml.kernel.org/r/1471315879-32294-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason that page_owner specific function resides on
vmstat.c.
Link: http://lkml.kernel.org/r/1471315879-32294-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What debug_pagealloc does is just mapping/unmapping page table.
Basically, it doesn't need additional memory space to memorize
something. But, with guard page feature, it requires additional memory
to distinguish if the page is for guard or not. Guard page is only used
when debug_guardpage_minorder is non-zero so this patch removes
additional memory allocation (page_ext) if debug_guardpage_minorder is
zero.
It saves memory if we just use debug_pagealloc and not guard page.
Link: http://lkml.kernel.org/r/1471315879-32294-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Reduce memory waste by page extension user".
This patchset tries to reduce memory waste by page extension user.
First case is architecture supported debug_pagealloc. It doesn't
requires additional memory if guard page isn't used. 8 bytes per page
will be saved in this case.
Second case is related to page owner feature. Until now, if page_ext
users want to use it's own fields on page_ext, fields should be defined
in struct page_ext by hard-coding. It has a following problem.
struct page_ext {
#ifdef CONFIG_A
int a;
#endif
#ifdef CONFIG_B
int b;
#endif
};
Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int. It's undesirable
waste so this patch tries to reduce it. By this patchset, we can save
20 bytes per page dedicated for page owner feature in some
configurations.
This patch (of 6):
We can make code clean by moving decision condition for set_page_guard()
into set_page_guard() itself. It will help code readability. There is
no functional change.
Link: http://lkml.kernel.org/r/1471315879-32294-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
throttle_vm_writeout() was introduced back in 2005 to fix OOMs caused by
excessive pageout activity during the reclaim. Too many pages could be
put under writeback therefore LRUs would be full of unreclaimable pages
until the IO completes and in turn the OOM killer could be invoked.
There have been some important changes introduced since then in the
reclaim path though. Writers are throttled by balance_dirty_pages when
initiating the buffered IO and later during the memory pressure, the
direct reclaim is throttled by wait_iff_congested if the node is
considered congested by dirty pages on LRUs and the underlying bdi is
congested by the queued IO. The kswapd is throttled as well if it
encounters pages marked for immediate reclaim or under writeback which
signals that that there are too many pages under writeback already.
Finally should_reclaim_retry does congestion_wait if the reclaim cannot
make any progress and there are too many dirty/writeback pages.
Another important aspect is that we do not issue any IO from the direct
reclaim context anymore. In a heavy parallel load this could queue a
lot of IO which would be very scattered and thus unefficient which would
just make the problem worse.
This three mechanisms should throttle and keep the amount of IO in a
steady state even under heavy IO and memory pressure so yet another
throttling point doesn't really seem helpful. Quite contrary, Mikulas
Patocka has reported that swap backed by dm-crypt doesn't work properly
because the swapout IO cannot make sufficient progress as the writeout
path depends on dm_crypt worker which has to allocate memory to perform
the encryption. In order to guarantee a forward progress it relies on
the mempool allocator. mempool_alloc(), however, prefers to use the
underlying (usually page) allocator before it grabs objects from the
pool. Such an allocation can dive into the memory reclaim and
consequently to throttle_vm_writeout. If there are too many dirty or
pages under writeback it will get throttled even though it is in fact a
flusher to clear pending pages.
kworker/u4:0 D ffff88003df7f438 10488 6 2 0x00000000
Workqueue: kcryptd kcryptd_crypt [dm_crypt]
Call Trace:
schedule+0x3c/0x90
schedule_timeout+0x1d8/0x360
io_schedule_timeout+0xa4/0x110
congestion_wait+0x86/0x1f0
throttle_vm_writeout+0x44/0xd0
shrink_zone_memcg+0x613/0x720
shrink_zone+0xe0/0x300
do_try_to_free_pages+0x1ad/0x450
try_to_free_pages+0xef/0x300
__alloc_pages_nodemask+0x879/0x1210
alloc_pages_current+0xa1/0x1f0
new_slab+0x2d7/0x6a0
___slab_alloc+0x3fb/0x5c0
__slab_alloc+0x51/0x90
kmem_cache_alloc+0x27b/0x310
mempool_alloc_slab+0x1d/0x30
mempool_alloc+0x91/0x230
bio_alloc_bioset+0xbd/0x260
kcryptd_crypt+0x114/0x3b0 [dm_crypt]
Let's just drop throttle_vm_writeout altogether. It is not very much
helpful anymore.
I have tried to test a potential writeback IO runaway similar to the one
described in the original patch which has introduced that [1]. Small
virtual machine (512MB RAM, 4 CPUs, 2G of swap space and disk image on a
rather slow NFS in a sync mode on the host) with 8 parallel writers each
writing 1G worth of data. As soon as the pagecache fills up and the
direct reclaim hits then I start anon memory consumer in a loop
(allocating 300M and exiting after populating it) in the background to
make the memory pressure even stronger as well as to disrupt the steady
state for the IO. The direct reclaim is throttled because of the
congestion as well as kswapd hitting congestion_wait due to nr_immediate
but throttle_vm_writeout doesn't ever trigger the sleep throughout the
test. Dirty+writeback are close to nr_dirty_threshold with some
fluctuations caused by the anon consumer.
[1] https://www2.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.9-rc1/2.6.9-rc1-mm3/broken-out/vm-pageout-throttling.patch
Link: http://lkml.kernel.org/r/1471171473-21418-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: NeilBrown <neilb@suse.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86_64 MAX_ORDER_NR_PAGES is usually 4M, and a pageblock is usually
2M, so we only set one pageblock's migratetype in deferred_free_range()
if pfn is aligned to MAX_ORDER_NR_PAGES. That means it causes
uninitialized migratetype blocks, you can see from "cat
/proc/pagetypeinfo", almost half blocks are Unmovable.
Also we missed freeing the last block in deferred_init_memmap(), it
causes memory leak.
Fixes: ac5d2539b2 ("mm: meminit: reduce number of times pageblocks are set during struct page init")
Link: http://lkml.kernel.org/r/57A3260F.4050709@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction_ready() is used during direct reclaim for costly order
allocations to skip reclaim for zones where compaction should be
attempted instead. It's combining the standard compaction_suitable()
check with its own watermark check based on high watermark with extra
gap, and the result is confusing at best.
This patch attempts to better structure and document the checks
involved. First, compaction_suitable() can determine that the
allocation should either succeed already, or that compaction doesn't
have enough free pages to proceed. The third possibility is that
compaction has enough free pages, but we still decide to reclaim first -
unless we are already above the high watermark with gap. This does not
mean that the reclaim will actually reach this watermark during single
attempt, this is rather an over-reclaim protection. So document the
code as such. The check for compaction_deferred() is removed
completely, as it in fact had no proper role here.
The result after this patch is mainly a less confusing code. We also
skip some over-reclaim in cases where the allocation should already
succed.
Link: http://lkml.kernel.org/r/20160810091226.6709-12-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction. Then __isolate_free_page uses low watermark check to decide
if particular free page can be isolated. In the latter case, using low
watermark is needlessly pessimistic, as the free page isolations are
only temporary. For __compaction_suitable() the higher watermark makes
sense for high-order allocations where more freepages increase the
chance of success, and we can typically fail with some order-0 fallback
when the system is struggling to reach that watermark. But for
low-order allocation, forming the page should not be that hard. So
using low watermark here might just prevent compaction from even trying,
and eventually lead to OOM killer even if we are above min watermarks.
So after this patch, we use min watermark for non-costly orders in
__compaction_suitable(), and for all orders in __isolate_free_page().
[vbabka@suse.cz: clarify __isolate_free_page() comment]
Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction. This check uses direct compactor's alloc_flags, but that's
wrong, since these flags are not applicable for freepage isolation.
For example, alloc_flags may indicate access to memory reserves, making
compaction proceed, and then fail watermark check during the isolation.
A similar problem exists for ALLOC_CMA, which may be part of
alloc_flags, but not during freepage isolation. In this case however it
makes sense to use ALLOC_CMA both in __compaction_suitable() and
__isolate_free_page(), since there's actually nothing preventing the
freepage scanner to isolate from CMA pageblocks, with the assumption
that a page that could be migrated once by compaction can be migrated
also later by CMA allocation. Thus we should count pages in CMA
pageblocks when considering compaction suitability and when isolating
freepages.
To sum up, this patch should remove some false positives from
__compaction_suitable(), and allow compaction to proceed when free pages
required for compaction reside in the CMA pageblocks.
Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction uses a watermark gap of (2UL << order) pages at various
places and it's not immediately obvious why. Abstract it through a
compact_gap() wrapper to create a single place with a thorough
explanation.
[vbabka@suse.cz: clarify the comment of compact_gap()]
Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __compact_finished() function uses low watermark in a check that has
to pass if the direct compaction is to finish and allocation should
succeed. This is too pessimistic, as the allocation will typically use
min watermark. It may happen that during compaction, we drop below the
low watermark (due to parallel activity), but still form the target
high-order page. By checking against low watermark, we might needlessly
continue compaction.
Similarly, __compaction_suitable() uses low watermark in a check whether
allocation can succeed without compaction. Again, this is unnecessarily
pessimistic.
After this patch, these check will use direct compactor's alloc_flags to
determine the watermark, which is effectively the min watermark.
Link: http://lkml.kernel.org/r/20160810091226.6709-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During reclaim/compaction loop, it's desirable to get a final answer
from unsuccessful compaction so we can either fail the allocation or
invoke the OOM killer. However, heuristics such as deferred compaction
or pageblock skip bits can cause compaction to skip parts or whole zones
and lead to premature OOM's, failures or excessive reclaim/compaction
retries.
To remedy this, we introduce a new direct compaction priority called
COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to:
- ignore deferred compaction status for a zone
- ignore pageblock skip hints
- ignore cached scanner positions and scan the whole zone
The new priority should get eventually picked up by
should_compact_retry() and this should improve success rates for costly
allocations using __GFP_REPEAT, such as hugetlbfs allocations, and
reduce some corner-case OOM's for non-costly allocations.
Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz
[vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias]
Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo has reminded me that in a later patch changing watermark checks
throughout compaction I forgot to update checks in
try_to_compact_pages() and compactd_do_work(). Closer inspection
however shows that they are redundant now in the success case, because
compact_zone() now reliably reports this with COMPACT_SUCCESS. So
effectively the checks just repeat (a subset) of checks that have just
passed. So instead of checking watermarks again, just test the return
value.
Note it's also possible that compaction would declare failure e.g.
because its find_suitable_fallback() is more strict than simple
watermark check, and then the watermark check we are removing would then
still succeed. After this patch this is not possible and it's arguably
better, because for long-term fragmentation avoidance we should rather
try a different zone than allocate with the unsuitable fallback. If
compaction of all zones fail and the allocation is important enough, it
will retry and succeed anyway.
Also remove the stray "bool success" variable from kcompactd_do_work().
Link: http://lkml.kernel.org/r/20160810091226.6709-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
COMPACT_PARTIAL has historically meant that compaction returned after
doing some work without fully compacting a zone. It however didn't
distinguish if compaction terminated because it succeeded in creating
the requested high-order page. This has changed recently and now we
only return COMPACT_PARTIAL when compaction thinks it succeeded, or the
high-order watermark check in compaction_suitable() passes and no
compaction needs to be done.
So at this point we can make the return value clearer by renaming it to
COMPACT_SUCCESS. The next patch will remove some redundant tests for
success where compaction just returned COMPACT_SUCCESS.
Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since kswapd compaction moved to kcompactd, compact_pgdat() is not
called anymore, so we remove it. The only caller of __compact_pgdat()
is compact_node(), so we merge them and remove code that was only
reachable from kswapd.
Link: http://lkml.kernel.org/r/20160810091226.6709-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "make direct compaction more deterministic")
This is mostly a followup to Michal's oom detection rework, which
highlighted the need for direct compaction to provide better feedback in
reclaim/compaction loop, so that it can reliably recognize when
compaction cannot make further progress, and allocation should invoke
OOM killer or fail. We've discussed this at LSF/MM [1] where I proposed
expanding the async/sync migration mode used in compaction to more
general "priorities". This patchset adds one new priority that just
overrides all the heuristics and makes compaction fully scan all zones.
I don't currently think that we need more fine-grained priorities, but
we'll see. Other than that there's some smaller fixes and cleanups,
mainly related to the THP-specific hacks.
I've tested this with stress-highalloc in GFP_KERNEL order-4 and
THP-like order-9 scenarios. There's some improvement for compaction
stats for the order-4, which is likely due to the better watermarks
handling. In the previous version I reported mostly noise wrt
compaction stats, and decreased direct reclaim - now the reclaim is
without difference. I believe this is due to the less aggressive
compaction priority increase in patch 6.
"before" is a mmotm tree prior to 4.7 release plus the first part of the
series that was sent and merged separately
before after
order-4:
Compaction stalls 27216 30759
Compaction success 19598 25475
Compaction failures 7617 5283
Page migrate success 370510 464919
Page migrate failure 25712 27987
Compaction pages isolated 849601 1041581
Compaction migrate scanned 143146541 101084990
Compaction free scanned 208355124 144863510
Compaction cost 1403 1210
order-9:
Compaction stalls 7311 7401
Compaction success 1634 1683
Compaction failures 5677 5718
Page migrate success 194657 183988
Page migrate failure 4753 4170
Compaction pages isolated 498790 456130
Compaction migrate scanned 565371 524174
Compaction free scanned 4230296 4250744
Compaction cost 215 203
[1] https://lwn.net/Articles/684611/
This patch (of 11):
A recent patch has added whole_zone flag that compaction sets when
scanning starts from the zone boundary, in order to report that zone has
been fully scanned in one attempt. For allocations that want to try
really hard or cannot fail, we will want to introduce a mode where
scanning whole zone is guaranteed regardless of the cached positions.
This patch reuses the whole_zone flag in a way that if it's already
passed true to compaction, the cached scanner positions are ignored.
Employing this flag during reclaim/compaction loop will be done in the
next patch. This patch however converts compaction invoked from
userspace via procfs to use this flag. Before this patch, the cached
positions were first reset to zone boundaries and then read back from
struct zone, so there was a window where a parallel compaction could
replace the reset values, making the manual compaction less effective.
Using the flag instead of performing reset is more robust.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160810091226.6709-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It causes double align requirement for __get_vm_area_node() if parameter
size is power of 2 and VM_IOREMAP is set in parameter flags, for example
size=0x10000 -> fls_long(0x10000)=17 -> align=0x20000
get_count_order_long() is implemented and can be used instead of
fls_long() for fixing the bug, for example size=0x10000 ->
get_count_order_long(0x10000)=16 -> align=0x10000
[akpm@linux-foundation.org: s/get_order_long()/get_count_order_long()/]
[zijun_hu@zoho.com: fixes]
Link: http://lkml.kernel.org/r/57AABC8B.1040409@zoho.com
[akpm@linux-foundation.org: locate get_count_order_long() next to get_count_order()]
[akpm@linux-foundation.org: move get_count_order[_long] definitions to pick up fls_long()]
[zijun_hu@htc.com: move out get_count_order[_long]() from __KERNEL__ scope]
Link: http://lkml.kernel.org/r/57B2C4CE.80303@zoho.com
Link: http://lkml.kernel.org/r/fc045ecf-20fa-0722-b3ac-9a6140488fad@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When selecting an oom victim, we use the same heuristic for both memory
cgroup and global oom. The only difference is the scope of tasks to
select the victim from. So we could just export an iterator over all
memcg tasks and keep all oom related logic in oom_kill.c, but instead we
duplicate pieces of it in memcontrol.c reusing some initially private
functions of oom_kill.c in order to not duplicate all of it. That looks
ugly and error prone, because any modification of select_bad_process
should also be propagated to mem_cgroup_out_of_memory.
Let's rework this as follows: keep all oom heuristic related code private
to oom_kill.c and make oom_kill.c use exported memcg functions when it's
really necessary (like in case of iterating over memcg tasks).
Link: http://lkml.kernel.org/r/1470056933-7505-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull VFS splice updates from Al Viro:
"There's a bunch of branches this cycle, both mine and from other folks
and I'd rather send pull requests separately.
This one is the conversion of ->splice_read() to ITER_PIPE iov_iter
(and introduction of such). Gets rid of a lot of code in fs/splice.c
and elsewhere; there will be followups, but these are for the next
cycle... Some pipe/splice-related cleanups from Miklos in the same
branch as well"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
pipe: fix comment in pipe_buf_operations
pipe: add pipe_buf_steal() helper
pipe: add pipe_buf_confirm() helper
pipe: add pipe_buf_release() helper
pipe: add pipe_buf_get() helper
relay: simplify relay_file_read()
switch default_file_splice_read() to use of pipe-backed iov_iter
switch generic_file_splice_read() to use of ->read_iter()
new iov_iter flavour: pipe-backed
fuse_dev_splice_read(): switch to add_to_pipe()
skb_splice_bits(): get rid of callback
new helper: add_to_pipe()
splice: lift pipe_lock out of splice_to_pipe()
splice: switch get_iovec_page_array() to iov_iter
splice_to_pipe(): don't open-code wakeup_pipe_readers()
consistent treatment of EFAULT on O_DIRECT read/write
Included in this update:
- change of XFS mailing list to linux-xfs@vger.kernel.org
- iomap-based DAX infrastructure w/ XFS and ext2 support
- small iomap fixes and additions
- more efficient XFS delayed allocation infrastructure based on iomap
- a rework of log recovery writeback scheduling to ensure we don't
fail recovery when trying to replay items that are already on disk
- some preparation patches for upcoming reflink support
- configurable error handling fixes and documentation
- aio access time update race fixes for XFS and generic_file_read_iter
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX9WvjAAoJEK3oKUf0dfodrl8P/R1cS8tEHnrmNlKeENNWFTlN
q8HEfP3tX43QLHXpeHd9F9qXs5/esrOFfWYFjeoAaB1cWiRXDJsUNOEH3PuQf0Go
NKHgrL8GiU6XY9keZI6KJYphr2a5//qWJywxOeBuJh3446MDSYwOmI3eEIY8ac3/
k0e8bMnLhfryWOvyZE6v2w75lMi+SL1LH/W6OSJqGFKS3N+GqdqRKkMfYGQToHkM
ZgIX1vDSq4xgJzkR1Q+AACCaSTGE2wEG/bnqZ1R3l19/bERB17LaOyEegBDXbrTT
vI31EQnrN92O/Q2eYJlap8nFIm4lVaCFTU1R7KEVEXvUBRXXfxllu1sOSBpn1PSQ
OrC5bbcCodcG8b1SlwRrcstqc42weojqwyl65eJxOa17valghaYEcLkqEZrrrssv
Y+C0okfL3UB2JAxG4O1nFQ3py1cYlkYURf6CuhxNQfktXZxSpAMTLy9wYCRylBiO
Eu6Say4zfnfKiVaSg0xlMhIaAyugVH+uVro62hZYxCU2mJ/biZHeQAUC6Krl6NsY
NsAk0T7eUgMd7lLW+C9/rL2AQaXYwR72cl/1jAWBE2piBM2Gu1lcGHGwWHvOcYjO
K2Yg4RMnR9TDbUX2jl1r4bZoQD3IZ3HpUjgVInmbTPtKY4q89kfC40haSpBQykm7
QzGLPvFz2sMrkmKPLbV2
=R9uL
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs and iomap updates from Dave Chinner:
"The main things in this update are the iomap-based DAX infrastructure,
an XFS delalloc rework, and a chunk of fixes to how log recovery
schedules writeback to prevent spurious corruption detections when
recovery of certain items was not required.
The other main chunk of code is some preparation for the upcoming
reflink functionality. Most of it is generic and cleanups that stand
alone, but they were ready and reviewed so are in this pull request.
Speaking of reflink, I'm currently planning to send you another pull
request next week containing all the new reflink functionality. I'm
working through a similar process to the last cycle, where I sent the
reverse mapping code in a separate request because of how large it
was. The reflink code merge is even bigger than reverse mapping, so
I'll be doing the same thing again....
Summary for this update:
- change of XFS mailing list to linux-xfs@vger.kernel.org
- iomap-based DAX infrastructure w/ XFS and ext2 support
- small iomap fixes and additions
- more efficient XFS delayed allocation infrastructure based on iomap
- a rework of log recovery writeback scheduling to ensure we don't
fail recovery when trying to replay items that are already on disk
- some preparation patches for upcoming reflink support
- configurable error handling fixes and documentation
- aio access time update race fixes for XFS and
generic_file_read_iter"
* tag 'xfs-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (40 commits)
fs: update atime before I/O in generic_file_read_iter
xfs: update atime before I/O in xfs_file_dio_aio_read
ext2: fix possible integer truncation in ext2_iomap_begin
xfs: log recovery tracepoints to track current lsn and buffer submission
xfs: update metadata LSN in buffers during log recovery
xfs: don't warn on buffers not being recovered due to LSN
xfs: pass current lsn to log recovery buffer validation
xfs: rework log recovery to submit buffers on LSN boundaries
xfs: quiesce the filesystem after recovery on readonly mount
xfs: remote attribute blocks aren't really userdata
ext2: use iomap to implement DAX
ext2: stop passing buffer_head to ext2_get_blocks
xfs: use iomap to implement DAX
xfs: refactor xfs_setfilesize
xfs: take the ilock shared if possible in xfs_file_iomap_begin
xfs: fix locking for DAX writes
dax: provide an iomap based fault handler
dax: provide an iomap based dax read/write path
dax: don't pass buffer_head to copy_user_dax
dax: don't pass buffer_head to dax_insert_mapping
...
Commit 22f2ac51b6 ("mm: workingset: fix crash in shadow node shrinker
caused by replace_page_cache_page()") switched replace_page_cache() from
raw radix tree operations to page_cache_tree_insert() but didn't take
into account that the latter function, unlike the raw radix tree op,
handles mapping->nrpages. As a result, that counter is bumped for each
page replacement rather than balanced out even.
The mapping->nrpages counter is used to skip needless radix tree walks
when invalidating, truncating, syncing inodes without pages, as well as
statistics for userspace. Since the error is positive, we'll do more
page cache tree walks than necessary; we won't miss a necessary one.
And we'll report more buffer pages to userspace than there are. The
error is limited to fuse inodes.
Fixes: 22f2ac51b6 ("mm: workingset: fix crash in shadow node shrinker caused by replace_page_cache_page()")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the underflow checks were added to workingset_node_shadow_dec(),
they triggered immediately:
kernel BUG at ./include/linux/swap.h:276!
invalid opcode: 0000 [#1] SMP
Modules linked in: isofs usb_storage fuse xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 tun nf_conntrack_netbios_ns nf_conntrack_broadcast ip6t_REJECT nf_reject_ipv6
soundcore wmi acpi_als pinctrl_sunrisepoint kfifo_buf tpm_tis industrialio acpi_pad pinctrl_intel tpm_tis_core tpm nfsd auth_rpcgss nfs_acl lockd grace sunrpc dm_crypt
CPU: 0 PID: 20929 Comm: blkid Not tainted 4.8.0-rc8-00087-gbe67d60ba944 #1
Hardware name: System manufacturer System Product Name/Z170-K, BIOS 1803 05/06/2016
task: ffff8faa93ecd940 task.stack: ffff8faa7f478000
RIP: page_cache_tree_insert+0xf1/0x100
Call Trace:
__add_to_page_cache_locked+0x12e/0x270
add_to_page_cache_lru+0x4e/0xe0
mpage_readpages+0x112/0x1d0
blkdev_readpages+0x1d/0x20
__do_page_cache_readahead+0x1ad/0x290
force_page_cache_readahead+0xaa/0x100
page_cache_sync_readahead+0x3f/0x50
generic_file_read_iter+0x5af/0x740
blkdev_read_iter+0x35/0x40
__vfs_read+0xe1/0x130
vfs_read+0x96/0x130
SyS_read+0x55/0xc0
entry_SYSCALL_64_fastpath+0x13/0x8f
Code: 03 00 48 8b 5d d8 65 48 33 1c 25 28 00 00 00 44 89 e8 75 19 48 83 c4 18 5b 41 5c 41 5d 41 5e 5d c3 0f 0b 41 bd ef ff ff ff eb d7 <0f> 0b e8 88 68 ef ff 0f 1f 84 00
RIP page_cache_tree_insert+0xf1/0x100
This is a long-standing bug in the way shadow entries are accounted in
the radix tree nodes. The shrinker needs to know when radix tree nodes
contain only shadow entries, no pages, so node->count is split in half
to count shadows in the upper bits and pages in the lower bits.
Unfortunately, the radix tree implementation doesn't know of this and
assumes all entries are in node->count. When there is a shadow entry
directly in root->rnode and the tree is later extended, the radix tree
implementation will copy that entry into the new node and and bump its
node->count, i.e. increases the page count bits. Once the shadow gets
removed and we subtract from the upper counter, node->count underflows
and triggers the warning. Afterwards, without node->count reaching 0
again, the radix tree node is leaked.
Limit shadow entries to when we have actual radix tree nodes and can
count them properly. That means we lose the ability to detect refaults
from files that had only the first page faulted in at eviction time.
Fixes: 449dd6984d ("mm: keep page cache radix tree nodes in check")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-and-tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
in order to ensure the percpu group areas within a chunk aren't
distributed too sparsely, pcpu_embed_first_chunk() goes to error handling
path when a chunk spans over 3/4 VMALLOC area, however, during the error
handling, it forget to free the memory allocated for all percpu groups by
going to label @out_free other than @out_free_areas.
it will cause memory leakage issue if the rare scene really happens, in
order to fix the issue, we check chunk spanned area immediately after
completing memory allocation for all percpu groups, we go to label
@out_free_areas to free the memory then return if the checking is failed.
in order to verify the approach, we dump all memory allocated then
enforce the jump then dump all memory freed, the result is okay after
checking whether we free all memory we allocate in this function.
BTW, The approach is chosen after thinking over the below scenes
- we don't go to label @out_free directly to fix this issue since we
maybe free several allocated memory blocks twice
- the aim of jumping after pcpu_setup_first_chunk() is bypassing free
usable memory other than handling error, moreover, the function does
not return error code in any case, it either panics due to BUG_ON()
or return 0.
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Tested-by: zijun_hu <zijun_hu@htc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
pcpu_embed_first_chunk() calculates the range a percpu chunk spans into
@max_distance and uses it to ensure that a chunk is not too big compared
to the total vmalloc area. However, during calculation, it used incorrect
top address by adding a unit size to the highest group's base address.
This can make the calculated max_distance slightly smaller than the actual
distance although given the scale of values involved the error is very
unlikely to have an actual impact.
Fix this issue by adding the group's size instead of a unit size.
BTW, The type of variable max_distance is changed from size_t to unsigned
long too based on below consideration:
- type unsigned long usually have same width with IP core registers and
can be applied at here very well
- make @max_distance type consistent with the operand calculated against
it such as @ai->groups[i].base_offset and macro VMALLOC_TOTAL
- type unsigned long is more universal then size_t, size_t is type defined
to unsigned int or unsigned long among various ARCHs usually
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull CPU hotplug updates from Thomas Gleixner:
"Yet another batch of cpu hotplug core updates and conversions:
- Provide core infrastructure for multi instance drivers so the
drivers do not have to keep custom lists.
- Convert custom lists to the new infrastructure. The block-mq custom
list conversion comes through the block tree and makes the diffstat
tip over to more lines removed than added.
- Handle unbalanced hotplug enable/disable calls more gracefully.
- Remove the obsolete CPU_STARTING/DYING notifier support.
- Convert another batch of notifier users.
The relayfs changes which conflicted with the conversion have been
shipped to me by Andrew.
The remaining lot is targeted for 4.10 so that we finally can remove
the rest of the notifiers"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
cpufreq: Fix up conversion to hotplug state machine
blk/mq: Reserve hotplug states for block multiqueue
x86/apic/uv: Convert to hotplug state machine
s390/mm/pfault: Convert to hotplug state machine
mips/loongson/smp: Convert to hotplug state machine
mips/octeon/smp: Convert to hotplug state machine
fault-injection/cpu: Convert to hotplug state machine
padata: Convert to hotplug state machine
cpufreq: Convert to hotplug state machine
ACPI/processor: Convert to hotplug state machine
virtio scsi: Convert to hotplug state machine
oprofile/timer: Convert to hotplug state machine
block/softirq: Convert to hotplug state machine
lib/irq_poll: Convert to hotplug state machine
x86/microcode: Convert to hotplug state machine
sh/SH-X3 SMP: Convert to hotplug state machine
ia64/mca: Convert to hotplug state machine
ARM/OMAP/wakeupgen: Convert to hotplug state machine
ARM/shmobile: Convert to hotplug state machine
arm64/FP/SIMD: Convert to hotplug state machine
...
Pull x86 vdso updates from Ingo Molnar:
"The main changes in this cycle centered around adding support for
32-bit compatible C/R of the vDSO on 64-bit kernels, by Dmitry
Safonov"
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Use CONFIG_X86_X32_ABI to enable vdso prctl
x86/vdso: Only define map_vdso_randomized() if CONFIG_X86_64
x86/vdso: Only define prctl_map_vdso() if CONFIG_CHECKPOINT_RESTORE
x86/signal: Add SA_{X32,IA32}_ABI sa_flags
x86/ptrace: Down with test_thread_flag(TIF_IA32)
x86/coredump: Use pr_reg size, rather that TIF_IA32 flag
x86/arch_prctl/vdso: Add ARCH_MAP_VDSO_*
x86/vdso: Replace calculate_addr in map_vdso() with addr
x86/vdso: Unmap vdso blob on vvar mapping failure
- Add a mechanism for passing hints from the scheduler to cpufreq governors
via their utilization update callbacks and use it to introduce "IOwait
boosting" into the schedutil governor and intel_pstate that will make them
boost performance if the enqueued task was previously waiting on I/O
(Rafael Wysocki).
- Fix a schedutil governor problem that causes it to overestimate utilization
if SMT is in use (Steve Muckle).
- Update defconfigs trying to use the schedutil governor as a module which is
not possible any more (Javier Martinez Canillas).
- Update the intel_pstate's pstate_sample tracepoint to take "IOwait boosting"
into account (Srinivas Pandruvada).
- Fix a problem in the cpufreq core causing it to mishandle the initialization
of CPUs registered after the cpufreq driver (Viresh Kumar, Rafael Wysocki).
- Make the cpufreq-dt driver support per-policy governor tunables, clean it
up and update its Kconfig description (Viresh Kumar).
- Add support for more ARM platforms to the cpufreq-dt driver (Chanwoo Choi,
Dave Gerlach, Geert Uytterhoeven).
- Make the cpufreq CPPC driver report frequencies in KHz to avoid user space
compatiblility issues (Al Stone, Hoan Tran).
- Clean up a few cpufreq drivers (st, kirkwood, SCPI) a bit (Colin Ian King,
Markus Elfring).
- Constify some local structures in the intel_pstate driver (Julia Lawall).
- Add a Documentation/cpu-freq/ entry to MAINTAINERS (Jean Delvare).
- Add support for PM domain removal to the generic power domains (genpd)
framework, add new DT helper functions to it and make it always enable
debugfs support if available (Jon Hunter, Tomeu Vizoso).
- Clean up the generic power domains (genpd) framework and make it avoid
measuring power-on and power-off latencies during system-wide PM transitions
(Ulf Hansson).
- Add support for the RockChip DFI controller and the rk3399 DMC to the
devfreq framework (Lin Huang, Axel Lin, Arnd Bergmann).
- Add COMPILE_TEST to the devfreq framework (Krzysztof Kozlowski, Stephen
Rothwell).
- Fix a minor issue in the exynos-ppmu devfreq driver and fix up devfreq
Kconfig indentation style (Wei Yongjun, Jisheng Zhang).
- Fix the system suspend interface to make suspend-to-idle work if platform
suspend operations have not been registered (Sudeep Holla).
- Make it possible to use hibernation with PAGE_POISONING_ZERO enabled
(Anisse Astier).
- Increas the default timeout of the system suspend/resume watchdog and make it
depend on EXPERT (Chen Yu).
- Make the operating performance points (OPP) framework avoid using OPPs that
aren't supported by the platform and fix a build warning in it (Dave Gerlach,
Arnd Bergmann).
- Fix the ARM cpuidle driver's return value (Christophe Jaillet).
- Make the SmartReflex AVS (Adaptive Voltage Scaling) driver use more common
logging style (Joe Perches).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJX8Y32AAoJEILEb/54YlRx8e0P/27zu8Lb6Aks1S2Zx9GEW0qr
DvrO4kklCHqi3DgHlyFOYetf9cxMrUluojVJofnoSDvgAayWyg7VAd4gtOrMGCXG
pJVJM73itcOUK+DsAVvoWJY3hk15nX77n2aiXPN2GqaMqennlQusdfzTmjCasqpm
M84j+JwFYlJcfyMCcF5kGWqS7QBjzxhA0CjytUX1i3pL3NqRALZUEpaHwBD1W+4r
tcF/jYTy3RsghCbuC6HoPxEF9NMOFGxeAXogmu6NvGu8gy0GqtywRSRrs5wA1a0z
ZDAJ8krrFbzuFPMdjNIE8wtTeziofS5i9piQx3JlIMH3HpNGN86BRXVfzuHzJj11
6ZMUI/FJy+fYukIXOEeVLtsLHUnMcMux8Jq1UF6N0InahaR9nbsjmGOmXh72+Scx
7VJ+29l0oVwX6wkw/DjPP3rb1Swd1i3yY0/3uRoJ174mYTjhRGbrbDkIjPiDeuM5
2Cx7QunscOjFmaNtPyr8niQ+7YhMEpn8VIbGNaX5ABz0fGftfi8nDHqliSNa391Z
nK6YoKD0O6R0JHE6GavvJTcuMS9qE+HHHOwymWKxEdE9KYk0JUqen3gj1sSTaAZT
BIPBsn6XlorqNy3dnqtWTHV7Nf0al9huolWvrL90s6g4Bh2BzTzDVydSgNWTMDUi
G64nP0q1sJTqdoe30uvk
=NYkv
-----END PGP SIGNATURE-----
Merge tag 'pm-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Traditionally, cpufreq is the area with the greatest number of
changes, but there are fewer of them than last time. There also is
some activity in the generic power domains and the devfreq frameworks,
a couple of system suspend and hibernation fixes and some assorted
changes in other places.
One new feature is the cpufreq change to allow the scheduler to pass
hints to the governors' utilization update callbacks and some code
rework based on that. Another one is the support for domain removal in
the generic power domains framework. Also it is now possible to use
hibernation with PAGE_POISONING_ZERO enabled and devfreq supports the
RockChip DFI controller and the rk3399 DMC.
The rest of the changes is mostly fixes and cleanups in a number of
places.
Specifics:
- Add a mechanism for passing hints from the scheduler to cpufreq
governors via their utilization update callbacks and use it to
introduce "IOwait boosting" into the schedutil governor and
intel_pstate that will make them boost performance if the enqueued
task was previously waiting on I/O (Rafael Wysocki).
- Fix a schedutil governor problem that causes it to overestimate
utilization if SMT is in use (Steve Muckle).
- Update defconfigs trying to use the schedutil governor as a module
which is not possible any more (Javier Martinez Canillas).
- Update the intel_pstate's pstate_sample tracepoint to take "IOwait
boosting" into account (Srinivas Pandruvada).
- Fix a problem in the cpufreq core causing it to mishandle the
initialization of CPUs registered after the cpufreq driver (Viresh
Kumar, Rafael Wysocki).
- Make the cpufreq-dt driver support per-policy governor tunables,
clean it up and update its Kconfig description (Viresh Kumar).
- Add support for more ARM platforms to the cpufreq-dt driver
(Chanwoo Choi, Dave Gerlach, Geert Uytterhoeven).
- Make the cpufreq CPPC driver report frequencies in KHz to avoid
user space compatiblility issues (Al Stone, Hoan Tran).
- Clean up a few cpufreq drivers (st, kirkwood, SCPI) a bit (Colin
Ian King, Markus Elfring).
- Constify some local structures in the intel_pstate driver (Julia
Lawall).
- Add a Documentation/cpu-freq/ entry to MAINTAINERS (Jean Delvare).
- Add support for PM domain removal to the generic power domains
(genpd) framework, add new DT helper functions to it and make it
always enable debugfs support if available (Jon Hunter, Tomeu
Vizoso).
- Clean up the generic power domains (genpd) framework and make it
avoid measuring power-on and power-off latencies during system-wide
PM transitions (Ulf Hansson).
- Add support for the RockChip DFI controller and the rk3399 DMC to
the devfreq framework (Lin Huang, Axel Lin, Arnd Bergmann).
- Add COMPILE_TEST to the devfreq framework (Krzysztof Kozlowski,
Stephen Rothwell).
- Fix a minor issue in the exynos-ppmu devfreq driver and fix up
devfreq Kconfig indentation style (Wei Yongjun, Jisheng Zhang).
- Fix the system suspend interface to make suspend-to-idle work if
platform suspend operations have not been registered (Sudeep
Holla).
- Make it possible to use hibernation with PAGE_POISONING_ZERO
enabled (Anisse Astier).
- Increas the default timeout of the system suspend/resume watchdog
and make it depend on EXPERT (Chen Yu).
- Make the operating performance points (OPP) framework avoid using
OPPs that aren't supported by the platform and fix a build warning
in it (Dave Gerlach, Arnd Bergmann).
- Fix the ARM cpuidle driver's return value (Christophe Jaillet).
- Make the SmartReflex AVS (Adaptive Voltage Scaling) driver use more
common logging style (Joe Perches)"
* tag 'pm-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (58 commits)
PM / OPP: Don't support OPP if it provides supported-hw but platform does not
cpufreq: st: add missing \n to end of dev_err message
cpufreq: kirkwood: add missing \n to end of dev_err messages
PM / Domains: Rename pm_genpd_sync_poweron|poweroff()
PM / Domains: Don't measure latency of ->power_on|off() during system PM
PM / Domains: Remove redundant system PM callbacks
PM / Domains: Simplify detaching a device from its genpd
PM / devfreq: rk3399_dmc: Remove explictly regulator_put call in .remove
PM / devfreq: rockchip: add PM_DEVFREQ_EVENT dependency
PM / OPP: avoid maybe-uninitialized warning
PM / Domains: Allow holes in genpd_data.domains array
cpufreq: CPPC: Avoid overflow when calculating desired_perf
cpufreq: ti: Use generic platdev driver
cpufreq: intel_pstate: Add io_boost trace
partial revert of "PM / devfreq: Add COMPILE_TEST for build coverage"
cpufreq: intel_pstate: Use IOWAIT flag in Atom algorithm
cpufreq: schedutil: Add iowait boosting
cpufreq / sched: SCHED_CPUFREQ_IOWAIT flag to indicate iowait condition
PM / Domains: Add support for removing nested PM domains by provider
PM / Domains: Add support for removing PM domains
...
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
=gdPM
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"It's a bit all over the place this time with no "killer feature" to
speak of. Support for mismatched cache line sizes should help people
seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
updates have been a long time coming, but a lot of the changes here
are cleanups.
We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
workaround is acked by Russell, the DT/OF bits are acked by Rob, the
arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
jump_label by Peter (all CC'd).
Summary:
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
arm64: tlbflush.h: add __tlbi() macro
arm64: Kconfig: remove SMP dependence for NUMA
arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
arm64: fix dump_backtrace/unwind_frame with NULL tsk
arm/arm64: arch_timer: Use archdata to indicate vdso suitability
arm64: arch_timer: Work around QorIQ Erratum A-008585
arm64: arch_timer: Add device tree binding for A-008585 erratum
arm64: Correctly bounds check virt_addr_valid
arm64: migrate exception table users off module.h and onto extable.h
arm64: pmu: Hoist pmu platform device name
arm64: pmu: Probe default hw/cache counters
arm64: pmu: add fallback probe table
MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
arm64: Improve kprobes test for atomic sequence
arm64/kvm: use alternative auto-nop
arm64: use alternative auto-nop
arm64: alternative: add auto-nop infrastructure
arm64: lse: convert lse alternatives NOP padding to use __nops
arm64: barriers: introduce nops and __nops macros for NOP sequences
arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
...
After the call to ->direct_IO the final reference to the file might have
been dropped by aio_complete already, and the call to file_accessed might
cause a use after free.
Instead update the access time before the I/O, similar to how we
update the time stamps before writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Antonio reports the following crash when using fuse under memory pressure:
kernel BUG at /build/linux-a2WvEb/linux-4.4.0/mm/workingset.c:346!
invalid opcode: 0000 [#1] SMP
Modules linked in: all of them
CPU: 2 PID: 63 Comm: kswapd0 Not tainted 4.4.0-36-generic #55-Ubuntu
Hardware name: System manufacturer System Product Name/P8H67-M PRO, BIOS 3904 04/27/2013
task: ffff88040cae6040 ti: ffff880407488000 task.ti: ffff880407488000
RIP: shadow_lru_isolate+0x181/0x190
Call Trace:
__list_lru_walk_one.isra.3+0x8f/0x130
list_lru_walk_one+0x23/0x30
scan_shadow_nodes+0x34/0x50
shrink_slab.part.40+0x1ed/0x3d0
shrink_zone+0x2ca/0x2e0
kswapd+0x51e/0x990
kthread+0xd8/0xf0
ret_from_fork+0x3f/0x70
which corresponds to the following sanity check in the shadow node
tracking:
BUG_ON(node->count & RADIX_TREE_COUNT_MASK);
The workingset code tracks radix tree nodes that exclusively contain
shadow entries of evicted pages in them, and this (somewhat obscure)
line checks whether there are real pages left that would interfere with
reclaim of the radix tree node under memory pressure.
While discussing ways how fuse might sneak pages into the radix tree
past the workingset code, Miklos pointed to replace_page_cache_page(),
and indeed there is a problem there: it properly accounts for the old
page being removed - __delete_from_page_cache() does that - but then
does a raw raw radix_tree_insert(), not accounting for the replacement
page. Eventually the page count bits in node->count underflow while
leaving the node incorrectly linked to the shadow node LRU.
To address this, make sure replace_page_cache_page() uses the tracked
page insertion code, page_cache_tree_insert(). This fixes the page
accounting and makes sure page-containing nodes are properly unlinked
from the shadow node LRU again.
Also, make the sanity checks a bit less obscure by using the helpers for
checking the number of pages and shadows in a radix tree node.
Fixes: 449dd6984d ("mm: keep page cache radix tree nodes in check")
Link: http://lkml.kernel.org/r/20160919155822.29498-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Antonio SJ Musumeci <trapexit@spawn.link>
Debugged-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: <stable@vger.kernel.org> [3.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
prevents allocating from an empty nodemask, but as David points out, it is
still wrong. As node_online_map may include memoryless nodes, only
allocating from these nodes is meaningless.
This patch uses node_states[N_MEMORY] mask to prevent the above case.
Fixes: 9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1474447117.28370.6.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I hit the following hung task when runing a OOM LTP test case with 4.1
kernel.
Call trace:
[<ffffffc000086a88>] __switch_to+0x74/0x8c
[<ffffffc000a1bae0>] __schedule+0x23c/0x7bc
[<ffffffc000a1c09c>] schedule+0x3c/0x94
[<ffffffc000a1eb84>] rwsem_down_write_failed+0x214/0x350
[<ffffffc000a1e32c>] down_write+0x64/0x80
[<ffffffc00021f794>] __ksm_exit+0x90/0x19c
[<ffffffc0000be650>] mmput+0x118/0x11c
[<ffffffc0000c3ec4>] do_exit+0x2dc/0xa74
[<ffffffc0000c46f8>] do_group_exit+0x4c/0xe4
[<ffffffc0000d0f34>] get_signal+0x444/0x5e0
[<ffffffc000089fcc>] do_signal+0x1d8/0x450
[<ffffffc00008a35c>] do_notify_resume+0x70/0x78
The oom victim cannot terminate because it needs to take mmap_sem for
write while the lock is held by ksmd for read which loops in the page
allocator
ksm_do_scan
scan_get_next_rmap_item
down_read
get_next_rmap_item
alloc_rmap_item #ksmd will loop permanently.
There is no way forward because the oom victim cannot release any memory
in 4.1 based kernel. Since 4.6 we have the oom reaper which would solve
this problem because it would release the memory asynchronously.
Nevertheless we can relax alloc_rmap_item requirements and use
__GFP_NORETRY because the allocation failure is acceptable as ksm_do_scan
would just retry later after the lock got dropped.
Such a patch would be also easy to backport to older stable kernels which
do not have oom_reaper.
While we are at it add GFP_NOWARN so the admin doesn't have to be alarmed
by the allocation failure.
Link: http://lkml.kernel.org/r/1474165570-44398-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Suggested-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The NUMA balancing logic uses an arch-specific PROT_NONE page table flag
defined by pte_protnone() or pmd_protnone() to mark PTEs or huge page
PMDs respectively as requiring balancing upon a subsequent page fault.
User-defined PROT_NONE memory regions which also have this flag set will
not normally invoke the NUMA balancing code as do_page_fault() will send
a segfault to the process before handle_mm_fault() is even called.
However if access_remote_vm() is invoked to access a PROT_NONE region of
memory, handle_mm_fault() is called via faultin_page() and
__get_user_pages() without any access checks being performed, meaning
the NUMA balancing logic is incorrectly invoked on a non-NUMA memory
region.
A simple means of triggering this problem is to access PROT_NONE mmap'd
memory using /proc/self/mem which reliably results in the NUMA handling
functions being invoked when CONFIG_NUMA_BALANCING is set.
This issue was reported in bugzilla (issue 99101) which includes some
simple repro code.
There are BUG_ON() checks in do_numa_page() and do_huge_pmd_numa_page()
added at commit c0e7cad to avoid accidentally provoking strange
behaviour by attempting to apply NUMA balancing to pages that are in
fact PROT_NONE. The BUG_ON()'s are consistently triggered by the repro.
This patch moves the PROT_NONE check into mm/memory.c rather than
invoking BUG_ON() as faulting in these pages via faultin_page() is a
valid reason for reaching the NUMA check with the PROT_NONE page table
flag set and is therefore not always a bug.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=99101
Reported-by: Trevor Saunders <tbsaunde@tbsaunde.org>
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge VM fixes from High Dickins:
"I get the impression that Andrew is away or busy at the moment, so I'm
going to send you three independent uncontroversial little mm fixes
directly - though none is strictly a 4.8 regression fix.
- shmem: fix tmpfs to handle the huge= option properly from Toshi
Kani is a one-liner to fix a major embarrassment in 4.8's hugepages
on tmpfs feature: although Hillf pointed it out in June, somehow
both Kirill and I repeatedly dropped the ball on this one. You
might wonder if the feature got tested at all with that bug in:
yes, it did, but for wider testing coverage, Kirill and I had each
relied too much on an override which bypasses that condition.
- huge tmpfs: fix Committed_AS leak just a run-of-the-mill accounting
fix in the same feature.
- mm: delete unnecessary and unsafe init_tlb_ubc() is an unrelated
fix to 4.3's TLB flush batching in reclaim: the bug would be rare,
and none of us will be shamed if this one misses 4.8; but it got
such a quick ack from Mel today that I'm inclined to offer it along
with the first two"
* emailed patches from Hugh Dickins <hughd@google.com>:
mm: delete unnecessary and unsafe init_tlb_ubc()
huge tmpfs: fix Committed_AS leak
shmem: fix tmpfs to handle the huge= option properly
init_tlb_ubc() looked unnecessary to me: tlb_ubc is statically
initialized with zeroes in the init_task, and copied from parent to
child while it is quiescent in arch_dup_task_struct(); so I went to
delete it.
But inserted temporary debug WARN_ONs in place of init_tlb_ubc() to
check that it was always empty at that point, and found them firing:
because memcg reclaim can recurse into global reclaim (when allocating
biosets for swapout in my case), and arrive back at the init_tlb_ubc()
in shrink_node_memcg().
Resetting tlb_ubc.flush_required at that point is wrong: if the upper
level needs a deferred TLB flush, but the lower level turns out not to,
we miss a TLB flush. But fortunately, that's the only part of the
protocol that does not nest: with the initialization removed, cpumask
collects bits from upper and lower levels, and flushes TLB when needed.
Fixes: 72b252aed5 ("mm: send one IPI per CPU to TLB flush all entries after unmapping pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: stable@vger.kernel.org # 4.3+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under swapping load on huge tmpfs, /proc/meminfo's Committed_AS grows
bigger and bigger: just a cosmetic issue for most users, but disabling
for those who run without overcommit (/proc/sys/vm/overcommit_memory 2).
shmem_uncharge() was forgetting to unaccount __vm_enough_memory's
charge, and shmem_charge() was forgetting it on the filesystem-full
error path.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_get_unmapped_area() checks SHMEM_SB(sb)->huge incorrectly, which
leads to a reversed effect of "huge=" mount option.
Fix the check in shmem_get_unmapped_area().
Note, the default value of SHMEM_SB(sb)->huge remains as
SHMEM_HUGE_NEVER. User will need to specify "huge=" option to enable
huge page mappings.
Reported-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
While running a compile on arm64, I hit a memory exposure
usercopy: kernel memory exposure attempt detected from fffffc0000f3b1a8 (buffer_head) (1 bytes)
------------[ cut here ]------------
kernel BUG at mm/usercopy.c:75!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in: ip6t_rpfilter ip6t_REJECT
nf_reject_ipv6 xt_conntrack ip_set nfnetlink ebtable_broute bridge stp
llc ebtable_nat ip6table_security ip6table_raw ip6table_nat
nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle
iptable_security iptable_raw iptable_nat nf_conntrack_ipv4
nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle
ebtable_filter ebtables ip6table_filter ip6_tables vfat fat xgene_edac
xgene_enet edac_core i2c_xgene_slimpro i2c_core at803x realtek xgene_dma
mdio_xgene gpio_dwapb gpio_xgene_sb xgene_rng mailbox_xgene_slimpro nfsd
auth_rpcgss nfs_acl lockd grace sunrpc xfs libcrc32c sdhci_of_arasan
sdhci_pltfm sdhci mmc_core xhci_plat_hcd gpio_keys
CPU: 0 PID: 19744 Comm: updatedb Tainted: G W 4.8.0-rc3-threadinfo+ #1
Hardware name: AppliedMicro X-Gene Mustang Board/X-Gene Mustang Board, BIOS 3.06.12 Aug 12 2016
task: fffffe03df944c00 task.stack: fffffe00d128c000
PC is at __check_object_size+0x70/0x3f0
LR is at __check_object_size+0x70/0x3f0
...
[<fffffc00082b4280>] __check_object_size+0x70/0x3f0
[<fffffc00082cdc30>] filldir64+0x158/0x1a0
[<fffffc0000f327e8>] __fat_readdir+0x4a0/0x558 [fat]
[<fffffc0000f328d4>] fat_readdir+0x34/0x40 [fat]
[<fffffc00082cd8f8>] iterate_dir+0x190/0x1e0
[<fffffc00082cde58>] SyS_getdents64+0x88/0x120
[<fffffc0008082c70>] el0_svc_naked+0x24/0x28
fffffc0000f3b1a8 is a module address. Modules may have compiled in
strings which could get copied to userspace. In this instance, it
looks like "." which matches with a size of 1 byte. Extend the
is_vmalloc_addr check to be is_vmalloc_or_module_addr to cover
all possible cases.
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
During cgroup2 rollout into production, we started encountering css
refcount underflows and css access crashes in the memory controller.
Splitting the heavily shared css reference counter into logical users
narrowed the imbalance down to the cgroup2 socket memory accounting.
The problem turns out to be the per-cpu charge cache. Cgroup1 had a
separate socket counter, but the new cgroup2 socket accounting goes
through the common charge path that uses a shared per-cpu cache for all
memory that is being tracked. Those caches are safe against scheduling
preemption, but not against interrupts - such as the newly added packet
receive path. When cache draining is interrupted by network RX taking
pages out of the cache, the resuming drain operation will put references
of in-use pages, thus causing the imbalance.
Disable IRQs during all per-cpu charge cache operations.
Fixes: f7e1cb6ec5 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Link: http://lkml.kernel.org/r/20160914194846.11153-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 62c230bc17 ("mm: add support for a filesystem to activate
swap files and use direct_IO for writing swap pages") replaced the
swap_aops dirty hook from __set_page_dirty_no_writeback() with
swap_set_page_dirty().
For normal cases without these special SWP flags code path falls back to
__set_page_dirty_no_writeback() so the behaviour is expected to be the
same as before.
But swap_set_page_dirty() makes use of the page_swap_info() helper to
get the swap_info_struct to check for the flags like SWP_FILE,
SWP_BLKDEV etc as desired for those features. This helper has
BUG_ON(!PageSwapCache(page)) which is racy and safe only for the
set_page_dirty_lock() path.
For the set_page_dirty() path which is often needed for cases to be
called from irq context, kswapd() can toggle the flag behind the back
while the call is getting executed when system is low on memory and
heavy swapping is ongoing.
This ends up with undesired kernel panic.
This patch just moves the check outside the helper to its users
appropriately to fix kernel panic for the described path. Couple of
users of helpers already take care of SwapCache condition so I skipped
them.
Link: http://lkml.kernel.org/r/1473460718-31013-1-git-send-email-santosh.shilimkar@oracle.com
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joe Perches <joe@perches.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jens Axboe <axboe@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org> [4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_page() uses page_mapcount() to get mapcount of the page.
page_mapcount() has VM_BUG_ON_PAGE(PageSlab(page)) as mapcount doesn't
make sense for slab pages and the field in struct page used for other
information.
It leads to recursion if dump_page() called for slub page and DEBUG_VM
is enabled:
dump_page() -> page_mapcount() -> VM_BUG_ON_PAGE() -> dump_page -> ...
Let's avoid calling page_mapcount() for slab pages in dump_page().
Link: http://lkml.kernel.org/r/20160908082137.131076-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, khugepaged does not permit swapin if there are enough young
pages in a THP. The problem is when a THP does not have enough young
pages, khugepaged leaks mapped ptes.
This patch prohibits leaking mapped ptes.
Link: http://lkml.kernel.org/r/1472820276-7831-1-git-send-email-ebru.akagunduz@gmail.com
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepage_vma_revalidate() tries to re-check if we still should try to
collapse small pages into huge one after the re-acquiring mmap_sem.
The problem Dmitry Vyukov reported[1] is that the vma found by
hugepage_vma_revalidate() can be suitable for huge pages, but not the
same vma we had before dropping mmap_sem. And dereferencing original
vma can lead to fun results..
Let's use vma hugepage_vma_revalidate() found instead of assuming it's the
same as what we had before the lock was dropped.
[1] http://lkml.kernel.org/r/CACT4Y+Z3gigBvhca9kRJFcjX0G70V_nRhbwKBU+yGoESBDKi9Q@mail.gmail.com
Link: http://lkml.kernel.org/r/20160907122559.GA6542@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Sasha Levin <levinsasha928@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 394e31d2ce ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") introduced new_node_page() for memory
hotplug.
In new_node_page(), the nid is cleared before calling
__alloc_pages_nodemask(). But if it is the only node of the system, and
the first round allocation fails, it will not be able to get memory from
an empty nodemask, and will trigger oom.
The patch checks whether it is the last node on the system, and if it
is, then don't clear the nid in the nodemask.
Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1473044391.4250.19.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reported-by: John Allen <jallen@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that workqueue can handle work item queueing from very early
during boot, there is no need to gate schedule_delayed_work_on() while
!keventd_up(). Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Commit:
4d94246699 ("mm: convert p[te|md]_mknonnuma and remaining page table manipulations")
changed NUMA balancing from _PAGE_NUMA to using PROT_NONE, and was quickly
found to introduce a regression with NUMA grouping.
It was followed up by these commits:
53da3bc2ba ("mm: fix up numa read-only thread grouping logic")
bea66fbd11 ("mm: numa: group related processes based on VMA flags instead of page table flags")
b191f9b106 ("mm: numa: preserve PTE write permissions across a NUMA hinting fault")
The first of those two commits try alternate approaches to NUMA
grouping, which apparently do not work as well as looking at the PTE
write permissions.
The latter patch preserves the PTE write permissions across a NUMA
protection fault. However, it forgets to revert the condition for
whether or not to group tasks together back to what it was before
v3.19, even though the information is now preserved in the page tables
once again.
This patch brings the NUMA grouping heuristic back to what it was
before commit 4d94246699, which the changelogs of subsequent
commits suggest worked best.
We have all the information again. We should probably use it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aarcange@redhat.com
Cc: linux-mm@kvack.org
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20160908213053.07c992a9@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PAGE_POISONING_ZERO disables zeroing new pages on alloc, they are
poisoned (zeroed) as they become available.
In the hibernate use case, free pages will appear in the system without
being cleared, left there by the loading kernel.
This patch will make sure free pages are cleared on resume when
PAGE_POISONING_ZERO is enabled. We free the pages just after resume
because we can't do it later: going through any device resume code might
allocate some memory and invalidate the free pages bitmap.
Thus we don't need to disable hibernation when PAGE_POISONING_ZERO is
enabled.
Signed-off-by: Anisse Astier <anisse@astier.eu>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull libnvdimm fixes from Dan Williams:
"nvdimm fixes for v4.8, two of them are tagged for -stable:
- Fix devm_memremap_pages() to use track_pfn_insert(). Otherwise,
DAX pmd mappings end up with an uncached pgprot, and unusable
performance for the device-dax interface. The device-dax interface
appeared in 4.7 so this is tagged for -stable.
- Fix a couple VM_BUG_ON() checks in the show_smaps() path to
understand DAX pmd entries. This fix is tagged for -stable.
- Fix a mis-merge of the nfit machine-check handler to flip the
polarity of an if() to match the final version of the patch that
Vishal sent for 4.8-rc1. Without this the nfit machine check
handler never detects / inserts new 'badblocks' entries which
applications use to identify lost portions of files.
- For test purposes, fix the nvdimm_clear_poison() path to operate on
legacy / simulated nvdimm memory ranges. Without this fix a test
can set badblocks, but never clear them on these ranges.
- Fix the range checking done by dax_dev_pmd_fault(). This is not
tagged for -stable since this problem is mitigated by specifying
aligned resources at device-dax setup time.
These patches have appeared in a next release over the past week. The
recent rebase you can see in the timestamps was to drop an invalid fix
as identified by the updated device-dax unit tests [1]. The -mm
touches have an ack from Andrew"
[1]: "[ndctl PATCH 0/3] device-dax test for recent kernel bugs"
https://lists.01.org/pipermail/linux-nvdimm/2016-September/006855.html
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm: allow legacy (e820) pmem region to clear bad blocks
nfit, mce: Fix SPA matching logic in MCE handler
mm: fix cache mode of dax pmd mappings
mm: fix show_smap() for zone_device-pmd ranges
dax: fix mapping size check
Attempting to dump /proc/<pid>/smaps for a process with pmd dax mappings
currently results in the following VM_BUG_ONs:
kernel BUG at mm/huge_memory.c:1105!
task: ffff88045f16b140 task.stack: ffff88045be14000
RIP: 0010:[<ffffffff81268f9b>] [<ffffffff81268f9b>] follow_trans_huge_pmd+0x2cb/0x340
[..]
Call Trace:
[<ffffffff81306030>] smaps_pte_range+0xa0/0x4b0
[<ffffffff814c2755>] ? vsnprintf+0x255/0x4c0
[<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0
[<ffffffff8123c8a2>] walk_page_vma+0x62/0x80
[<ffffffff81307656>] show_smap+0xa6/0x2b0
kernel BUG at fs/proc/task_mmu.c:585!
RIP: 0010:[<ffffffff81306469>] [<ffffffff81306469>] smaps_pte_range+0x499/0x4b0
Call Trace:
[<ffffffff814c2795>] ? vsnprintf+0x255/0x4c0
[<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0
[<ffffffff8123c8a2>] walk_page_vma+0x62/0x80
[<ffffffff81307696>] show_smap+0xa6/0x2b0
These locations are sanity checking page flags that must be set for an
anonymous transparent huge page, but are not set for the zone_device
pages associated with dax mappings.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Today, mprotect() takes 4 bits of data: PROT_READ/WRITE/EXEC/NONE.
Three of those bits: READ/WRITE/EXEC get translated directly in to
vma->vm_flags by calc_vm_prot_bits(). If a bit is unset in
mprotect()'s 'prot' argument then it must be cleared in vma->vm_flags
during the mprotect() call.
We do this clearing today by first calculating the VMA flags we
want set, then clearing the ones we do not want to inherit from
the original VMA:
vm_flags = calc_vm_prot_bits(prot, key);
...
newflags = vm_flags;
newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
However, we *also* want to mask off the original VMA's vm_flags in
which we store the protection key.
To do that, this patch adds a new macro:
ARCH_VM_PKEY_FLAGS
which allows the architecture to specify additional bits that it would
like cleared. We use that to ensure that the VM_PKEY_BIT* bits get
cleared.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163013.E48D6981@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
pkey_mprotect() is just like mprotect, except it also takes a
protection key as an argument. On systems that do not support
protection keys, it still works, but requires that key=0.
Otherwise it does exactly what mprotect does.
I expect it to get used like this, if you want to guarantee that
any mapping you create can *never* be accessed without the right
protection keys set up.
int real_prot = PROT_READ|PROT_WRITE;
pkey = pkey_alloc(0, PKEY_DENY_ACCESS);
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
This way, there is *no* window where the mapping is accessible
since it was always either PROT_NONE or had a protection key set
that denied all access.
We settled on 'unsigned long' for the type of the key here. We
only need 4 bits on x86 today, but I figured that other
architectures might need some more space.
Semantically, we have a bit of a problem if we combine this
syscall with our previously-introduced execute-only support:
What do we do when we mix execute-only pkey use with
pkey_mprotect() use? For instance:
pkey_mprotect(ptr, PAGE_SIZE, PROT_WRITE, 6); // set pkey=6
mprotect(ptr, PAGE_SIZE, PROT_EXEC); // set pkey=X_ONLY_PKEY?
mprotect(ptr, PAGE_SIZE, PROT_WRITE); // is pkey=6 again?
To solve that, we make the plain-mprotect()-initiated execute-only
support only apply to VMAs that have the default protection key (0)
set on them.
Proposed semantics:
1. protection key 0 is special and represents the default,
"unassigned" protection key. It is always allocated.
2. mprotect() never affects a mapping's pkey_mprotect()-assigned
protection key. A protection key of 0 (even if set explicitly)
represents an unassigned protection key.
2a. mprotect(PROT_EXEC) on a mapping with an assigned protection
key may or may not result in a mapping with execute-only
properties. pkey_mprotect() plus pkey_set() on all threads
should be used to _guarantee_ execute-only semantics if this
is not a strong enough semantic.
3. mprotect(PROT_EXEC) may result in an "execute-only" mapping. The
kernel will internally attempt to allocate and dedicate a
protection key for the purpose of execute-only mappings. This
may not be possible in cases where there are no free protection
keys available. It can also happen, of course, in situations
where there is no hardware support for protection keys.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163012.3DDD36C4@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A custom allocator without __GFP_COMP that copies to userspace has been
found in vmw_execbuf_process[1], so this disables the page-span checker
by placing it behind a CONFIG for future work where such things can be
tracked down later.
[1] https://bugzilla.redhat.com/show_bug.cgi?id=1373326
Reported-by: Vinson Lee <vlee@freedesktop.org>
Fixes: f5509cc18d ("mm: Hardened usercopy")
Signed-off-by: Kees Cook <keescook@chromium.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jens Axboe <axboe@fb.com>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20160818125731.27256-6-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20160818125731.27256-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20160823125319.abeapfjapf2kfezp@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
KASAN allocates memory from the page allocator as part of
kmem_cache_free(), and that can reference current->mempolicy through any
number of allocation functions. It needs to be NULL'd out before the
final reference is dropped to prevent a use-after-free bug:
BUG: KASAN: use-after-free in alloc_pages_current+0x363/0x370 at addr ffff88010b48102c
CPU: 0 PID: 15425 Comm: trinity-c2 Not tainted 4.8.0-rc2+ #140
...
Call Trace:
dump_stack
kasan_object_err
kasan_report_error
__asan_report_load2_noabort
alloc_pages_current <-- use after free
depot_save_stack
save_stack
kasan_slab_free
kmem_cache_free
__mpol_put <-- free
do_exit
This patch sets current->mempolicy to NULL before dropping the final
reference.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1608301442180.63329@chino.kir.corp.google.com
Fixes: cd11016e5f ("mm, kasan: stackdepot implementation. Enable stackdepot for SLAB")
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel. Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled. The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.
We cannot just convert populated_zone() as many existing users really
need to check for present_pages. This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.
Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There have been several reports about pre-mature OOM killer invocation
in 4.7 kernel when order-2 allocation request (for the kernel stack)
invoked OOM killer even during basic workloads (light IO or even kernel
compile on some filesystems). In all reported cases the memory is
fragmented and there are no order-2+ pages available. There is usually
a large amount of slab memory (usually dentries/inodes) and further
debugging has shown that there are way too many unmovable blocks which
are skipped during the compaction. Multiple reporters have confirmed
that the current linux-next which includes [1] and [2] helped and OOMs
are not reproducible anymore.
A simpler fix for the late rc and stable is to simply ignore the
compaction feedback and retry as long as there is a reclaim progress and
we are not getting OOM for order-0 pages. We already do that for
CONFING_COMPACTION=n so let's reuse the same code when compaction is
enabled as well.
[1] http://lkml.kernel.org/r/20160810091226.6709-1-vbabka@suse.cz
[2] http://lkml.kernel.org/r/f7a9ea9d-bb88-bfd6-e340-3a933559305a@suse.cz
Fixes: 0a0337e0d1 ("mm, oom: rework oom detection")
Link: http://lkml.kernel.org/r/20160823074339.GB23577@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Olaf Hering <olaf@aepfle.de>
Tested-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Cc: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For DAX inodes we need to be careful to never have page cache pages in
the mapping->page_tree. This radix tree should be composed only of DAX
exceptional entries and zero pages.
ltp's readahead02 test was triggering a warning because we were trying
to insert a DAX exceptional entry but found that a page cache page had
already been inserted into the tree. This page was being inserted into
the radix tree in response to a readahead(2) call.
Readahead doesn't make sense for DAX inodes, but we don't want it to
report a failure either. Instead, we just return success and don't do
any work.
Link: http://lkml.kernel.org/r/20160824221429.21158-1-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A bugfix in v4.8-rc2 introduced a harmless warning when
CONFIG_MEMCG_SWAP is disabled but CONFIG_MEMCG is enabled:
mm/memcontrol.c:4085:27: error: 'mem_cgroup_id_get_online' defined but not used [-Werror=unused-function]
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
This moves the function inside of the #ifdef block that hides the
calling function, to avoid the warning.
Fixes: 1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
Link: http://lkml.kernel.org/r/20160824113733.2776701-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current wording of the COMPACTION Kconfig help text doesn't
emphasise that disabling COMPACTION might cripple the page allocator
which relies on the compaction quite heavily for high order requests and
an unexpected OOM can happen with the lack of compaction. Make sure we
are vocal about that.
Link: http://lkml.kernel.org/r/20160823091726.GK23577@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While adding proper userfaultfd_wp support with bits in pagetable and
swap entry to avoid false positives WP userfaults through swap/fork/
KSM/etc, I've been adding a framework that mostly mirrors soft dirty.
So I noticed in one place I had to add uffd_wp support to the pagetables
that wasn't covered by soft_dirty and I think it should have.
Example: in the THP migration code migrate_misplaced_transhuge_page()
pmd_mkdirty is called unconditionally after mk_huge_pmd.
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
That sets soft dirty too (it's a false positive for soft dirty, the soft
dirty bit could be more finegrained and transfer the bit like uffd_wp
will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set
pmd/pte_write is not set).
However in the THP split there's no unconditional pmd_mkdirty after
mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration
entry is created. The code sets the dirty bit in the struct page
instead of setting it in the pagetable (which is fully equivalent as far
as the real dirty bit is concerned, as the whole point of pagetable bits
is to be eventually flushed out of to the page, but that is not
equivalent for the soft-dirty bit that gets lost in translation).
This was found by code review only and totally untested as I'm working
to actually replace soft dirty and I don't have time to test potential
soft dirty bugfixes as well :).
Transfer the soft_dirty from pmd to pte during THP splits.
This fix avoids losing the soft_dirty bit and avoids userland memory
corruption in the checkpoint.
Fixes: eef1b3ba05 ("thp: implement split_huge_pmd()")
Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ARMv8 architecture allows execute-only user permissions by clearing
the PTE_UXN and PTE_USER bits. However, the kernel running on a CPU
implementation without User Access Override (ARMv8.2 onwards) can still
access such page, so execute-only page permission does not protect
against read(2)/write(2) etc. accesses. Systems requiring such
protection must enable features like SECCOMP.
This patch changes the arm64 __P100 and __S100 protection_map[] macros
to the new __PAGE_EXECONLY attributes. A side effect is that
pte_user() no longer triggers for __PAGE_EXECONLY since PTE_USER isn't
set. To work around this, the check is done on the PTE_NG bit via the
pte_ng() macro. VM_READ is also checked now for page faults.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
check_bogus_address() checked for pointer overflow using this expression,
where 'ptr' has type 'const void *':
ptr + n < ptr
Since pointer wraparound is undefined behavior, gcc at -O2 by default
treats it like the following, which would not behave as intended:
(long)n < 0
Fortunately, this doesn't currently happen for kernel code because kernel
code is compiled with -fno-strict-overflow. But the expression should be
fixed anyway to use well-defined integer arithmetic, since it could be
treated differently by different compilers in the future or could be
reported by tools checking for undefined behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
mm/oom_kill.c: In function `task_will_free_mem':
mm/oom_kill.c:767: warning: `ret' may be used uninitialized in this function
If __task_will_free_mem() is never called inside the for_each_process()
loop, ret will not be initialized.
Fixes: 1af8bb4326 ("mm, oom: fortify task_will_free_mem()")
Link: http://lkml.kernel.org/r/1470255599-24841-1-git-send-email-geert@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's quite unlikely that the user will so little memory that the per-CPU
quarantines won't fit into the given fraction of the available memory.
Even in that case he won't be able to do anything with the information
given in the warning.
Link: http://lkml.kernel.org/r/1470929182-101413-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 73f576c04b ("mm: memcontrol: fix cgroup creation failure
after many small jobs") swap entries do not pin memcg->css.refcnt
directly. Instead, they pin memcg->id.ref. So we should adjust the
reference counters accordingly when moving swap charges between cgroups.
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Link: http://lkml.kernel.org/r/9ce297c64954a42dc90b543bc76106c4a94f07e8.1470219853.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An offline memory cgroup might have anonymous memory or shmem left
charged to it and no swap. Since only swap entries pin the id of an
offline cgroup, such a cgroup will have no id and so an attempt to
swapout its anon/shmem will not store memory cgroup info in the swap
cgroup map. As a result, memcg->swap or memcg->memsw will never get
uncharged from it and any of its ascendants.
Fix this by always charging swapout to the first ancestor cgroup that
hasn't released its id yet.
[hannes@cmpxchg.org: add comment to mem_cgroup_swapout]
[vdavydov@virtuozzo.com: use WARN_ON_ONCE() in mem_cgroup_id_get_online()]
Link: http://lkml.kernel.org/r/20160803123445.GJ13263@esperanza
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Link: http://lkml.kernel.org/r/5336daa5c9a32e776067773d9da655d2dc126491.1470219853.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
meminfo_proc_show() and si_mem_available() are using the wrong helpers
for calculating the size of the LRUs. The user-visible impact is that
there appears to be an abnormally high number of unevictable pages.
Link: http://lkml.kernel.org/r/20160805105805.GR2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory hotplug operates, free hugepages will be freed if the
movable node is offline. Therefore, /proc/sys/vm/nr_hugepages will be
incorrect.
Fix it by reducing max_huge_pages when the node is offlined.
n-horiguchi@ah.jp.nec.com said:
: dissolve_free_huge_page intends to break a hugepage into buddy, and the
: destination hugepage is supposed to be allocated from the pool of the
: destination node, so the system-wide pool size is reduced. So adding
: h->max_huge_pages-- makes sense to me.
Link: http://lkml.kernel.org/r/1470624546-902-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With debugobjects enabled and using SLAB_DESTROY_BY_RCU, when a
kmem_cache_node is destroyed the call_rcu() may trigger a slab
allocation to fill the debug object pool (__debug_object_init:fill_pool).
Everywhere but during kmem_cache_destroy(), discard_slab() is performed
outside of the kmem_cache_node->list_lock and avoids a lockdep warning
about potential recursion:
=============================================
[ INFO: possible recursive locking detected ]
4.8.0-rc1-gfxbench+ #1 Tainted: G U
---------------------------------------------
rmmod/8895 is trying to acquire lock:
(&(&n->list_lock)->rlock){-.-...}, at: [<ffffffff811c80d7>] get_partial_node.isra.63+0x47/0x430
but task is already holding lock:
(&(&n->list_lock)->rlock){-.-...}, at: [<ffffffff811cbda4>] __kmem_cache_shutdown+0x54/0x320
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&n->list_lock)->rlock);
lock(&(&n->list_lock)->rlock);
*** DEADLOCK ***
May be due to missing lock nesting notation
5 locks held by rmmod/8895:
#0: (&dev->mutex){......}, at: driver_detach+0x42/0xc0
#1: (&dev->mutex){......}, at: driver_detach+0x50/0xc0
#2: (cpu_hotplug.dep_map){++++++}, at: get_online_cpus+0x2d/0x80
#3: (slab_mutex){+.+.+.}, at: kmem_cache_destroy+0x3c/0x220
#4: (&(&n->list_lock)->rlock){-.-...}, at: __kmem_cache_shutdown+0x54/0x320
stack backtrace:
CPU: 6 PID: 8895 Comm: rmmod Tainted: G U 4.8.0-rc1-gfxbench+ #1
Hardware name: Gigabyte Technology Co., Ltd. H87M-D3H/H87M-D3H, BIOS F11 08/18/2015
Call Trace:
__lock_acquire+0x1646/0x1ad0
lock_acquire+0xb2/0x200
_raw_spin_lock+0x36/0x50
get_partial_node.isra.63+0x47/0x430
___slab_alloc.constprop.67+0x1a7/0x3b0
__slab_alloc.isra.64.constprop.66+0x43/0x80
kmem_cache_alloc+0x236/0x2d0
__debug_object_init+0x2de/0x400
debug_object_activate+0x109/0x1e0
__call_rcu.constprop.63+0x32/0x2f0
call_rcu+0x12/0x20
discard_slab+0x3d/0x40
__kmem_cache_shutdown+0xdb/0x320
shutdown_cache+0x19/0x60
kmem_cache_destroy+0x1ae/0x220
i915_gem_load_cleanup+0x14/0x40 [i915]
i915_driver_unload+0x151/0x180 [i915]
i915_pci_remove+0x14/0x20 [i915]
pci_device_remove+0x34/0xb0
__device_release_driver+0x95/0x140
driver_detach+0xb6/0xc0
bus_remove_driver+0x53/0xd0
driver_unregister+0x27/0x50
pci_unregister_driver+0x25/0x70
i915_exit+0x1a/0x1e2 [i915]
SyS_delete_module+0x193/0x1f0
entry_SYSCALL_64_fastpath+0x1c/0xac
Fixes: 52b4b950b5 ("mm: slab: free kmem_cache_node after destroy sysfs file")
Link: http://lkml.kernel.org/r/1470759070-18743-1-git-send-email-chris@chris-wilson.co.uk
Reported-by: Dave Gordon <david.s.gordon@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Gordon <david.s.gordon@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In page_remove_file_rmap(.) we have the following check:
VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
This is meant to check for either HugeTLB pages or THP when a compound
page is passed in.
Unfortunately, if one disables CONFIG_TRANSPARENT_HUGEPAGE, then
PageTransHuge(.) will always return false, provoking BUGs when one runs
the libhugetlbfs test suite.
This patch replaces PageTransHuge(), with PageHead() which will work for
both HugeTLB and THP.
Fixes: dd78fedde4 ("rmap: support file thp")
Link: http://lkml.kernel.org/r/1470838217-5889-1-git-send-email-steve.capper@arm.com
Signed-off-by: Steve Capper <steve.capper@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Huang Shijie <shijie.huang@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PageTransCompound() doesn't distinguish THP from from any other type of
compound pages. This can lead to false-positive VM_BUG_ON() in
page_add_file_rmap() if called on compound page from a driver[1].
I think we can exclude such cases by checking if the page belong to a
mapping.
The VM_BUG_ON_PAGE() is downgraded to VM_WARN_ON_ONCE(). This path
should not cause any harm to non-THP page, but good to know if we step
on anything else.
[1] http://lkml.kernel.org/r/c711e067-0bff-a6cb-3c37-04dfe77d2db1@redhat.com
Link: http://lkml.kernel.org/r/20160810161345.GA67522@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Laura Abbott <labbott@redhat.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of node threshold depends on number of managed pages in the node.
When memory is going on/offline, it can be changed and we need to adjust
them.
Add recalculation to appropriate places and clean-up related functions
for better maintenance.
Link: http://lkml.kernel.org/r/1470724248-26780-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before resetting min_unmapped_pages, we need to initialize
min_unmapped_pages rather than min_slab_pages.
Fixes: a5f5f91da6 (mm: convert zone_reclaim to node_reclaim)
Link: http://lkml.kernel.org/r/1470724248-26780-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The newly introduced shmem_huge_enabled() function has two definitions,
but neither of them is visible if CONFIG_SYSFS is disabled, leading to a
build error:
mm/khugepaged.o: In function `khugepaged':
khugepaged.c:(.text.khugepaged+0x3ca): undefined reference to `shmem_huge_enabled'
This changes the #ifdef guards around the definition to match those that
are used in the header file.
Fixes: e496cf3d78 ("thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE")
Link: http://lkml.kernel.org/r/20160809123638.1357593-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512. Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context. To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true. The latter is set iff there are kmem-enabled memory cgroups
(online or offline). The root cgroup is not considered kmem-enabled.
As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.
# no memory cgroups has been created yet, create one
mkdir /sys/fs/cgroup/memory/test
# run something allocating pages with __GFP_ACCOUNT, e.g.
# a program using pipe
dmesg | tail
# remove the memory cgroup
rmdir /sys/fs/cgroup/memory/test
we'll get bad page state bug complaining about page->_mapcount != -1:
BUG: Bad page state in process swapper/0 pfn:1fd945c
page:ffffea007f651700 count:0 mapcount:-511 mapping: (null) index:0x0
flags: 0x1000000000000000()
To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.
Fixes: 4949148ad4 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit abf545484d changed it from an 'rw' flags type to the
newer ops based interface, but now we're effectively leaking
some bdev internals to the rest of the kernel. Since we only
care about whether it's a read or a write at that level, just
pass in a bool 'is_write' parameter instead.
Then we can also move op_is_write() and friends back under
CONFIG_BLOCK protection.
Reviewed-by: Mike Christie <mchristi@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull block fixes from Jens Axboe:
"Here's the second round of block updates for this merge window.
It's a mix of fixes for changes that went in previously in this round,
and fixes in general. This pull request contains:
- Fixes for loop from Christoph
- A bdi vs gendisk lifetime fix from Dan, worth two cookies.
- A blk-mq timeout fix, when on frozen queues. From Gabriel.
- Writeback fix from Jan, ensuring that __writeback_single_inode()
does the right thing.
- Fix for bio->bi_rw usage in f2fs from me.
- Error path deadlock fix in blk-mq sysfs registration from me.
- Floppy O_ACCMODE fix from Jiri.
- Fix to the new bio op methods from Mike.
One more followup will be coming here, ensuring that we don't
propagate the block types outside of block. That, and a rename of
bio->bi_rw is coming right after -rc1 is cut.
- Various little fixes"
* 'for-linus' of git://git.kernel.dk/linux-block:
mm/block: convert rw_page users to bio op use
loop: make do_req_filebacked more robust
loop: don't try to use AIO for discards
blk-mq: fix deadlock in blk_mq_register_disk() error path
Include: blkdev: Removed duplicate 'struct request;' declaration.
Fixup direct bi_rw modifiers
block: fix bdi vs gendisk lifetime mismatch
blk-mq: Allow timeouts to run while queue is freezing
nbd: fix race in ioctl
block: fix use-after-free in seq file
f2fs: drop bio->bi_rw manual assignment
block: add missing group association in bio-cloning functions
blkcg: kill unused field nr_undestroyed_grps
writeback: Write dirty times for WB_SYNC_ALL writeback
floppy: fix open(O_ACCMODE) for ioctl-only open
Fixes:
- Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
- Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
- Move register_process_table() out of ppc_md from Michael Ellerman
Use jump_label for [cpu|mmu]_has_feature() from Aneesh Kumar K.V, Kevin Hao and Michael Ellerman:
- Add mmu_early_init_devtree() from Michael Ellerman
- Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
- Do hash device tree scanning earlier from Michael Ellerman
- Do radix device tree scanning earlier from Michael Ellerman
- Do feature patching before MMU init from Michael Ellerman
- Check features don't change after patching from Michael Ellerman
- Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
- Convert mmu_has_feature() to returning bool from Michael Ellerman
- Convert cpu_has_feature() to returning bool from Michael Ellerman
- Define radix_enabled() in one place & use static inline from Michael Ellerman
- Add early_[cpu|mmu]_has_feature() from Michael Ellerman
- Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
- jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
- Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
- Remove mfvtb() from Kevin Hao
- Move cpu_has_feature() to a separate file from Kevin Hao
- Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
- Add option to use jump label for cpu_has_feature() from Kevin Hao
- Add option to use jump label for mmu_has_feature() from Kevin Hao
- Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
- Annotate jump label assembly from Michael Ellerman
TLB flush enhancements from Aneesh Kumar K.V:
- radix: Implement tlb mmu gather flush efficiently
- Add helper for finding SLBE LLP encoding
- Use hugetlb flush functions
- Drop multiple definition of mm_is_core_local
- radix: Add tlb flush of THP ptes
- radix: Rename function and drop unused arg
- radix/hugetlb: Add helper for finding page size
- hugetlb: Add flush_hugetlb_tlb_range
- remove flush_tlb_page_nohash
Add new ptrace regsets from Anshuman Khandual and Simon Guo:
- elf: Add powerpc specific core note sections
- Add the function flush_tmregs_to_thread
- Enable in transaction NT_PRFPREG ptrace requests
- Enable in transaction NT_PPC_VMX ptrace requests
- Enable in transaction NT_PPC_VSX ptrace requests
- Adapt gpr32_get, gpr32_set functions for transaction
- Enable support for NT_PPC_CGPR
- Enable support for NT_PPC_CFPR
- Enable support for NT_PPC_CVMX
- Enable support for NT_PPC_CVSX
- Enable support for TM SPR state
- Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
- Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
- Enable support for EBB registers
- Enable support for Performance Monitor registers
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXpGaLAAoJEFHr6jzI4aWA9aYP/1AqmRPJ9D0XVUJWT+FVABUK
LESESoVFF4Hug1j1F8Synhg5o4SzD2t45iGKbclYaFthOIyovMg7Wr1KSu4hQ0go
rPuQfpXDNQ8jKdDX8hbPXKUxrNRBNfqJGFo5E7mO6wN9AJ9d1LVwQ+jKAva29Tqs
LaAlMbQNbeObPNzOl73B73iew3aozr+mXjBqv82lqvgYknBD2CLf24xGG3eNIbq5
ZZk4LPC8pdkaxnajnzRFzqwiyPWzao0yfpVRKh52TKHBQF/prR/KACb6zUuja/61
krOfegUKob14OYrehjs6X8XNRLnILRI0u1H5bmj7eVEiY/usyNzE93SMHZM3Wdau
sQF/Au4OLNXj0ZQdNBtzRsZRyp1d560Gsj+lQGBoPd4hfIWkFYHvxzxsUSdqv4uA
MWDMwN0Vvfk0cpprsabsWNevkaotYYBU00px5hF/e5ZUc9/x/xYUVMgPEDr0QZLr
cHJo9/Pjk4u/0g4lj+2y1LLl/0tNEZZg69O6bvffPAPVSS4/P4y/bKKYd4I0zL99
Ykp91mSmkl70F3edgOSFqyda2gN2l2Ekb/i081YGXheFy1rbD29Vxv82BOVog4KY
ibvOqp38WDzCVk5OXuCRvBl0VudLKGJYdppU1nXg4KgrTZXHeCAC0E+NzUsgOF4k
OMvQ+5drVxrno+Hw8FVJ
=0Q8E
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull more powerpc updates from Michael Ellerman:
"These were delayed for various reasons, so I let them sit in next a
bit longer, rather than including them in my first pull request.
Fixes:
- Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
- Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
- Move register_process_table() out of ppc_md from Michael Ellerman
Use jump_label use for [cpu|mmu]_has_feature():
- Add mmu_early_init_devtree() from Michael Ellerman
- Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
- Do hash device tree scanning earlier from Michael Ellerman
- Do radix device tree scanning earlier from Michael Ellerman
- Do feature patching before MMU init from Michael Ellerman
- Check features don't change after patching from Michael Ellerman
- Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
- Convert mmu_has_feature() to returning bool from Michael Ellerman
- Convert cpu_has_feature() to returning bool from Michael Ellerman
- Define radix_enabled() in one place & use static inline from Michael Ellerman
- Add early_[cpu|mmu]_has_feature() from Michael Ellerman
- Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
- jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
- Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
- Remove mfvtb() from Kevin Hao
- Move cpu_has_feature() to a separate file from Kevin Hao
- Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
- Add option to use jump label for cpu_has_feature() from Kevin Hao
- Add option to use jump label for mmu_has_feature() from Kevin Hao
- Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
- Annotate jump label assembly from Michael Ellerman
TLB flush enhancements from Aneesh Kumar K.V:
- radix: Implement tlb mmu gather flush efficiently
- Add helper for finding SLBE LLP encoding
- Use hugetlb flush functions
- Drop multiple definition of mm_is_core_local
- radix: Add tlb flush of THP ptes
- radix: Rename function and drop unused arg
- radix/hugetlb: Add helper for finding page size
- hugetlb: Add flush_hugetlb_tlb_range
- remove flush_tlb_page_nohash
Add new ptrace regsets from Anshuman Khandual and Simon Guo:
- elf: Add powerpc specific core note sections
- Add the function flush_tmregs_to_thread
- Enable in transaction NT_PRFPREG ptrace requests
- Enable in transaction NT_PPC_VMX ptrace requests
- Enable in transaction NT_PPC_VSX ptrace requests
- Adapt gpr32_get, gpr32_set functions for transaction
- Enable support for NT_PPC_CGPR
- Enable support for NT_PPC_CFPR
- Enable support for NT_PPC_CVMX
- Enable support for NT_PPC_CVSX
- Enable support for TM SPR state
- Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
- Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
- Enable support for EBB registers
- Enable support for Performance Monitor registers"
* tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (48 commits)
powerpc/mm: Move register_process_table() out of ppc_md
powerpc/perf: Fix incorrect event codes in power9-event-list
powerpc/32: Fix early access to cpu_spec relocation
powerpc/ptrace: Enable support for Performance Monitor registers
powerpc/ptrace: Enable support for EBB registers
powerpc/ptrace: Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
powerpc/ptrace: Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
powerpc/ptrace: Enable support for TM SPR state
powerpc/ptrace: Enable support for NT_PPC_CVSX
powerpc/ptrace: Enable support for NT_PPC_CVMX
powerpc/ptrace: Enable support for NT_PPC_CFPR
powerpc/ptrace: Enable support for NT_PPC_CGPR
powerpc/ptrace: Adapt gpr32_get, gpr32_set functions for transaction
powerpc/ptrace: Enable in transaction NT_PPC_VSX ptrace requests
powerpc/ptrace: Enable in transaction NT_PPC_VMX ptrace requests
powerpc/ptrace: Enable in transaction NT_PRFPREG ptrace requests
powerpc/process: Add the function flush_tmregs_to_thread
elf: Add powerpc specific core note sections
powerpc/mm: remove flush_tlb_page_nohash
powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range
...
It causes NULL dereference error and failure to get type_a->regions[0]
info if parameter type_b of __next_mem_range_rev() == NULL
Fix this by checking before dereferring and initializing idx_b to 0
The approach is tested by dumping all types of region via
__memblock_dump_all() and __next_mem_range_rev() fixed to UART
separately the result is okay after checking the logs.
Link: http://lkml.kernel.org/r/57A0320D.6070102@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Tested-by: zijun_hu <zijun_hu@htc.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With m68k-linux-gnu-gcc-4.1:
include/linux/slub_def.h:126: warning: `fixup_red_left' declared inline after being called
include/linux/slub_def.h:126: warning: previous declaration of `fixup_red_left' was here
Commit c146a2b98e ("mm, kasan: account for object redzone in SLUB's
nearest_obj()") made fixup_red_left() global, but forgot to remove the
inline keyword.
Fixes: c146a2b98e ("mm, kasan: account for object redzone in SLUB's nearest_obj()")
Link: http://lkml.kernel.org/r/1470256262-1586-1-git-send-email-geert@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Alexander Potapenko <glider@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul Mackerras and Reza Arbab reported that machines with memoryless
nodes fail when vmstats are refreshed. Paul reported an oops as follows
Unable to handle kernel paging request for data at address 0xff7a10000
Faulting instruction address: 0xc000000000270cd0
Oops: Kernel access of bad area, sig: 11 [#1]
SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.7.0-kvm+ #118
task: c000000ff0680010 task.stack: c000000ff0704000
NIP: c000000000270cd0 LR: c000000000270ce8 CTR: 0000000000000000
REGS: c000000ff0707900 TRAP: 0300 Not tainted (4.7.0-kvm+)
MSR: 9000000102009033 <SF,HV,VEC,EE,ME,IR,DR,RI,LE,TM[E]> CR: 846b6824 XER: 20000000
CFAR: c000000000008768 DAR: 0000000ff7a10000 DSISR: 42000000 SOFTE: 1
NIP refresh_zone_stat_thresholds+0x80/0x240
LR refresh_zone_stat_thresholds+0x98/0x240
Call Trace:
refresh_zone_stat_thresholds+0xb8/0x240 (unreliable)
Both supplied potential fixes but one potentially misses checks and
another had redundant initialisations. This version initialises
per_cpu_nodestats on a per-pgdat basis instead of on a per-zone basis.
Link: http://lkml.kernel.org/r/20160804092404.GI2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Paul Mackerras <paulus@ozlabs.org>
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present it is obvious that memory online and offline will fail when
KASAN is enabled. So add the condition to limit the memory_hotplug when
KASAN is enabled.
Link: http://lkml.kernel.org/r/1470063651-29519-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rw_page users were not converted to use bio/req ops. As a result
bdev_write_page is not passing down REQ_OP_WRITE and the IOs will
be sent down as reads.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Fixes: 4e1b2d52a8 ("block, fs, drivers: remove REQ_OP compat defs and related code")
Modified by me to:
1) Drop op_flags passing into ->rw_page(), as we don't use it.
2) Make op_is_write() and friends safe to use for !CONFIG_BLOCK
Signed-off-by: Jens Axboe <axboe@fb.com>
The name for a bdi of a gendisk is derived from the gendisk's devt.
However, since the gendisk is destroyed before the bdi it leaves a
window where a new gendisk could dynamically reuse the same devt while a
bdi with the same name is still live. Arrange for the bdi to hold a
reference against its "owner" disk device while it is registered.
Otherwise we can hit sysfs duplicate name collisions like the following:
WARNING: CPU: 10 PID: 2078 at fs/sysfs/dir.c:31 sysfs_warn_dup+0x64/0x80
sysfs: cannot create duplicate filename '/devices/virtual/bdi/259:1'
Hardware name: HP ProLiant DL580 Gen8, BIOS P79 05/06/2015
0000000000000286 0000000002c04ad5 ffff88006f24f970 ffffffff8134caec
ffff88006f24f9c0 0000000000000000 ffff88006f24f9b0 ffffffff8108c351
0000001f0000000c ffff88105d236000 ffff88105d1031e0 ffff8800357427f8
Call Trace:
[<ffffffff8134caec>] dump_stack+0x63/0x87
[<ffffffff8108c351>] __warn+0xd1/0xf0
[<ffffffff8108c3cf>] warn_slowpath_fmt+0x5f/0x80
[<ffffffff812a0d34>] sysfs_warn_dup+0x64/0x80
[<ffffffff812a0e1e>] sysfs_create_dir_ns+0x7e/0x90
[<ffffffff8134faaa>] kobject_add_internal+0xaa/0x320
[<ffffffff81358d4e>] ? vsnprintf+0x34e/0x4d0
[<ffffffff8134ff55>] kobject_add+0x75/0xd0
[<ffffffff816e66b2>] ? mutex_lock+0x12/0x2f
[<ffffffff8148b0a5>] device_add+0x125/0x610
[<ffffffff8148b788>] device_create_groups_vargs+0xd8/0x100
[<ffffffff8148b7cc>] device_create_vargs+0x1c/0x20
[<ffffffff811b775c>] bdi_register+0x8c/0x180
[<ffffffff811b7877>] bdi_register_dev+0x27/0x30
[<ffffffff813317f5>] add_disk+0x175/0x4a0
Cc: <stable@vger.kernel.org>
Reported-by: Yi Zhang <yizhan@redhat.com>
Tested-by: Yi Zhang <yizhan@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Fixed up missing 0 return in bdi_register_owner().
Signed-off-by: Jens Axboe <axboe@fb.com>
If CONFIG_TRANSPARENT_HUGE_PAGECACHE=n, HPAGE_PMD_NR evaluates to
BUILD_BUG_ON(), and may cause (e.g. with gcc 4.12):
mm/built-in.o: In function `shmem_alloc_hugepage':
shmem.c:(.text+0x17570): undefined reference to `__compiletime_assert_1365'
To fix this, move the assignment to hindex after the check for huge
pages support.
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge yet more updates from Andrew Morton:
- the rest of ocfs2
- various hotfixes, mainly MM
- quite a bit of misc stuff - drivers, fork, exec, signals, etc.
- printk updates
- firmware
- checkpatch
- nilfs2
- more kexec stuff than usual
- rapidio updates
- w1 things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (111 commits)
ipc: delete "nr_ipc_ns"
kcov: allow more fine-grained coverage instrumentation
init/Kconfig: add clarification for out-of-tree modules
config: add android config fragments
init/Kconfig: ban CONFIG_LOCALVERSION_AUTO with allmodconfig
relay: add global mode support for buffer-only channels
init: allow blacklisting of module_init functions
w1:omap_hdq: fix regression
w1: add helper macro module_w1_family
w1: remove need for ida and use PLATFORM_DEVID_AUTO
rapidio/switches: add driver for IDT gen3 switches
powerpc/fsl_rio: apply changes for RIO spec rev 3
rapidio: modify for rev.3 specification changes
rapidio: change inbound window size type to u64
rapidio/idt_gen2: fix locking warning
rapidio: fix error handling in mbox request/release functions
rapidio/tsi721_dma: advance queue processing from transfer submit call
rapidio/tsi721: add messaging mbox selector parameter
rapidio/tsi721: add PCIe MRRS override parameter
rapidio/tsi721_dma: add channel mask and queue size parameters
...
The vm_brk() alignment calculations should refuse to overflow. The ELF
loader depending on this, but it has been fixed now. No other unsafe
callers have been found.
Link: http://lkml.kernel.org/r/1468014494-25291-3-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Hector Marco-Gisbert <hecmargi@upv.es>
Cc: Ismael Ripoll Ripoll <iripoll@upv.es>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit 312b1485fb ("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")
This patch removes the following compatibility definitions and replaces
them treewide.
/* compatibility defines */
#define __init_refok __ref
#define __initdata_refok __refdata
#define __exit_refok __ref
I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We must call shrink_slab() for each memory cgroup on both global and
memcg reclaim in shrink_node_memcg(). Commit d71df22b55099 accidentally
changed that so that now shrink_slab() is only called with memcg != NULL
on memcg reclaim. As a result, memcg-aware shrinkers (including
dentry/inode) are never invoked on global reclaim. Fix that.
Fixes: b2e18757f2 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Link: http://lkml.kernel.org/r/1470056590-7177-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the total amount of memory assigned to quarantine is less than the
amount of memory assigned to per-cpu quarantines, |new_quarantine_size|
may overflow. Instead, set it to zero.
[akpm@linux-foundation.org: cleanup: use WARN_ONCE return value]
Link: http://lkml.kernel.org/r/1470063563-96266-1-git-send-email-glider@google.com
Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The state of object currently tracked in two places - shadow memory, and
the ->state field in struct kasan_alloc_meta. We can get rid of the
latter. The will save us a little bit of memory. Also, this allow us
to move free stack into struct kasan_alloc_meta, without increasing
memory consumption. So now we should always know when the last time the
object was freed. This may be useful for long delayed use-after-free
bugs.
As a side effect this fixes following UBSAN warning:
UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13
member access within misaligned address ffff88000d1efebc for type 'struct qlist_node'
which requires 8 byte alignment
Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Size of slab object already stored in cache->object_size.
Note, that kmalloc() internally rounds up size of allocation, so
object_size may be not equal to alloc_size, but, usually we don't need
to know the exact size of allocated object. In case if we need that
information, we still can figure it out from the report. The dump of
shadow memory allows to identify the end of allocated memory, and
thereby the exact allocation size.
Link: http://lkml.kernel.org/r/1470062715-14077-4-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we call quarantine_reduce() for ___GFP_KSWAPD_RECLAIM (implied
by __GFP_RECLAIM) allocation. So, basically we call it on almost every
allocation. quarantine_reduce() sometimes is heavy operation, and
calling it with disabled interrupts may trigger hard LOCKUP:
NMI watchdog: Watchdog detected hard LOCKUP on cpu 2irq event stamp: 1411258
Call Trace:
<NMI> dump_stack+0x68/0x96
watchdog_overflow_callback+0x15b/0x190
__perf_event_overflow+0x1b1/0x540
perf_event_overflow+0x14/0x20
intel_pmu_handle_irq+0x36a/0xad0
perf_event_nmi_handler+0x2c/0x50
nmi_handle+0x128/0x480
default_do_nmi+0xb2/0x210
do_nmi+0x1aa/0x220
end_repeat_nmi+0x1a/0x1e
<<EOE>> __kernel_text_address+0x86/0xb0
print_context_stack+0x7b/0x100
dump_trace+0x12b/0x350
save_stack_trace+0x2b/0x50
set_track+0x83/0x140
free_debug_processing+0x1aa/0x420
__slab_free+0x1d6/0x2e0
___cache_free+0xb6/0xd0
qlist_free_all+0x83/0x100
quarantine_reduce+0x177/0x1b0
kasan_kmalloc+0xf3/0x100
Reduce the quarantine_reduce iff direct reclaim is allowed.
Fixes: 55834c59098d("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/1470062715-14077-2-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once an object is put into quarantine, we no longer own it, i.e. object
could leave the quarantine and be reallocated. So having set_track()
call after the quarantine_put() may corrupt slab objects.
BUG kmalloc-4096 (Not tainted): Poison overwritten
-----------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: 0xffff8804540de850-0xffff8804540de857. First byte 0xb5 instead of 0x6b
...
INFO: Freed in qlist_free_all+0x42/0x100 age=75 cpu=3 pid=24492
__slab_free+0x1d6/0x2e0
___cache_free+0xb6/0xd0
qlist_free_all+0x83/0x100
quarantine_reduce+0x177/0x1b0
kasan_kmalloc+0xf3/0x100
kasan_slab_alloc+0x12/0x20
kmem_cache_alloc+0x109/0x3e0
mmap_region+0x53e/0xe40
do_mmap+0x70f/0xa50
vm_mmap_pgoff+0x147/0x1b0
SyS_mmap_pgoff+0x2c7/0x5b0
SyS_mmap+0x1b/0x30
do_syscall_64+0x1a0/0x4e0
return_from_SYSCALL_64+0x0/0x7a
INFO: Slab 0xffffea0011503600 objects=7 used=7 fp=0x (null) flags=0x8000000000004080
INFO: Object 0xffff8804540de848 @offset=26696 fp=0xffff8804540dc588
Redzone ffff8804540de840: bb bb bb bb bb bb bb bb ........
Object ffff8804540de848: 6b 6b 6b 6b 6b 6b 6b 6b b5 52 00 00 f2 01 60 cc kkkkkkkk.R....`.
Similarly, poisoning after the quarantine_put() leads to false positive
use-after-free reports:
BUG: KASAN: use-after-free in anon_vma_interval_tree_insert+0x304/0x430 at addr ffff880405c540a0
Read of size 8 by task trinity-c0/3036
CPU: 0 PID: 3036 Comm: trinity-c0 Not tainted 4.7.0-think+ #9
Call Trace:
dump_stack+0x68/0x96
kasan_report_error+0x222/0x600
__asan_report_load8_noabort+0x61/0x70
anon_vma_interval_tree_insert+0x304/0x430
anon_vma_chain_link+0x91/0xd0
anon_vma_clone+0x136/0x3f0
anon_vma_fork+0x81/0x4c0
copy_process.part.47+0x2c43/0x5b20
_do_fork+0x16d/0xbd0
SyS_clone+0x19/0x20
do_syscall_64+0x1a0/0x4e0
entry_SYSCALL64_slow_path+0x25/0x25
Fix this by putting an object in the quarantine after all other
operations.
Fixes: 80a9201a59 ("mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB")
Link: http://lkml.kernel.org/r/1470062715-14077-1-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Sasha Levin <alexander.levin@verizon.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've had a report about soft lockups caused by lock bouncing in the
soft reclaim path:
BUG: soft lockup - CPU#0 stuck for 22s! [kav4proxy-kavic:3128]
RIP: 0010:[<ffffffff81469798>] [<ffffffff81469798>] _raw_spin_lock+0x18/0x20
Call Trace:
mem_cgroup_soft_limit_reclaim+0x25a/0x280
shrink_zones+0xed/0x200
do_try_to_free_pages+0x74/0x320
try_to_free_pages+0x112/0x180
__alloc_pages_slowpath+0x3ff/0x820
__alloc_pages_nodemask+0x1e9/0x200
alloc_pages_vma+0xe1/0x290
do_wp_page+0x19f/0x840
handle_pte_fault+0x1cd/0x230
do_page_fault+0x1fd/0x4c0
page_fault+0x25/0x30
There are no memcgs created so there cannot be any in the soft limit
excess obviously:
[...]
memory 0 1 1
so all this just seems to be mem_cgroup_largest_soft_limit_node trying
to get spin_lock_irq(&mctz->lock) just to find out that the soft limit
excess tree is empty. This is just pointless wasting of cycles and
cache line bouncing during heavy parallel reclaim on large machines.
The particular machine wasn't very healthy and most probably suffering
from a memory leak which just caused the memory reclaim to trash
heavily. But bouncing on the lock certainly didn't help...
Fix this by optimistic lockless check and bail out early if the tree is
empty. This is theoretically racy but that shouldn't matter all that
much. First of all soft limit is a best effort feature and it is slowly
getting deprecated and its usage should be really scarce. Bouncing on a
lock without a good reason is surely much bigger problem, especially on
large CPU machines.
Link: http://lkml.kernel.org/r/1470073277-1056-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zhong Jiang has reported a BUG_ON from huge_pte_alloc hitting when he
runs his database load with memory online and offline running in
parallel. The reason is that huge_pmd_share might detect a shared pmd
which is currently migrated and so it has migration pte which is
!pte_huge.
There doesn't seem to be any easy way to prevent from the race and in
fact seeing the migration swap entry is not harmful. Both callers of
huge_pte_alloc are prepared to handle them. copy_hugetlb_page_range
will copy the swap entry and make it COW if needed. hugetlb_fault will
back off and so the page fault is retries if the page is still under
migration and waits for its completion in hugetlb_fault.
That means that the BUG_ON is wrong and we should update it. Let's
simply check that all present ptes are pte_huge instead.
Link: http://lkml.kernel.org/r/20160721074340.GA26398@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In powerpc servers with large memory(32TB), we watched several soft
lockups for hugepage under stress tests.
The call traces are as follows:
1.
get_page_from_freelist+0x2d8/0xd50
__alloc_pages_nodemask+0x180/0xc20
alloc_fresh_huge_page+0xb0/0x190
set_max_huge_pages+0x164/0x3b0
2.
prep_new_huge_page+0x5c/0x100
alloc_fresh_huge_page+0xc8/0x190
set_max_huge_pages+0x164/0x3b0
This patch fixes such soft lockups. It is safe to call cond_resched()
there because it is out of spin_lock/unlock section.
Link: http://lkml.kernel.org/r/1469674442-14848-1-git-send-email-hejianet@gmail.com
Signed-off-by: Jia He <hejianet@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every swap-in anonymous page starts from inactive lru list's head. It
should be activated unconditionally when VM decide to reclaim because
page table entry for the page always usually has marked accessed bit.
Thus, their window size for getting a new referece is 2 * NR_inactive +
NR_active while others is NR_inactive + NR_active.
It's not fair that it has more chance to be referenced compared to other
newly allocated page which starts from active lru list's head.
Johannes:
: The page can still have a valid copy on the swap device, so prefering to
: reclaim that page over a fresh one could make sense. But as you point
: out, having it start inactive instead of active actually ends up giving it
: *more* LRU time, and that seems to be without justification.
Rik:
: The reason newly read in swap cache pages start on the inactive list is
: that we do some amount of read-around, and do not know which pages will
: get used.
:
: However, immediately activating the ones that DO get used, like your patch
: does, is the right thing to do.
Link: http://lkml.kernel.org/r/1469762740-17860-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I ran into this:
BUG: sleeping function called from invalid context at mm/page_alloc.c:3784
in_atomic(): 0, irqs_disabled(): 0, pid: 1434, name: trinity-c1
2 locks held by trinity-c1/1434:
#0: (&mm->mmap_sem){......}, at: [<ffffffff810ce31e>] __do_page_fault+0x1ce/0x8f0
#1: (rcu_read_lock){......}, at: [<ffffffff81378f86>] filemap_map_pages+0xd6/0xdd0
CPU: 0 PID: 1434 Comm: trinity-c1 Not tainted 4.7.0+ #58
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x65/0x84
panic+0x185/0x2dd
___might_sleep+0x51c/0x600
__might_sleep+0x90/0x1a0
__alloc_pages_nodemask+0x5b1/0x2160
alloc_pages_current+0xcc/0x370
pte_alloc_one+0x12/0x90
__pte_alloc+0x1d/0x200
alloc_set_pte+0xe3e/0x14a0
filemap_map_pages+0x42b/0xdd0
handle_mm_fault+0x17d5/0x28b0
__do_page_fault+0x310/0x8f0
trace_do_page_fault+0x18d/0x310
do_async_page_fault+0x27/0xa0
async_page_fault+0x28/0x30
The important bits from the above is that filemap_map_pages() is calling
into the page allocator while holding rcu_read_lock (sleeping is not
allowed inside RCU read-side critical sections).
According to Kirill Shutemov, the prefaulting code in do_fault_around()
is supposed to take care of this, but missing error handling means that
the allocation failure can go unnoticed.
We don't need to return VM_FAULT_OOM (or any other error) here, since we
can just let the normal fault path try again.
Fixes: 7267ec008b ("mm: postpone page table allocation until we have page to map")
Link: http://lkml.kernel.org/r/1469708107-11868-1-git-send-email-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Hillf Danton" <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
Some archs like ppc64 need to do special things when flushing tlb for
hugepage. Add a new helper to flush hugetlb tlb range. This helps us to
avoid flushing the entire tlb mapping for the pid.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull fuse updates from Miklos Szeredi:
"This fixes error propagation from writeback to fsync/close for
writeback cache mode as well as adding a missing capability flag to
the INIT message. The rest are cleanups.
(The commits are recent but all the code actually sat in -next for a
while now. The recommits are due to conflict avoidance and the
addition of Cc: stable@...)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: use filemap_check_errors()
mm: export filemap_check_errors() to modules
fuse: fix wrong assignment of ->flags in fuse_send_init()
fuse: fuse_flush must check mapping->flags for errors
fuse: fsync() did not return IO errors
fuse: don't mess with blocking signals
new helper: wait_event_killable_exclusive()
fuse: improve aio directIO write performance for size extending writes
Merge more updates from Andrew Morton:
"The rest of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (101 commits)
mm, compaction: simplify contended compaction handling
mm, compaction: introduce direct compaction priority
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
mm, page_alloc: make THP-specific decisions more generic
mm, page_alloc: restructure direct compaction handling in slowpath
mm, page_alloc: don't retry initial attempt in slowpath
mm, page_alloc: set alloc_flags only once in slowpath
lib/stackdepot.c: use __GFP_NOWARN for stack allocations
mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
mm, kasan: account for object redzone in SLUB's nearest_obj()
mm: fix use-after-free if memory allocation failed in vma_adjust()
zsmalloc: Delete an unnecessary check before the function call "iput"
mm/memblock.c: fix index adjustment error in __next_mem_range_rev()
mem-hotplug: alloc new page from a nearest neighbor node when mem-offline
mm: optimize copy_page_to/from_iter_iovec
mm: add cond_resched() to generic_swapfile_activate()
Revert "mm, mempool: only set __GFP_NOMEMALLOC if there are free elements"
mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT mode
mm: hwpoison: remove incorrect comments
make __section_nr() more efficient
...
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f ("mm,
compaction: khugepaged should not give up due to need_resched()") the
code got quite complicated to distinguish these two up to the
__alloc_pages_slowpath() level, so different decisions could be taken
for khugepaged allocations.
After the recent changes, khugepaged allocations don't check for
contended compaction anymore, so we again don't need to distinguish lock
and sched contention, and simplify the current convoluted code a lot.
However, I believe it's also possible to simplify even more and
completely remove the check for contended compaction after the initial
async compaction for costly orders, which was originally aimed at THP
page fault allocations. There are several reasons why this can be done
now:
- with the new defaults, THP page faults no longer do reclaim/compaction at
all, unless the system admin has overridden the default, or application has
indicated via madvise that it can benefit from THP's. In both cases, it
means that the potential extra latency is expected and worth the benefits.
- even if reclaim/compaction proceeds after this patch where it previously
wouldn't, the second compaction attempt is still async and will detect the
contention and back off, if the contention persists
- there are still heuristics like deferred compaction and pageblock skip bits
in place that prevent excessive THP page fault latencies
Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the context of direct compaction, for some types of allocations we
would like the compaction to either succeed or definitely fail while
trying as hard as possible. Current async/sync_light migration mode is
insufficient, as there are heuristics such as caching scanner positions,
marking pageblocks as unsuitable or deferring compaction for a zone. At
least the final compaction attempt should be able to override these
heuristics.
To communicate how hard compaction should try, we replace migration mode
with a new enum compact_priority and change the relevant function
signatures. In compact_zone_order() where struct compact_control is
constructed, the priority is mapped to suitable control flags. This
patch itself has no functional change, as the current priority levels
are mapped back to the same migration modes as before. Expanding them
will be done next.
Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is
removed, as the only caller exists under CONFIG_COMPACTION.
Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the previous patch, we can distinguish costly allocations that
should be really lightweight, such as THP page faults, with
__GFP_NORETRY. This means we don't need to recognize khugepaged
allocations via PF_KTHREAD anymore. We can also change THP page faults
in areas where madvise(MADV_HUGEPAGE) was used to try as hard as
khugepaged, as the process has indicated that it benefits from THP's and
is willing to pay some initial latency costs.
We can also make the flags handling less cryptic by distinguishing
GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from
GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding
__GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed.
The patch effectively changes the current GFP_TRANSHUGE users as
follows:
* get_huge_zero_page() - the zero page lifetime should be relatively
long and it's shared by multiple users, so it's worth spending some
effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added.
This also restores direct reclaim to this allocation, which was
unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag
by default to madvise and add a stall-free defrag option")
* alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency
is not an issue. So if khugepaged "defrag" is enabled (the default), do
reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the
PF_KTHREAD check from page alloc.
As a side-effect, khugepaged will now no longer check if the initial
compaction was deferred or contended. This is OK, as khugepaged sleep
times between collapsion attempts are long enough to prevent noticeable
disruption, so we should allow it to spend some effort.
* migrate_misplaced_transhuge_page() - already was masking out
__GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is
equivalent.
* alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise)
are now allocating without __GFP_NORETRY. Other vma's keep using
__GFP_NORETRY if direct reclaim/compaction is at all allowed (by default
it's allowed only for madvised vma's). The rest is conversion to
GFP_TRANSHUGE(_LIGHT).
[mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT]
Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since THP allocations during page faults can be costly, extra decisions
are employed for them to avoid excessive reclaim and compaction, if the
initial compaction doesn't look promising. The detection has never been
perfect as there is no gfp flag specific to THP allocations. At this
moment it checks the whole combination of flags that makes up
GFP_TRANSHUGE, and hopes that no other users of such combination exist,
or would mind being treated the same way. Extra care is also taken to
separate allocations from khugepaged, where latency doesn't matter that
much.
It is however possible to distinguish these allocations in a simpler and
more reliable way. The key observation is that after the initial
compaction followed by the first iteration of "standard"
reclaim/compaction, both __GFP_NORETRY allocations and costly
allocations without __GFP_REPEAT are declared as failures:
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
goto nopage;
/*
* Do not retry costly high order allocations unless they are
* __GFP_REPEAT
*/
if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
goto nopage;
This means we can further distinguish allocations that are costly order
*and* additionally include the __GFP_NORETRY flag. As it happens,
GFP_TRANSHUGE allocations do already fall into this category. This will
also allow other costly allocations with similar high-order benefit vs
latency considerations to use this semantic. Furthermore, we can
distinguish THP allocations that should try a bit harder (such as from
khugepageed) by removing __GFP_NORETRY, as will be done in the next
patch.
Link: http://lkml.kernel.org/r/20160721073614.24395-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After __alloc_pages_slowpath() sets up new alloc_flags and wakes up
kswapd, it first tries get_page_from_freelist() with the new
alloc_flags, as it may succeed e.g. due to using min watermark instead
of low watermark. It makes sense to to do this attempt before adjusting
zonelist based on alloc_flags/gfp_mask, as it's still relatively a fast
path if we just wake up kswapd and successfully allocate.
This patch therefore moves the initial attempt above the retry label and
reorganizes a bit the part below the retry label. We still have to
attempt get_page_from_freelist() on each retry, as some allocations
cannot do that as part of direct reclaim or compaction, and yet are not
allowed to fail (even though they do a WARN_ON_ONCE() and thus should
not exist). We can reuse the call meant for ALLOC_NO_WATERMARKS attempt
and just set alloc_flags to ALLOC_NO_WATERMARKS if the context allows
it. As a side-effect, the attempts from direct reclaim/compaction will
also no longer obey watermarks once this is set, but there's little harm
in that.
Kswapd wakeups are also done on each retry to be safe from potential
races resulting in kswapd going to sleep while a process (that may not
be able to reclaim by itself) is still looping.
Link: http://lkml.kernel.org/r/20160721073614.24395-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __alloc_pages_slowpath(), alloc_flags doesn't change after it's
initialized, so move the initialization above the retry: label. Also
make the comment above the initialization more descriptive.
The only exception in the alloc_flags being constant is
ALLOC_NO_WATERMARKS, which may change due to TIF_MEMDIE being set on the
allocating thread. We can fix this, and make the code simpler and a bit
more effective at the same time, by moving the part that determines
ALLOC_NO_WATERMARKS from gfp_to_alloc_flags() to gfp_pfmemalloc_allowed().
This means we don't have to mask out ALLOC_NO_WATERMARKS in numerous
places in __alloc_pages_slowpath() anymore. The only two tests for the
flag can instead call gfp_pfmemalloc_allowed().
Link: http://lkml.kernel.org/r/20160721073614.24395-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For KASAN builds:
- switch SLUB allocator to using stackdepot instead of storing the
allocation/deallocation stacks in the objects;
- change the freelist hook so that parts of the freelist can be put
into the quarantine.
[aryabinin@virtuozzo.com: fixes]
Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When looking up the nearest SLUB object for a given address, correctly
calculate its offset if SLAB_RED_ZONE is enabled for that cache.
Previously, when KASAN had detected an error on an object from a cache
with SLAB_RED_ZONE set, the actual start address of the object was
miscalculated, which led to random stacks having been reported.
When looking up the nearest SLUB object for a given address, correctly
calculate its offset if SLAB_RED_ZONE is enabled for that cache.
Fixes: 7ed2f9e663 ("mm, kasan: SLAB support")
Link: http://lkml.kernel.org/r/1468347165-41906-2-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's one case when vma_adjust() expands the vma, overlapping with
*two* next vma. See case 6 of mprotect, described in the comment to
vma_merge().
To handle this (and only this) situation we iterate twice over main part
of the function. See "goto again".
Vegard reported[1] that he sees out-of-bounds access complain from
KASAN, if anon_vma_clone() on the *second* iteration fails.
This happens because we free 'next' vma by the end of first iteration
and don't have a way to undo this if anon_vma_clone() fails on the
second iteration.
The solution is to do all required allocations upfront, before we touch
vmas.
The allocation on the second iteration is only required if first two
vmas don't have anon_vma, but third does. So we need, in total, one
anon_vma_clone() call.
It's easy to adjust 'exporter' to the third vma for such case.
[1] http://lkml.kernel.org/r/1469514843-23778-1-git-send-email-vegard.nossum@oracle.com
Link: http://lkml.kernel.org/r/1469625255-126641-1-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
iput() tests whether its argument is NULL and then returns immediately.
Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Link: http://lkml.kernel.org/r/559cf499-4a01-25f9-c87f-24d906626a57@users.sourceforge.net
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we offline a node, alloc the new page from a nearest neighbor node
instead of the current node or other remote nodes, because re-migrate is
a waste of time and the distance of the remote nodes is often very
large.
Also use GFP_HIGHUSER_MOVABLE to alloc new page if the zone is movable
zone or highmem zone.
Link: http://lkml.kernel.org/r/5795E18B.5060302@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
generic_swapfile_activate() can take quite long time, it iterates over
all blocks of a file, so add cond_resched to it. I observed about 1
second stalls when activating a swapfile that was almost unfragmented -
this patch fixes it.
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1607221710580.4818@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit f9054c70d2 ("mm, mempool: only set __GFP_NOMEMALLOC
if there are free elements").
There has been a report about OOM killer invoked when swapping out to a
dm-crypt device. The primary reason seems to be that the swapout out IO
managed to completely deplete memory reserves. Ondrej was able to
bisect and explained the issue by pointing to f9054c70d2 ("mm,
mempool: only set __GFP_NOMEMALLOC if there are free elements").
The reason is that the swapout path is not throttled properly because
the md-raid layer needs to allocate from the generic_make_request path
which means it allocates from the PF_MEMALLOC context. dm layer uses
mempool_alloc in order to guarantee a forward progress which used to
inhibit access to memory reserves when using page allocator. This has
changed by f9054c70d2 ("mm, mempool: only set __GFP_NOMEMALLOC if
there are free elements") which has dropped the __GFP_NOMEMALLOC
protection when the memory pool is depleted.
If we are running out of memory and the only way forward to free memory
is to perform swapout we just keep consuming memory reserves rather than
throttling the mempool allocations and allowing the pending IO to
complete up to a moment when the memory is depleted completely and there
is no way forward but invoking the OOM killer. This is less than
optimal.
The original intention of f9054c70d2 was to help with the OOM
situations where the oom victim depends on mempool allocation to make a
forward progress. David has mentioned the following backtrace:
schedule
schedule_timeout
io_schedule_timeout
mempool_alloc
__split_and_process_bio
dm_request
generic_make_request
submit_bio
mpage_readpages
ext4_readpages
__do_page_cache_readahead
ra_submit
filemap_fault
handle_mm_fault
__do_page_fault
do_page_fault
page_fault
We do not know more about why the mempool is depleted without being
replenished in time, though. In any case the dm layer shouldn't depend
on any allocations outside of the dedicated pools so a forward progress
should be guaranteed. If this is not the case then the dm should be
fixed rather than papering over the problem and postponing it to later
by accessing more memory reserves.
mempools are a mechanism to maintain dedicated memory reserves to
guaratee forward progress. Allowing them an unbounded access to the
page allocator memory reserves is going against the whole purpose of
this mechanism.
Bisected by Ondrej Kozina.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160721145309.GR26379@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Ondrej Kozina <okozina@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: NeilBrown <neilb@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present MIGRATE_SYNC_LIGHT is allowing __isolate_lru_page() to
isolate a PageWriteback page, which __unmap_and_move() then rejects with
-EBUSY: of course the writeback might complete in between, but that's
not what we usually expect, so probably better not to isolate it.
When tested by stress-highalloc from mmtests, this has reduced the
number of page migrate failures by 60-70%.
Link: http://lkml.kernel.org/r/20160721073614.24395-2-vbabka@suse.cz
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dequeue_hwpoisoned_huge_page() can be called without page lock hold, so
let's remove incorrect comment.
The reason why the page lock is not really needed is that
dequeue_hwpoisoned_huge_page() checks page_huge_active() inside
hugetlb_lock, which allows us to avoid trying to dequeue a hugepage that
are just allocated but not linked to active list yet, even without
taking page lock.
Link: http://lkml.kernel.org/r/20160720092901.GA15995@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Zhan Chen <zhanc1@andrew.cmu.edu>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_SPARSEMEM_EXTREME is disabled, __section_nr can get the
section number with a subtraction directly.
Link: http://lkml.kernel.org/r/1468988310-11560-1-git-send-email-zhouchengming1@huawei.com
Signed-off-by: Zhou Chengming <zhouchengming1@huawei.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Li Bin <huawei.libin@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the user tries to disable automatic scanning early in the boot
process using e.g.:
echo scan=off > /sys/kernel/debug/kmemleak
then this command will hang until SECS_FIRST_SCAN (= 60) seconds have
elapsed, even though the system is fully initialised.
We can fix this using interruptible sleep and checking if we're supposed
to stop whenever we wake up (like the rest of the code does).
Link: http://lkml.kernel.org/r/1468835005-2873-1-git-send-email-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases, memblock is queried by kernel to determine whether a
specified address is RAM or not. For example, the ACPI core needs this
information to determine which attributes to use when mapping ACPI
regions(acpi_os_ioremap). Use of incorrect memory types can result in
faults, data corruption, or other issues.
Removing memory with memblock_enforce_memory_limit() throws away this
information, and so a kernel booted with 'mem=' may suffer from the
issues described above. To avoid this, we need to keep those NOMAP
regions instead of removing all above the limit, which preserves the
information we need while preventing other use of those regions.
This patch adds new infrastructure to retain all NOMAP memblock regions
while removing others, to cater for this.
Link: http://lkml.kernel.org/r/1468475036-5852-2-git-send-email-dennis.chen@arm.com
Signed-off-by: Dennis Chen <dennis.chen@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Kaly Xin <kaly.xin@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should account for stacks regardless of stack size, and we need to
account in sub-page units if THREAD_SIZE < PAGE_SIZE. Change the units
to kilobytes and Move it into account_kernel_stack().
Fixes: 12580e4b54 ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat")
Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
This only makes sense if each kernel stack exists entirely in one zone,
and allowing vmapped stacks could break this assumption.
Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
architectures. Keep it simple and use KiB.
Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When it was first introduced CONFIG_ZONE_DEVICE depended on disabling
CONFIG_ZONE_DMA, a configuration choice reserved for "experts".
However, now that the ZONE_DMA conflict has been eliminated it no longer
makes sense to require CONFIG_EXPERT.
Link: http://lkml.kernel.org/r/146687646274.39261.14267596518720371009.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Eric Sandeen <sandeen@redhat.com>
Reported-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
asm-generic headers are generic implementations for architecture
specific code and should not be included by common code. Thus use the
asm/ version of sections.h to get at the linker sections.
Link: http://lkml.kernel.org/r/1468285103-7470-1-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The definition of return value of madvise_free_huge_pmd is not clear
before. According to the suggestion of Minchan Kim, change the type of
return value to bool and return true if we do MADV_FREE successfully on
entire pmd page, otherwise, return false. Comments are added too.
Link: http://lkml.kernel.org/r/1467135452-16688-2-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add __init,__exit attribute for function that only called in module
init/exit to save memory.
Link: http://lkml.kernel.org/r/1467882338-4300-6-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if a class can not be merged, the max objects of zspage in
that class may be calculated twice.
This patch calculate max objects of zspage at the begin, and pass the
value to can_merge() to decide whether the class can be merged.
Also this patch remove function get_maxobj_per_zspage(), as there is no
other place to call this function.
Link: http://lkml.kernel.org/r/1467882338-4300-4-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
num of max objects in zspage is stored in each size_class now. So there
is no need to re-calculate it.
Link: http://lkml.kernel.org/r/1467882338-4300-3-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
the obj index value should be updated after return from
find_alloced_obj() to avoid CPU burning caused by unnecessary object
scanning.
Link: http://lkml.kernel.org/r/1467882338-4300-2-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a cleanup patch. Change "index" to "obj_index" to keep
consistent with others in zsmalloc.
Link: http://lkml.kernel.org/r/1467882338-4300-1-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With node-lru, if there are enough reclaimable pages in highmem but
nothing in lowmem, VM can try to shrink inactive list although the
requested zone is lowmem.
The problem is that if the inactive list is full of highmem pages then a
direct reclaimer searching for a lowmem page waste CPU scanning
uselessly. It just burns out CPU. Even, many direct reclaimers are
stalled by too_many_isolated if lots of parallel reclaimer are going on
although there are no reclaimable memory in inactive list.
I tried the experiment 4 times in 32bit 2G 8 CPU KVM machine to get
elapsed time.
hackbench 500 process 2
= Old =
1st: 289s 2nd: 310s 3rd: 112s 4th: 272s
= Now =
1st: 31s 2nd: 132s 3rd: 162s 4th: 50s.
[akpm@linux-foundation.org: fixes per Mel]
Link: http://lkml.kernel.org/r/1469433119-1543-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page reclaim determines whether a pgdat is unreclaimable by examining
how many pages have been scanned since a page was freed and comparing
that to the LRU sizes. Skipped pages are not reclaim candidates but
contribute to scanned. This can prematurely mark a pgdat as
unreclaimable and trigger an OOM kill.
This patch accounts for skipped pages as a partial scan so that an
unreclaimable pgdat will still be marked as such but by scaling the cost
of a skip, it'll avoid the pgdat being marked prematurely.
Link: http://lkml.kernel.org/r/1469110261-7365-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim reported that with per-zone lru state it was possible to
identify that a normal zone with 8^M anonymous pages could trigger OOM
with non-atomic order-0 allocations as all pages in the zone were in the
active list.
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
Call Trace:
__alloc_pages_nodemask+0xe52/0xe60
? new_slab+0x39c/0x3b0
new_slab+0x39c/0x3b0
___slab_alloc.constprop.87+0x6da/0x840
? __alloc_skb+0x3c/0x260
? enqueue_task_fair+0x73/0xbf0
? poll_select_copy_remaining+0x140/0x140
__slab_alloc.isra.81.constprop.86+0x40/0x6d
? __alloc_skb+0x3c/0x260
kmem_cache_alloc+0x22c/0x260
? __alloc_skb+0x3c/0x260
__alloc_skb+0x3c/0x260
alloc_skb_with_frags+0x4e/0x1a0
sock_alloc_send_pskb+0x16a/0x1b0
? wait_for_unix_gc+0x31/0x90
unix_stream_sendmsg+0x28d/0x340
sock_sendmsg+0x2d/0x40
sock_write_iter+0x6c/0xc0
__vfs_write+0xc0/0x120
vfs_write+0x9b/0x1a0
? __might_fault+0x49/0xa0
SyS_write+0x44/0x90
do_fast_syscall_32+0xa6/0x1e0
Mem-Info:
active_anon:101103 inactive_anon:102219 isolated_anon:0
active_file:503 inactive_file:544 isolated_file:0
unevictable:0 dirty:0 writeback:34 unstable:0
slab_reclaimable:6298 slab_unreclaimable:74669
mapped:863 shmem:0 pagetables:100998 bounce:0
free:23573 free_pcp:1861 free_cma:0
Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
54409 total pagecache pages
53215 pages in swap cache
Swap cache stats: add 300982, delete 247765, find 157978/226539
Free swap = 3803244kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9642 pages reserved
0 pages cma reserved
The problem is due to the active deactivation logic in
inactive_list_is_low:
Node 0 active_anon:404412kB inactive_anon:409040kB
IOW, (inactive_anon of node * inactive_ratio > active_anon of node) due
to highmem anonymous stat so VM never deactivates normal zone's
anonymous pages.
This patch is a modified version of Minchan's original solution but
based upon it. The problem with Minchan's patch is that any low zone
with an imbalanced list could force a rotation.
In this patch, a zone-constrained global reclaim will rotate the list if
the inactive/active ratio of all eligible zones needs to be corrected.
It is possible that higher zone pages will be initially rotated
prematurely but this is the safer choice to maintain overall LRU age.
Link: http://lkml.kernel.org/r/20160722090929.GJ10438@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics. This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available. This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.
Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the reintroduction of per-zone LRU stats, highmem_file_pages is
redundant so remove it.
[mgorman@techsingularity.net: wrong stat is being accumulated in highmem_dirtyable_memory]
Link: http://lkml.kernel.org/r/20160725092324.GM10438@techsingularity.netLink: http://lkml.kernel.org/r/1469110261-7365-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With node-lru, the locking is based on the pgdat. As Minchan pointed
out, there is an opportunity to reduce LRU lock release/acquire in
check_move_unevictable_pages by only changing lock on a pgdat change.
[mgorman@techsingularity.net: remove double initialisation]
Link: http://lkml.kernel.org/r/20160719074835.GC10438@techsingularity.net
Link: http://lkml.kernel.org/r/1468853426-12858-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>