This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now we do a lot of weird hoops around outstanding_extents in order
to keep the extent count consistent. This is because we logically
transfer the outstanding_extent count from the initial reservation
through the set_delalloc_bits. This makes it pretty difficult to get a
handle on how and when we need to mess with outstanding_extents.
Fix this by revamping the rules of how we deal with outstanding_extents.
Now instead everybody that is holding on to a delalloc extent is
required to increase the outstanding extents count for itself. This
means we'll have something like this
btrfs_delalloc_reserve_metadata - outstanding_extents = 1
btrfs_set_extent_delalloc - outstanding_extents = 2
btrfs_release_delalloc_extents - outstanding_extents = 1
for an initial file write. Now take the append write where we extend an
existing delalloc range but still under the maximum extent size
btrfs_delalloc_reserve_metadata - outstanding_extents = 2
btrfs_set_extent_delalloc
btrfs_set_bit_hook - outstanding_extents = 3
btrfs_merge_extent_hook - outstanding_extents = 2
btrfs_delalloc_release_extents - outstanding_extnets = 1
In order to make the ordered extent transition we of course must now
make ordered extents carry their own outstanding_extent reservation, so
for cow_file_range we end up with
btrfs_add_ordered_extent - outstanding_extents = 2
clear_extent_bit - outstanding_extents = 1
btrfs_remove_ordered_extent - outstanding_extents = 0
This makes all manipulations of outstanding_extents much more explicit.
Every successful call to btrfs_delalloc_reserve_metadata _must_ now be
combined with btrfs_release_delalloc_extents, even in the error case, as
that is the only function that actually modifies the
outstanding_extents counter.
The drawback to this is now we are much more likely to have transient
cases where outstanding_extents is much larger than it actually should
be. This could happen before as we manipulated the delalloc bits, but
now it happens basically at every write. This may put more pressure on
the ENOSPC flushing code, but I think making this code simpler is worth
the cost. I have another change coming to mitigate this side-effect
somewhat.
I also added trace points for the counter manipulation. These were used
by a bpf script I wrote to help track down leak issues.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Build-server workloads have hundreds of references per file after dedup.
Multiply by a few snapshots and we quickly exhaust the limit of 2730
references per extent that can fit into a 64K buffer.
Raise the limit to 16M to be consistent with other btrfs ioctls
(e.g. TREE_SEARCH_V2, FILE_EXTENT_SAME).
To minimize surprising userspace behavior, apply this change only to
the LOGICAL_INO_V2 ioctl.
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that check_extent_in_eb()'s extent offset filter can be turned off,
we need a way to do it from userspace.
Add a 'flags' field to the btrfs_logical_ino_args structure to disable
extent offset filtering, taking the place of one of the existing
reserved[] fields.
Previous versions of LOGICAL_INO neglected to check whether any of the
reserved fields have non-zero values. Assigning meaning to those fields
now may change the behavior of existing programs that left these fields
uninitialized. The lack of a zero check also means that new programs
have no way to know whether the kernel is honoring the flags field.
To avoid these problems, define a new ioctl LOGICAL_INO_V2. We can
use the same argument layout as LOGICAL_INO, but shorten the reserved[]
array by one element and turn it into the 'flags' field. The V2 ioctl
explicitly checks that reserved fields and unsupported flag bits are zero
so that userspace can negotiate future feature bits as they are defined.
Since the memory layouts of the two ioctls' arguments are compatible,
there is no need for a separate function for logical_to_ino_v2 (contrast
with tree_search_v2 vs tree_search where the layout and code are quite
different). A version parameter and an 'if' statement will suffice.
Now that we have a flags field in logical_ino_args, add a flag
BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET to get the behavior we want,
and pass it down the stack to iterate_inodes_from_logical.
Motivation and background, copied from the patchset cover letter:
Suppose we have a file with one extent:
root@tester:~# zcat /usr/share/doc/cpio/changelog.gz > /test/a
root@tester:~# sync
Split the extent by overwriting it in the middle:
root@tester:~# cat /dev/urandom | dd bs=4k seek=2 skip=2 count=1 conv=notrunc of=/test/a
We should now have 3 extent refs to 2 extents, with one block unreachable.
The extent tree looks like:
root@tester:~# btrfs-debug-tree /dev/vdc -t 2
[...]
item 9 key (1103101952 EXTENT_ITEM 73728) itemoff 15942 itemsize 53
extent refs 2 gen 29 flags DATA
extent data backref root 5 objectid 261 offset 0 count 2
[...]
item 11 key (1103175680 EXTENT_ITEM 4096) itemoff 15865 itemsize 53
extent refs 1 gen 30 flags DATA
extent data backref root 5 objectid 261 offset 8192 count 1
[...]
and the ref tree looks like:
root@tester:~# btrfs-debug-tree /dev/vdc -t 5
[...]
item 6 key (261 EXTENT_DATA 0) itemoff 15825 itemsize 53
extent data disk byte 1103101952 nr 73728
extent data offset 0 nr 8192 ram 73728
extent compression(none)
item 7 key (261 EXTENT_DATA 8192) itemoff 15772 itemsize 53
extent data disk byte 1103175680 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression(none)
item 8 key (261 EXTENT_DATA 12288) itemoff 15719 itemsize 53
extent data disk byte 1103101952 nr 73728
extent data offset 12288 nr 61440 ram 73728
extent compression(none)
[...]
There are two references to the same extent with different, non-overlapping
byte offsets:
[------------------72K extent at 1103101952----------------------]
[--8K----------------|--4K unreachable----|--60K-----------------]
^ ^
| |
[--8K ref offset 0--][--4K ref offset 0--][--60K ref offset 12K--]
|
v
[-----4K extent-----] at 1103175680
We want to find all of the references to extent bytenr 1103101952.
Without the patch (and without running btrfs-debug-tree), we have to
do it with 18 LOGICAL_INO calls:
root@tester:~# btrfs ins log 1103101952 -P /test/
Using LOGICAL_INO
inode 261 offset 0 root 5
root@tester:~# for x in $(seq 0 17); do btrfs ins log $((1103101952 + x * 4096)) -P /test/; done 2>&1 | grep inode
inode 261 offset 0 root 5
inode 261 offset 4096 root 5 <- same extent ref as offset 0
(offset 8192 returns empty set, not reachable)
inode 261 offset 12288 root 5
inode 261 offset 16384 root 5 \
inode 261 offset 20480 root 5 |
inode 261 offset 24576 root 5 |
inode 261 offset 28672 root 5 |
inode 261 offset 32768 root 5 |
inode 261 offset 36864 root 5 \
inode 261 offset 40960 root 5 > all the same extent ref as offset 12288.
inode 261 offset 45056 root 5 / More processing required in userspace
inode 261 offset 49152 root 5 | to figure out these are all duplicates.
inode 261 offset 53248 root 5 |
inode 261 offset 57344 root 5 |
inode 261 offset 61440 root 5 |
inode 261 offset 65536 root 5 |
inode 261 offset 69632 root 5 /
In the worst case the extents are 128MB long, and we have to do 32768
iterations of the loop to find one 4K extent ref.
With the patch, we just use one call to map all refs to the extent at once:
root@tester:~# btrfs ins log 1103101952 -P /test/
Using LOGICAL_INO_V2
inode 261 offset 0 root 5
inode 261 offset 12288 root 5
The TREE_SEARCH ioctl allows userspace to retrieve the offset and
extent bytenr fields easily once the root, inode and offset are known.
This is sufficient information to build a complete map of the extent
and all of its references. Userspace can use this information to make
better choices to dedup or defrag.
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
[ copy background and motivation from cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
The LOGICAL_INO ioctl provides a backward mapping from extent bytenr and
offset (encoded as a single logical address) to a list of extent refs.
LOGICAL_INO complements TREE_SEARCH, which provides the forward mapping
(extent ref -> extent bytenr and offset, or logical address). These are
useful capabilities for programs that manipulate extents and extent
references from userspace (e.g. dedup and defrag utilities).
When the extents are uncompressed (and not encrypted and not other),
check_extent_in_eb performs filtering of the extent refs to remove any
extent refs which do not contain the same extent offset as the 'logical'
parameter's extent offset. This prevents LOGICAL_INO from returning
references to more than a single block.
To find the set of extent references to an uncompressed extent from [a, b),
userspace has to run a loop like this pseudocode:
for (i = a; i < b; ++i)
extent_ref_set += LOGICAL_INO(i);
At each iteration of the loop (up to 32768 iterations for a 128M extent),
data we are interested in is collected in the kernel, then deleted by
the filter in check_extent_in_eb.
When the extents are compressed (or encrypted or other), the 'logical'
parameter must be an extent bytenr (the 'a' parameter in the loop).
No filtering by extent offset is done (or possible?) so the result is
the complete set of extent refs for the entire extent. This removes
the need for the loop, since we get all the extent refs in one call.
Add an 'ignore_offset' argument to iterate_inodes_from_logical,
[...several levels of function call graph...], and check_extent_in_eb, so
that we can disable the extent offset filtering for uncompressed extents.
This flag can be set by an improved version of the LOGICAL_INO ioctl to
get either behavior as desired.
There is no functional change in this patch. The new flag is always
false.
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor coding style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
We need the actual root for the ref verifier tool to work, so change
these functions to pass the root around instead. This will be used in
a subsequent patch.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We pass in a pointer in our send arg struct, this means the struct size
doesn't match with 32bit user space and 64bit kernel space. Fix this by
adding a compat mode and doing the appropriate conversion.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ move structure to the beginning, next to receive 32bit compat ]
Signed-off-by: David Sterba <dsterba@suse.com>
By setting compression for a defrag task, the task will start IO at
the end of defrag.
After the combo of filemap_flush(), we've already made sure that
dirty pages have made progress via async compress thread because the
second filemap_flush() will wait for page lock, which won't be
unlocked until those pages have been marked as writeback and ordered
extents have been queued.
And this is for per-inode defrag, it's not helpful to wait on a global
%async_delalloc_pages and %nr_async_submits from fs_info.
Although waiting on %nr_async_submits means that all bios are
submitted down to per-device schedule IO lists, it doesn't wait for
their completions, thus users still need to do fsync/sync to make sure
the data is on disk. While with this change, it makes sure that pages
are marked with writeback bits and will be submitted asynchronously
shortly, therefore, the behavior of defrag option '-c' remains unchanged.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If btrfs_transaction_commit fails it will proceed to call
cleanup_transaction, which in turn already does btrfs_abort_transaction.
So let's remove the unnecessary code duplication. Also let's be explicit
about handling failure of btrfs_uuid_tree_add by calling
btrfs_end_transaction.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_udpate_root can fail and it aborts the transaction, the correct
way to handle an aborted transaction is to explicitly end with
btrfs_end_transaction. Even now the code is correct since
btrfs_commit_transaction would handle an aborted transaction but this is
more of an implementation detail. So let's be explicit in handling
failure in btrfs_update_root.
Furthermore btrfs_commit_transaction can also fail and by ignoring it's
return value we could have left the in-memory copy of the root item in
an inconsistent state. So capture the error value which allows us to
correctly revert the RO/RW flags in case of commit failure.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Don't populate the read-only array types on the stack, instead make
it static const. Makes the object code smaller by nearly 60 bytes:
Before:
text data bss dec hex filename
90536 6552 64 97152 17b80 fs/btrfs/ioctl.o
After:
text data bss dec hex filename
90414 6616 64 97094 17b46 fs/btrfs/ioctl.o
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since TASK_UNINTERRUPTIBLE has been used here, wait_event() can do the
same job.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're still going to wait after schedule(), we don't have to do
finish_wait() to remove our %wait_queue_entry since prepare_to_wait()
won't add the same %wait_queue_entry twice.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from David Sterba:
"We've collected a bunch of isolated fixes, for crashes, user-visible
behaviour or missing bits from other subsystem cleanups from the past.
The overall number is not small but I was not able to make it
significantly smaller. Most of the patches are supposed to go to
stable"
* 'for-4.14-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: log csums for all modified extents
Btrfs: fix unexpected result when dio reading corrupted blocks
btrfs: Report error on removing qgroup if del_qgroup_item fails
Btrfs: skip checksum when reading compressed data if some IO have failed
Btrfs: fix kernel oops while reading compressed data
Btrfs: use btrfs_op instead of bio_op in __btrfs_map_block
Btrfs: do not backup tree roots when fsync
btrfs: remove BTRFS_FS_QUOTA_DISABLING flag
btrfs: propagate error to btrfs_cmp_data_prepare caller
btrfs: prevent to set invalid default subvolid
Btrfs: send: fix error number for unknown inode types
btrfs: fix NULL pointer dereference from free_reloc_roots()
btrfs: finish ordered extent cleaning if no progress is found
btrfs: clear ordered flag on cleaning up ordered extents
Btrfs: fix incorrect {node,sector}size endianness from BTRFS_IOC_FS_INFO
Btrfs: do not reset bio->bi_ops while writing bio
Btrfs: use the new helper wbc_to_write_flags
btrfs_cmp_data_prepare() (almost) always returns 0 i.e. ignoring errors
from gather_extent_pages(). While the pages are freed by
btrfs_cmp_data_free(), cmp->num_pages still has > 0. Then,
btrfs_extent_same() try to access the already freed pages causing faults
(or violates PageLocked assertion).
This patch just return the error as is so that the caller stop the process.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Fixes: f441460202 ("btrfs: fix deadlock with extent-same and readpage")
Cc: <stable@vger.kernel.org> # 4.2
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
`btrfs sub set-default` succeeds to set an ID which isn't corresponding to any
fs/file tree. If such the bad ID is set to a filesystem, we can't mount this
filesystem without specifying `subvol` or `subvolid` mount options.
Fixes: 6ef5ed0d38 ("Btrfs: add ioctl and incompat flag to set the default mount subvol")
Cc: <stable@vger.kernel.org>
Signed-off-by: Satoru Takeuchi <satoru.takeuchi@gmail.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fs_info->super_copy->{node,sector}size are little-endian, but the ioctl
should return the values in native endianness. Use the cached values in
btrfs_fs_info instead. Found with sparse.
Fixes: 80a773fbfc ("btrfs: retrieve more info from FS_INFO ioctl")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull mount flag updates from Al Viro:
"Another chunk of fmount preparations from dhowells; only trivial
conflicts for that part. It separates MS_... bits (very grotty
mount(2) ABI) from the struct super_block ->s_flags (kernel-internal,
only a small subset of MS_... stuff).
This does *not* convert the filesystems to new constants; only the
infrastructure is done here. The next step in that series is where the
conflicts would be; that's the conversion of filesystems. It's purely
mechanical and it's better done after the merge, so if you could run
something like
list=$(for i in MS_RDONLY MS_NOSUID MS_NODEV MS_NOEXEC MS_SYNCHRONOUS MS_MANDLOCK MS_DIRSYNC MS_NOATIME MS_NODIRATIME MS_SILENT MS_POSIXACL MS_KERNMOUNT MS_I_VERSION MS_LAZYTIME; do git grep -l $i fs drivers/staging/lustre drivers/mtd ipc mm include/linux; done|sort|uniq|grep -v '^fs/namespace.c$')
sed -i -e 's/\<MS_RDONLY\>/SB_RDONLY/g' \
-e 's/\<MS_NOSUID\>/SB_NOSUID/g' \
-e 's/\<MS_NODEV\>/SB_NODEV/g' \
-e 's/\<MS_NOEXEC\>/SB_NOEXEC/g' \
-e 's/\<MS_SYNCHRONOUS\>/SB_SYNCHRONOUS/g' \
-e 's/\<MS_MANDLOCK\>/SB_MANDLOCK/g' \
-e 's/\<MS_DIRSYNC\>/SB_DIRSYNC/g' \
-e 's/\<MS_NOATIME\>/SB_NOATIME/g' \
-e 's/\<MS_NODIRATIME\>/SB_NODIRATIME/g' \
-e 's/\<MS_SILENT\>/SB_SILENT/g' \
-e 's/\<MS_POSIXACL\>/SB_POSIXACL/g' \
-e 's/\<MS_KERNMOUNT\>/SB_KERNMOUNT/g' \
-e 's/\<MS_I_VERSION\>/SB_I_VERSION/g' \
-e 's/\<MS_LAZYTIME\>/SB_LAZYTIME/g' \
$list
and commit it with something along the lines of 'convert filesystems
away from use of MS_... constants' as commit message, it would save a
quite a bit of headache next cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
VFS: Differentiate mount flags (MS_*) from internal superblock flags
VFS: Convert sb->s_flags & MS_RDONLY to sb_rdonly(sb)
vfs: Add sb_rdonly(sb) to query the MS_RDONLY flag on s_flags
Pull zstd support from Chris Mason:
"Nick Terrell's patch series to add zstd support to the kernel has been
floating around for a while. After talking with Dave Sterba, Herbert
and Phillip, we decided to send the whole thing in as one pull
request.
zstd is a big win in speed over zlib and in compression ratio over
lzo, and the compression team here at FB has gotten great results
using it in production. Nick will continue to update the kernel side
with new improvements from the open source zstd userland code.
Nick has a number of benchmarks for the main zstd code in his lib/zstd
commit:
I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB
of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel
Core i7 processor, 16 GB of RAM, and a SSD. I benchmarked using
`silesia.tar` [3], which is 211,988,480 B large. Run the following
commands for the benchmark:
sudo modprobe zstd_compress_test
sudo mknod zstd_compress_test c 245 0
sudo cp silesia.tar zstd_compress_test
The time is reported by the time of the userland `cp`.
The MB/s is computed with
1,536,217,008 B / time(buffer size, hash)
which includes the time to copy from userland.
The Adjusted MB/s is computed with
1,536,217,088 B / (time(buffer size, hash) - time(buffer size, none)).
The memory reported is the amount of memory the compressor
requests.
| Method | Size (B) | Time (s) | Ratio | MB/s | Adj MB/s | Mem (MB) |
|----------|----------|----------|-------|---------|----------|----------|
| none | 11988480 | 0.100 | 1 | 2119.88 | - | - |
| zstd -1 | 73645762 | 1.044 | 2.878 | 203.05 | 224.56 | 1.23 |
| zstd -3 | 66988878 | 1.761 | 3.165 | 120.38 | 127.63 | 2.47 |
| zstd -5 | 65001259 | 2.563 | 3.261 | 82.71 | 86.07 | 2.86 |
| zstd -10 | 60165346 | 13.242 | 3.523 | 16.01 | 16.13 | 13.22 |
| zstd -15 | 58009756 | 47.601 | 3.654 | 4.45 | 4.46 | 21.61 |
| zstd -19 | 54014593 | 102.835 | 3.925 | 2.06 | 2.06 | 60.15 |
| zlib -1 | 77260026 | 2.895 | 2.744 | 73.23 | 75.85 | 0.27 |
| zlib -3 | 72972206 | 4.116 | 2.905 | 51.50 | 52.79 | 0.27 |
| zlib -6 | 68190360 | 9.633 | 3.109 | 22.01 | 22.24 | 0.27 |
| zlib -9 | 67613382 | 22.554 | 3.135 | 9.40 | 9.44 | 0.27 |
I benchmarked zstd decompression using the same method on the same
machine. The benchmark file is located in the upstream zstd repo
under `contrib/linux-kernel/zstd_decompress_test.c` [4]. The
memory reported is the amount of memory required to decompress
data compressed with the given compression level. If you know the
maximum size of your input, you can reduce the memory usage of
decompression irrespective of the compression level.
| Method | Time (s) | MB/s | Adjusted MB/s | Memory (MB) |
|----------|----------|---------|---------------|-------------|
| none | 0.025 | 8479.54 | - | - |
| zstd -1 | 0.358 | 592.15 | 636.60 | 0.84 |
| zstd -3 | 0.396 | 535.32 | 571.40 | 1.46 |
| zstd -5 | 0.396 | 535.32 | 571.40 | 1.46 |
| zstd -10 | 0.374 | 566.81 | 607.42 | 2.51 |
| zstd -15 | 0.379 | 559.34 | 598.84 | 4.61 |
| zstd -19 | 0.412 | 514.54 | 547.77 | 8.80 |
| zlib -1 | 0.940 | 225.52 | 231.68 | 0.04 |
| zlib -3 | 0.883 | 240.08 | 247.07 | 0.04 |
| zlib -6 | 0.844 | 251.17 | 258.84 | 0.04 |
| zlib -9 | 0.837 | 253.27 | 287.64 | 0.04 |
I ran a long series of tests and benchmarks on the btrfs side and the
gains are very similar to the core benchmarks Nick ran"
* 'zstd-minimal' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
squashfs: Add zstd support
btrfs: Add zstd support
lib: Add zstd modules
lib: Add xxhash module
The buffer passed to btrfs_ioctl_tree_search* functions have to be at least
sizeof(struct btrfs_ioctl_search_header). If this is not the case then the
ioctl should return -EOVERFLOW and set the uarg->buf_size to the minimum
required size. Currently btrfs_ioctl_tree_search_v2 would return an -EOVERFLOW
error with ->buf_size being set to the value passed by user space. Fix this by
removing the size check and relying on search_ioctl, which already includes it
and correctly sets buf_size.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Readdir does dir_emit while under the btree lock. dir_emit can trigger
the page fault which means we can deadlock. Fix this by allocating a
buffer on opening a directory and copying the readdir into this buffer
and doing dir_emit from outside of the tree lock.
Thread A
readdir <holding tree lock>
dir_emit
<page fault>
down_read(mmap_sem)
Thread B
mmap write
down_write(mmap_sem)
page_mkwrite
wait_ordered_extents
Process C
finish_ordered_extent
insert_reserved_file_extent
try to lock leaf <hang>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy the deadlock scenario to changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add new value for compression to distinguish between defrag and
property. Previously, a single variable was used and this caused clashes
when the per-file 'compression' was set and a defrag -c was called.
The property-compression is loaded when the file is open, defrag will
overwrite the same variable and reset to 0 (ie. NONE) at when the file
defragmentaion is finished. That's considered a usability bug.
Now we won't touch the property value, use the defrag-compression. The
precedence of defrag is higher than for property (and whole-filesystem).
Signed-off-by: David Sterba <dsterba@suse.com>
This is preparatory for separating inode compression requested by defrag
and set via properties. This will fix a usability bug when defrag will
reset compression type to NONE. If the file has compression set via
property, it will not apply anymore (until next mount or reset through
command line).
We're going to fix that by adding another variable just for the defrag
call and won't touch the property. The defrag will have higher priority
when deciding whether to compress the data.
Signed-off-by: David Sterba <dsterba@suse.com>
Userspace transactions were introduced in commit 6bf13c0cc8 ("Btrfs:
transaction ioctls") to provide semantics that Ceph's object store
required. However, things have changed significantly since then, to the
point where btrfs is no longer suitable as a backend for ceph and in
fact it's actively advised against such usages. Considering this, there
doesn't seem to be a widespread, legit use case of userspace
transaction. They also clutter the file->private pointer.
So to end the agony let's nuke the userspace transaction ioctls. As a
first step let's give time for people to voice their objection by just
WARN()ining when the userspace transaction is used.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ move the warning past perm checks, keep the has-been-printed state;
we're ok with just one warning over all filesystems ]
Signed-off-by: David Sterba <dsterba@suse.com>
All sorts of readahead errors are not considered fatal. We can continue
defragmentation without it, with some potential slow down, which will
last only for the current inode.
Signed-off-by: David Sterba <dsterba@suse.com>
We can safely use GFP_KERNEL, the function is called from two contexts:
- ioctl handler, called directly, no locks taken
- cleaner thread, running all queued defrag work, outside of any locks
Signed-off-by: David Sterba <dsterba@suse.com>
No functional changes, just make the code more self-explanatory.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_new_inode() is the only consumer move it to inode.c,
from ioctl.c.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add zstd compression and decompression support to BtrFS. zstd at its
fastest level compresses almost as well as zlib, while offering much
faster compression and decompression, approaching lzo speeds.
I benchmarked btrfs with zstd compression against no compression, lzo
compression, and zlib compression. I benchmarked two scenarios. Copying
a set of files to btrfs, and then reading the files. Copying a tarball
to btrfs, extracting it to btrfs, and then reading the extracted files.
After every operation, I call `sync` and include the sync time.
Between every pair of operations I unmount and remount the filesystem
to avoid caching. The benchmark files can be found in the upstream
zstd source repository under
`contrib/linux-kernel/{btrfs-benchmark.sh,btrfs-extract-benchmark.sh}`
[1] [2].
I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM.
The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor,
16 GB of RAM, and a SSD.
The first compression benchmark is copying 10 copies of the unzipped
Silesia corpus [3] into a BtrFS filesystem mounted with
`-o compress-force=Method`. The decompression benchmark times how long
it takes to `tar` all 10 copies into `/dev/null`. The compression ratio is
measured by comparing the output of `df` and `du`. See the benchmark file
[1] for details. I benchmarked multiple zstd compression levels, although
the patch uses zstd level 1.
| Method | Ratio | Compression MB/s | Decompression speed |
|---------|-------|------------------|---------------------|
| None | 0.99 | 504 | 686 |
| lzo | 1.66 | 398 | 442 |
| zlib | 2.58 | 65 | 241 |
| zstd 1 | 2.57 | 260 | 383 |
| zstd 3 | 2.71 | 174 | 408 |
| zstd 6 | 2.87 | 70 | 398 |
| zstd 9 | 2.92 | 43 | 406 |
| zstd 12 | 2.93 | 21 | 408 |
| zstd 15 | 3.01 | 11 | 354 |
The next benchmark first copies `linux-4.11.6.tar` [4] to btrfs. Then it
measures the compression ratio, extracts the tar, and deletes the tar.
Then it measures the compression ratio again, and `tar`s the extracted
files into `/dev/null`. See the benchmark file [2] for details.
| Method | Tar Ratio | Extract Ratio | Copy (s) | Extract (s)| Read (s) |
|--------|-----------|---------------|----------|------------|----------|
| None | 0.97 | 0.78 | 0.981 | 5.501 | 8.807 |
| lzo | 2.06 | 1.38 | 1.631 | 8.458 | 8.585 |
| zlib | 3.40 | 1.86 | 7.750 | 21.544 | 11.744 |
| zstd 1 | 3.57 | 1.85 | 2.579 | 11.479 | 9.389 |
[1] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-benchmark.sh
[2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-extract-benchmark.sh
[3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
[4] https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.11.6.tar.xz
zstd source repository: https://github.com/facebook/zstd
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Firstly by applying the following with coccinelle's spatch:
@@ expression SB; @@
-SB->s_flags & MS_RDONLY
+sb_rdonly(SB)
to effect the conversion to sb_rdonly(sb), then by applying:
@@ expression A, SB; @@
(
-(!sb_rdonly(SB)) && A
+!sb_rdonly(SB) && A
|
-A != (sb_rdonly(SB))
+A != sb_rdonly(SB)
|
-A == (sb_rdonly(SB))
+A == sb_rdonly(SB)
|
-!(sb_rdonly(SB))
+!sb_rdonly(SB)
|
-A && (sb_rdonly(SB))
+A && sb_rdonly(SB)
|
-A || (sb_rdonly(SB))
+A || sb_rdonly(SB)
|
-(sb_rdonly(SB)) != A
+sb_rdonly(SB) != A
|
-(sb_rdonly(SB)) == A
+sb_rdonly(SB) == A
|
-(sb_rdonly(SB)) && A
+sb_rdonly(SB) && A
|
-(sb_rdonly(SB)) || A
+sb_rdonly(SB) || A
)
@@ expression A, B, SB; @@
(
-(sb_rdonly(SB)) ? 1 : 0
+sb_rdonly(SB)
|
-(sb_rdonly(SB)) ? A : B
+sb_rdonly(SB) ? A : B
)
to remove left over excess bracketage and finally by applying:
@@ expression A, SB; @@
(
-(A & MS_RDONLY) != sb_rdonly(SB)
+(bool)(A & MS_RDONLY) != sb_rdonly(SB)
|
-(A & MS_RDONLY) == sb_rdonly(SB)
+(bool)(A & MS_RDONLY) == sb_rdonly(SB)
)
to make comparisons against the result of sb_rdonly() (which is a bool)
work correctly.
Signed-off-by: David Howells <dhowells@redhat.com>
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with
v4.12-rc6. This was because commit 70e7af244 made it possible for
calc_reclaim_items_nr() to return a negative number. It's not really a
bug in that commit, it just didn't go far enough down the stack to find
all the possible 64->32 bit overflows.
This switches calc_reclaim_items_nr() to return a u64 and changes everyone
that uses the results of that math to u64 as well.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 70e7af2 ("Btrfs: fix delalloc accounting leak caused by u32 overflow")
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For the following case, btrfs can underflow qgroup reserved space
at an error path:
(Page size 4K, function name without "btrfs_" prefix)
Task A | Task B
----------------------------------------------------------------------
Buffered_write [0, 2K) |
|- check_data_free_space() |
| |- qgroup_reserve_data() |
| Range aligned to page |
| range [0, 4K) <<< |
| 4K bytes reserved <<< |
|- copy pages to page cache |
| Buffered_write [2K, 4K)
| |- check_data_free_space()
| | |- qgroup_reserved_data()
| | Range alinged to page
| | range [0, 4K)
| | Already reserved by A <<<
| | 0 bytes reserved <<<
| |- delalloc_reserve_metadata()
| | And it *FAILED* (Maybe EQUOTA)
| |- free_reserved_data_space()
|- qgroup_free_data()
Range aligned to page range
[0, 4K)
Freeing 4K
(Special thanks to Chandan for the detailed report and analyse)
[CAUSE]
Above Task B is freeing reserved data range [0, 4K) which is actually
reserved by Task A.
And at writeback time, page dirty by Task A will go through writeback
routine, which will free 4K reserved data space at file extent insert
time, causing the qgroup underflow.
[FIX]
For btrfs_qgroup_free_data(), add @reserved parameter to only free
data ranges reserved by previous btrfs_qgroup_reserve_data().
So in above case, Task B will try to free 0 byte, so no underflow.
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new parameter, struct extent_changeset for
btrfs_qgroup_reserved_data() and its callers.
Such extent_changeset was used in btrfs_qgroup_reserve_data() to record
which range it reserved in current reserve, so it can free it in error
paths.
The reason we need to export it to callers is, at buffered write error
path, without knowing what exactly which range we reserved in current
allocation, we can free space which is not reserved by us.
This will lead to qgroup reserved space underflow.
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that init_ipath is called either from a safe context or with
memalloc_nofs protection, we can switch to GFP_KERNEL allocations in
init_path and init_data_container.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These FIXMEs were already addressed in 2013. All functions check for
qgroup existence:
* btrfs_add_qgroup_relation
* btrfs_ioctl_qgroup_create
* btrfs_limit_qgroup
* btrfs_del_qgroup_relation
Signed-off-by: Daichou <tommy0705c@gmail.com>
[ enhance and reformat changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This has fixes and cleanups Dave Sterba collected for the merge
window.
The biggest functional fixes are between btrfs raid5/6 and scrub, and
raid5/6 and device replacement. Some of our pending qgroup fixes are
included as well while I bash on the rest in testing.
We also have the usual set of cleanups, including one that makes
__btrfs_map_block() much more maintainable, and conversions from
atomic_t to refcount_t"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (71 commits)
btrfs: fix the gfp_mask for the reada_zones radix tree
Btrfs: fix reported number of inode blocks
Btrfs: send, fix file hole not being preserved due to inline extent
Btrfs: fix extent map leak during fallocate error path
Btrfs: fix incorrect space accounting after failure to insert inline extent
Btrfs: fix invalid attempt to free reserved space on failure to cow range
btrfs: Handle delalloc error correctly to avoid ordered extent hang
btrfs: Fix metadata underflow caused by btrfs_reloc_clone_csum error
btrfs: check if the device is flush capable
btrfs: delete unused member nobarriers
btrfs: scrub: Fix RAID56 recovery race condition
btrfs: scrub: Introduce full stripe lock for RAID56
btrfs: Use ktime_get_real_ts for root ctime
Btrfs: handle only applicable errors returned by btrfs_get_extent
btrfs: qgroup: Fix qgroup corruption caused by inode_cache mount option
btrfs: use q which is already obtained from bdev_get_queue
Btrfs: switch to div64_u64 if with a u64 divisor
Btrfs: update scrub_parity to use u64 stripe_len
Btrfs: enable repair during read for raid56 profile
btrfs: use clear_page where appropriate
...
There are many code paths opencoding kvmalloc. Let's use the helper
instead. The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator. E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation. This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously. There is no guarantee something like that happens
though.
This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.
Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several operations, usually started from ioctls, that cannot
run concurrently. The status is tracked in
mutually_exclusive_operation_running as an atomic_t. We can easily track
the status as one of the per-filesystem flag bits with same
synchronization guarantees.
The conversion replaces:
* atomic_xchg(..., 1) -> test_and_set_bit(FLAG, ...)
* atomic_set(..., 0) -> clear_bit(FLAG, ...)
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In addition to changing the signature, this patch also switches
all the functions which are used as an argument to also take btrfs_inode.
Namely those are: btrfs_get_extent and btrfs_get_extent_filemap.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the page locking has been reworked, we get all pages prepared via
cmp_pages.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name parameters have never been used, as the name is passed via the
dentry.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unused since qgroup refactoring that split data and metadata accounting,
the btrfs_qgroup_free helper.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to use GFP_NOFS here as this is called from ioctls an the
only lock held is the subvol_sem, which is of a high level and protects
creation/renames/deletion and is never held in the writeout paths.
Signed-off-by: David Sterba <dsterba@suse.com>
This was originally a prep patch for changing the behavior on len=0, but
we went another direction with that. This still makes the function
slightly easier to follow.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_ino takes a struct inode and this causes a lot of
internal btrfs functions which consume this ino to take a VFS inode,
rather than btrfs' own struct btrfs_inode. In order to fix this "leak"
of VFS structs into the internals of btrfs first it's necessary to
eliminate all uses of struct inode for the purpose of inode. This patch
does that by using BTRFS_I to convert an inode to btrfs_inode. With
this problem eliminated subsequent patches will start eliminating the
passing of struct inode altogether, eventually resulting in a lot cleaner
code.
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
[ fix btrfs_get_extent tracepoint prototype ]
Signed-off-by: David Sterba <dsterba@suse.com>
Since btrfs_defrag_leaves() does not support extent_root, remove its
corresponding call. The user can use the file based defrag to defrag
extents as of now.
No change in behaviour as extent_root is explicitly skipped in
btrfs_defrag_leaves and this has never worked as expected.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ ehnance changelong ]
Signed-off-by: David Sterba <dsterba@suse.com>
This cleans up the cases where the min/max macros were used with a cast
rather than using directly min_t/max_t.
Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"This has two last minute fixes. The highest priority here is a
regression fix for the decompression code, but we also fixed up a
problem with the 32-bit compat ioctls.
The decompression bug could hand back the wrong data on big reads when
zlib was used. I have a larger cleanup to make the math here less
error prone, but at this stage in the release Omar's patch is the best
choice"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix btrfs_decompress_buf2page()
btrfs: fix btrfs_compat_ioctl failures on non-compat ioctls
Commit 4c63c2454e incorrectly assumed that returning -ENOIOCTLCMD would
cause the native ioctl to be called. The ->compat_ioctl callback is
expected to handle all ioctls, not just compat variants. As a result,
when using 32-bit userspace on 64-bit kernels, everything except those
three ioctls would return -ENOTTY.
Fixes: 4c63c2454e ("btrfs: bugfix: handle FS_IOC32_{GETFLAGS,SETFLAGS,GETVERSION} in btrfs_ioctl")
Cc: stable@vger.kernel.org
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull more vfs updates from Al Viro:
"In this pile:
- autofs-namespace series
- dedupe stuff
- more struct path constification"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
ocfs2: charge quota for reflinked blocks
ocfs2: fix bad pointer cast
ocfs2: always unlock when completing dio writes
ocfs2: don't eat io errors during _dio_end_io_write
ocfs2: budget for extent tree splits when adding refcount flag
ocfs2: prohibit refcounted swapfiles
ocfs2: add newlines to some error messages
ocfs2: convert inode refcount test to a helper
simple_write_end(): don't zero in short copy into uptodate
exofs: don't mess with simple_write_{begin,end}
9p: saner ->write_end() on failing copy into non-uptodate page
fix gfs2_stuffed_write_end() on short copies
fix ceph_write_end()
nfs_write_end(): fix handling of short copies
vfs: refactor clone/dedupe_file_range common functions
fs: try to clone files first in vfs_copy_file_range
vfs: misc struct path constification
namespace.c: constify struct path passed to a bunch of primitives
quota: constify struct path in quota_on
...
A clone is a perfectly fine implementation of a file copy, so most
file systems just implement the copy that way. Instead of duplicating
this logic move it to the VFS. Currently btrfs and XFS implement copies
the same way as clones and there is no behavior change for them, cifs
only implements clones and grow support for copy_file_range with this
patch. NFS implements both, so this will allow copy_file_range to work
on servers that only implement CLONE and be lot more efficient on servers
that implements CLONE and COPY.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_init_new_device only uses the root passed in via the ioctl to
start the transaction. Nothing else that happens is related to whatever
root the user used to initiate the ioctl. We can drop the root requirement
and just use fs_info->dev_root instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many functions that are always called with the same root
argument. Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no need to call kfree() if memdup_user() fails, as no memory
was allocated and the error in the error-valued pointer should be returned.
Signed-off-by: Shailendra Verma <shailendra.v@samsung.com>
[ edit subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
The only memset we do is to 0, so sink the parameter to the function and
simplify all calls. Rename the function to reflect the behaviour.
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"Some fixes that Dave Sterba collected. We held off on these last week
because I was focused on the memory corruption testing"
* 'for-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix WARNING in btrfs_select_ref_head()
Btrfs: remove some no-op casts
btrfs: pass correct args to btrfs_async_run_delayed_refs()
btrfs: make file clone aware of fatal signals
btrfs: qgroup: Prevent qgroup->reserved from going subzero
Btrfs: kill BUG_ON in do_relocation
Indeed this just make the behavior similar to xfs when process has
fatal signals pending, and it'll make fstests/generic/298 happy.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This is a big variety of fixes and cleanups.
Liu Bo continues to fixup fuzzer related problems, and some of Josef's
cleanups are prep for his bigger extent buffer changes (slated for
v4.10)"
* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (39 commits)
Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
Btrfs: remove unnecessary btrfs_mark_buffer_dirty in split_leaf
Btrfs: don't BUG() during drop snapshot
btrfs: fix btrfs_no_printk stub helper
Btrfs: memset to avoid stale content in btree leaf
btrfs: parent_start initialization cleanup
btrfs: Remove already completed TODO comment
btrfs: Do not reassign count in btrfs_run_delayed_refs
btrfs: fix a possible umount deadlock
Btrfs: fix memory leak in do_walk_down
btrfs: btrfs_debug should consume fs_info when DEBUG is not defined
btrfs: convert send's verbose_printk to btrfs_debug
btrfs: convert pr_* to btrfs_* where possible
btrfs: convert printk(KERN_* to use pr_* calls
btrfs: unsplit printed strings
btrfs: clean the old superblocks before freeing the device
Btrfs: kill BUG_ON in run_delayed_tree_ref
Btrfs: don't leak reloc root nodes on error
btrfs: squash lines for simple wrapper functions
Btrfs: improve check_node to avoid reading corrupted nodes
...
current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.
Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."
This patch unsplits user-visible strings.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If the subvol/snapshot create/destroy ioctls are passed a regular file
with execute permissions set, we'll eventually Oops while trying to do
inode->i_op->lookup via lookup_one_len.
This patch ensures that the file descriptor refers to a directory.
Fixes: cb8e70901d (Btrfs: Fix subvolume creation locking rules)
Fixes: 76dda93c6a (Btrfs: add snapshot/subvolume destroy ioctl)
Cc: <stable@vger.kernel.org> #v2.6.29+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We wait on qgroup rescan completion in three places: file system
shutdown, the quota disable ioctl, and the rescan wait ioctl. If the
user sends a signal while we're waiting, we continue happily along. This
is expected behavior for the rescan wait ioctl. It's racy in the shutdown
path but mostly works due to other unrelated synchronization points.
In the quota disable path, it Oopses the kernel pretty much immediately.
Cc: <stable@vger.kernel.org> # v4.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer. We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_test_opt and friends only use the root pointer to access
the fs_info. Let's pass the fs_info directly in preparation to
eliminate similar patterns all over btrfs.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull vfs fixes from Al Viro:
"Followups to the parallel lookup work:
- update docs
- restore killability of the places that used to take ->i_mutex
killably now that we have down_write_killable() merged
- Additionally, it turns out that I missed a prerequisite for
security_d_instantiate() stuff - ->getxattr() wasn't the only thing
that could be called before dentry is attached to inode; with smack
we needed the same treatment applied to ->setxattr() as well"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch ->setxattr() to passing dentry and inode separately
switch xattr_handler->set() to passing dentry and inode separately
restore killability of old mutex_lock_killable(&inode->i_mutex) users
add down_write_killable_nested()
update D/f/directory-locking
Pull btrfs cleanups and fixes from Chris Mason:
"We have another round of fixes and a few cleanups.
I have a fix for short returns from btrfs_copy_from_user, which
finally nails down a very hard to find regression we added in v4.6.
Dave is pushing around gfp parameters, mostly to cleanup internal apis
and make it a little more consistent.
The rest are smaller fixes, and one speelling fixup patch"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
Btrfs: fix handling of faults from btrfs_copy_from_user
btrfs: fix string and comment grammatical issues and typos
btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
Btrfs: fix unexpected return value of fiemap
Btrfs: free sys_array eb as soon as possible
btrfs: sink gfp parameter to convert_extent_bit
btrfs: make state preallocation more speculative in __set_extent_bit
btrfs: untangle gotos a bit in convert_extent_bit
btrfs: untangle gotos a bit in __clear_extent_bit
btrfs: untangle gotos a bit in __set_extent_bit
btrfs: sink gfp parameter to set_record_extent_bits
btrfs: sink gfp parameter to set_extent_new
btrfs: sink gfp parameter to set_extent_defrag
btrfs: sink gfp parameter to set_extent_delalloc
btrfs: sink gfp parameter to clear_extent_dirty
btrfs: sink gfp parameter to clear_record_extent_bits
btrfs: sink gfp parameter to clear_extent_bits
btrfs: sink gfp parameter to set_extent_bits
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
Pull btrfs updates from Chris Mason:
"This has our merge window series of cleanups and fixes. These target
a wide range of issues, but do include some important fixes for
qgroups, O_DIRECT, and fsync handling. Jeff Mahoney moved around a
few definitions to make them easier for userland to consume.
Also whiteout support is included now that issues with overlayfs have
been cleared up.
I have one more fix pending for page faults during btrfs_copy_from_user,
but I wanted to get this bulk out the door first"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
btrfs: fix memory leak during RAID 5/6 device replacement
Btrfs: add semaphore to synchronize direct IO writes with fsync
Btrfs: fix race between block group relocation and nocow writes
Btrfs: fix race between fsync and direct IO writes for prealloc extents
Btrfs: fix number of transaction units for renames with whiteout
Btrfs: pin logs earlier when doing a rename exchange operation
Btrfs: unpin logs if rename exchange operation fails
Btrfs: fix inode leak on failure to setup whiteout inode in rename
btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
Btrfs: pin log earlier when renaming
Btrfs: unpin log if rename operation fails
Btrfs: don't do unnecessary delalloc flushes when relocating
Btrfs: don't wait for unrelated IO to finish before relocation
Btrfs: fix empty symlink after creating symlink and fsync parent dir
Btrfs: fix for incorrect directory entries after fsync log replay
btrfs: build fixup for qgroup_account_snapshot
btrfs: qgroup: Fix qgroup accounting when creating snapshot
Btrfs: fix fspath error deallocation
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
Before the relocation process of a block group starts, it sets the block
group to readonly mode, then flushes all delalloc writes and then finally
it waits for all ordered extents to complete. This last step includes
waiting for ordered extents destinated at extents allocated in other block
groups, making us waste unecessary time.
So improve this by waiting only for ordered extents that fall into the
block group's range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
The size of root item is more than 400 bytes, which is quite a lot of
stack space. As we do IO from inside the subvolume ioctls, we should
keep the stack usage low in case the filesystem is on top of other
layers (NFS, device mapper, iscsi, etc).
Reviewed-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
ta-da!
The main issue is the lack of down_write_killable(), so the places
like readdir.c switched to plain inode_lock(); once killable
variants of rwsem primitives appear, that'll be dealt with.
lockdep side also might need more work
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A refactor patch, and avoids user input verification in the
btrfs_dev_replace_start(), and so this function can be reused.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename BTRFS_DEVICE_BY_ID so it's more descriptive that we specify the
device by id, it'll be part of the public API. The mask of supported
flags is also renamed, only for internal use.
The error code for unknown flags is EOPNOTSUPP, fixed.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This introduces new ioctl BTRFS_IOC_RM_DEV_V2, which uses enhanced struct
btrfs_ioctl_vol_args_v2 to carry devid as an user argument.
The patch won't delete the old ioctl interface and so kernel remains
backward compatible with user land progs.
Test case/script:
echo "0 $(blockdev --getsz /dev/sdf) linear /dev/sdf 0" | dmsetup create bad_disk
mkfs.btrfs -f -d raid1 -m raid1 /dev/sdd /dev/sde /dev/mapper/bad_disk
mount /dev/sdd /btrfs
dmsetup suspend bad_disk
echo "0 $(blockdev --getsz /dev/sdf) error /dev/sdf 0" | dmsetup load bad_disk
dmsetup resume bad_disk
echo "bad disk failed. now deleting/replacing"
btrfs dev del 3 /btrfs
echo $?
btrfs fi show /btrfs
umount /btrfs
btrfs-show-super /dev/sdd | egrep num_device
dmsetup remove bad_disk
wipefs -a /dev/sdf
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reported-by: Martin <m_btrfs@ml1.co.uk>
[ adjust messages, s/disk/device/ ]
Signed-off-by: David Sterba <dsterba@suse.com>
32-bit ioctl uses these rather than the regular FS_IOC_* versions. They can
be handled in btrfs using the same code. Without this, 32-bit {ch,ls}attr
fail.
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"These are bug fixes, including a really old fsync bug, and a few trace
points to help us track down problems in the quota code"
* 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix file/data loss caused by fsync after rename and new inode
btrfs: Reset IO error counters before start of device replacing
btrfs: Add qgroup tracing
Btrfs: don't use src fd for printk
btrfs: fallback to vmalloc in btrfs_compare_tree
btrfs: handle non-fatal errors in btrfs_qgroup_inherit()
btrfs: Output more info for enospc_debug mount option
Btrfs: fix invalid reference in replace_path
Btrfs: Improve FL_KEEP_SIZE handling in fallocate
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fd we pass in may not be on a btrfs file system, so don't try to do
BTRFS_I() on it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
So that its better organized.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using the same file as the source and destination for a dedup
(extent_same ioctl) operation we were allowing it to dedup to a
destination offset beyond the file's size, which doesn't make sense and
it's not allowed for the case where the source and destination files are
not the same file. This made de deduplication operation successful only
when the source range corresponded to a hole, a prealloc extent or an
extent with all bytes having a value of 0x00. This was also leaving a
file hole (between i_size and destination offset) without the
corresponding file extent items, which can be reproduced with the
following steps for example:
$ mkfs.btrfs -f /dev/sdi
$ mount /dev/sdi /mnt/sdi
$ xfs_io -f -c "pwrite -S 0xab 304457 404990" /mnt/sdi/foobar
wrote 404990/404990 bytes at offset 304457
395 KiB, 99 ops; 0.0000 sec (31.150 MiB/sec and 7984.5149 ops/sec)
$ /git/hub/duperemove/btrfs-extent-same 24576 /mnt/sdi/foobar 28672 /mnt/sdi/foobar 929792
Deduping 2 total files
(28672, 24576): /mnt/sdi/foobar
(929792, 24576): /mnt/sdi/foobar
1 files asked to be deduped
i: 0, status: 0, bytes_deduped: 24576
24576 total bytes deduped in this operation
$ umount /mnt/sdi
$ btrfsck /dev/sdi
Checking filesystem on /dev/sdi
UUID: 98c528aa-0833-427d-9403-b98032ffbf9d
checking extents
checking free space cache
checking fs roots
root 5 inode 257 errors 100, file extent discount
Found file extent holes:
start: 712704, len: 217088
found 540673 bytes used err is 1
total csum bytes: 400
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 123675
file data blocks allocated: 671744
referenced 671744
btrfs-progs v4.2.3
So fix this by not allowing the destination to go beyond the file's size,
just as we do for the same where the source and destination files are not
the same.
A test for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have two cases where we end up deleting a file at log replay time
when we should not. For this to happen the file must have been renamed
and a directory inode must have been fsynced/logged.
Two examples that exercise these two cases are listed below.
Case 1)
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir -p /mnt/a/b
$ mkdir /mnt/c
$ touch /mnt/a/b/foo
$ sync
$ mv /mnt/a/b/foo /mnt/c/
# Create file bar just to make sure the fsync on directory a/ does
# something and it's not a no-op.
$ touch /mnt/a/bar
$ xfs_io -c "fsync" /mnt/a
< power fail / crash >
The next time the filesystem is mounted, the log replay procedure
deletes file foo.
Case 2)
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a
$ mkdir /mnt/b
$ mkdir /mnt/c
$ touch /mnt/a/foo
$ ln /mnt/a/foo /mnt/b/foo_link
$ touch /mnt/b/bar
$ sync
$ unlink /mnt/b/foo_link
$ mv /mnt/b/bar /mnt/c/
$ xfs_io -c "fsync" /mnt/a/foo
< power fail / crash >
The next time the filesystem is mounted, the log replay procedure
deletes file bar.
The reason why the files are deleted is because when we log inodes
other then the fsync target inode, we ignore their last_unlink_trans
value and leave the log without enough information to later replay the
rename operations. So we need to look at the last_unlink_trans values
and fallback to a transaction commit if they are greater than the
id of the last committed transaction.
So fix this by looking at the last_unlink_trans values and fallback to
transaction commits when needed. Also, when logging other inodes (for
case 1 we logged descendants of the fsync target inode while for case 2
we logged ascendants) we need to care about concurrent tasks updating
the last_unlink_trans of inodes we are logging (which was already an
existing problem in check_parent_dirs_for_sync()). Since we can not
acquire their inode mutex (vfs' struct inode ->i_mutex), as that causes
deadlocks with other concurrent operations that acquire the i_mutex of
2 inodes (other fsyncs or renames for example), we need to serialize on
the log_mutex of the inode we are logging. A task setting a new value for
an inode's last_unlink_trans must acquire the inode's log_mutex and it
must do this update before doing the actual unlink operation (which is
already the case except when deleting a snapshot). Conversely the task
logging the inode must first log the inode and then check the inode's
last_unlink_trans value while holding its log_mutex, as if its value is
not greater then the id of the last committed transaction it means it
logged a safe state of the inode's items, while if its value is not
smaller then the id of the last committed transaction it means the inode
state it has logged might not be safe (the concurrent task might have
just updated last_unlink_trans but hasn't done yet the unlink operation)
and therefore a transaction commit must be done.
Test cases for xfstests follow in separate patches.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we delete a snapshot, fsync its parent directory and crash/power fail
before the next transaction commit, on the next mount when we attempt to
replay the log tree of the root containing the parent directory we will
fail and prevent the filesystem from mounting, which is solvable by wiping
out the log trees with the btrfs-zero-log tool but very inconvenient as
we will lose any data and metadata fsynced before the parent directory
was fsynced.
For example:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ mkdir /mnt/testdir
$ btrfs subvolume snapshot /mnt /mnt/testdir/snap
$ btrfs subvolume delete /mnt/testdir/snap
$ xfs_io -c "fsync" /mnt/testdir
< crash / power failure and reboot >
$ mount /dev/sdc /mnt
mount: mount(2) failed: No such file or directory
And in dmesg/syslog we get the following message and trace:
[192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257
[192066.363010] ------------[ cut here ]------------
[192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]()
[192066.367250] BTRFS: Transaction aborted (error -2)
[192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs]
[192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G W 4.4.0-rc6-btrfs-next-20+ #1
[192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[192066.380889] 0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8
[192066.382561] ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe
[192066.384191] ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710
[192066.385827] Call Trace:
[192066.386373] [<ffffffff81257570>] dump_stack+0x4e/0x79
[192066.387387] [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2
[192066.388429] [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.389236] [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50
[192066.389884] [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.390621] [<ffffffff81184b55>] ? iput+0xb0/0x266
[192066.391200] [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs]
[192066.391930] [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs]
[192066.392715] [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs]
[192066.393510] [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs]
[192066.394241] [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs]
[192066.394958] [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs]
[192066.395628] [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs]
[192066.396790] [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs]
[192066.397891] [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs]
[192066.398897] [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs]
[192066.399823] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.400739] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.401700] [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.402482] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.403930] [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs]
[192066.404831] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.405726] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.406621] [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.407401] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.408247] [<ffffffff8118ae36>] do_mount+0x893/0x9d2
[192066.409047] [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c
[192066.409842] [<ffffffff8118b187>] SyS_mount+0x75/0xa1
[192066.410621] [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b
[192066.411572] ---[ end trace 2de42126c1e0a0f0 ]---
[192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry
[192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree)
[192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30
[192066.444613] BTRFS: open_ctree failed
This happens because when we are replaying the log and processing the
directory entry pointing to the snapshot in the subvolume tree, we treat
its btrfs_dir_item item as having a location with a key type matching
BTRFS_INODE_ITEM_KEY, which is wrong because the type matches
BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the
object id refers to a root number and not to an inode in the root
containing the parent directory.
So fix this by triggering a transaction commit if an fsync against the
parent directory is requested after deleting a snapshot. This is the
simplest approach for a rare use case. Some alternative that avoids the
transaction commit would require more code to explicitly delete the
snapshot at log replay time (factoring out common code from ioctl.c:
btrfs_ioctl_snap_destroy()), special care at fsync time to remove the
log tree of the snapshot's root from the log root of the root of tree
roots, amongst other steps.
A test case for xfstests that triggers the issue follows.
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
cd /
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_dm_target flakey
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create a snapshot at the root of our filesystem (mount point path), delete it,
# fsync the mount point path, crash and mount to replay the log. This should
# succeed and after the filesystem is mounted the snapshot should not be visible
# anymore.
_run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1
_run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT
_flakey_drop_and_remount
[ -e $SCRATCH_MNT/snap1 ] && \
echo "Snapshot snap1 still exists after log replay"
# Similar scenario as above, but this time the snapshot is created inside a
# directory and not directly under the root (mount point path).
mkdir $SCRATCH_MNT/testdir
_run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2
_run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir
_flakey_drop_and_remount
[ -e $SCRATCH_MNT/testdir/snap2 ] && \
echo "Snapshot snap2 still exists after log replay"
_unmount_flakey
echo "Silence is golden"
status=0
exit
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The control device is accessible when no filesystem is mounted and we
may want to query features supported by the module. This is already
possible using the sysfs files, this ioctl is for parity and
convenience.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Let's remove the error message that appears when the tree_id is not
present. This can happen with the quota tree and has been observed in
practice. The applications are supposed to handle -ENOENT and we don't
need to report that in the system log as it's not a fatal error.
Reported-by: Vlastimil Babka <vbabka@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_fs_time() instead.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running btrfs_mksubvol(), d_really_is_positive() is called twice.
First in btrfs_mksubvol() and second inside btrfs_may_create(). So I
remove the first one.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"This has a few fixes from Filipe, along with a readdir fix from Dave
that we've been testing for some time"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: properly set the termination value of ctx->pos in readdir
Btrfs: fix hang on extent buffer lock caused by the inode_paths ioctl
Btrfs: remove no longer used function extent_read_full_page_nolock()
Btrfs: fix page reading in extent_same ioctl leading to csum errors
Btrfs: fix invalid page accesses in extent_same (dedup) ioctl
We can safely use GFP_KERNEL in the functions called from the ioctl
handlers. Here we can allocate up to 32k so less pressure to the
allocator could help.
Signed-off-by: David Sterba <dsterba@suse.com>
In the extent_same ioctl, we were grabbing the pages (locked) and
attempting to read them without bothering about any concurrent IO
against them. That is, we were not checking for any ongoing ordered
extents nor waiting for them to complete, which leads to a race where
the extent_same() code gets a checksum verification error when it
reads the pages, producing a message like the following in dmesg
and making the operation fail to user space with -ENOMEM:
[18990.161265] BTRFS warning (device sdc): csum failed ino 259 off 495616 csum 685204116 expected csum 1515870868
Fix this by using btrfs_readpage() for reading the pages instead of
extent_read_full_page_nolock(), which waits for any concurrent ordered
extents to complete and locks the io range. Also do better error handling
and don't treat all failures as -ENOMEM, as that's clearly misleasing,
becoming identical to the checks and operation of prepare_uptodate_page().
The use of extent_read_full_page_nolock() was required before
commit f441460202 ("btrfs: fix deadlock with extent-same and readpage"),
as we had the range locked in an inode's io tree before attempting to
read the pages.
Fixes: f441460202 ("btrfs: fix deadlock with extent-same and readpage")
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
In the extent_same ioctl we are getting the pages for the source and
target ranges and unlocking them immediately after, which is incorrect
because later we attempt to map them (with kmap_atomic) and access their
contents at btrfs_cmp_data(). When we do such access the pages might have
been relocated or removed from memory, which leads to an invalid memory
access. This issue is detected on a kernel with CONFIG_DEBUG_PAGEALLOC=y
which produces a trace like the following:
186736.677437] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[186736.680382] Modules linked in: btrfs dm_flakey dm_mod ppdev xor raid6_pq sha256_generic hmac drbg ansi_cprng acpi_cpufreq evdev sg aesni_intel aes_x86_64
parport_pc ablk_helper tpm_tis psmouse parport i2c_piix4 tpm cryptd i2c_core lrw processor button serio_raw pcspkr gf128mul glue_helper loop autofs4 ext4
crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last
unloaded: btrfs]
[186736.681319] CPU: 13 PID: 10222 Comm: duperemove Tainted: G W 4.4.0-rc6-btrfs-next-18+ #1
[186736.681319] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[186736.681319] task: ffff880132600400 ti: ffff880362284000 task.ti: ffff880362284000
[186736.681319] RIP: 0010:[<ffffffff81264d00>] [<ffffffff81264d00>] memcmp+0xb/0x22
[186736.681319] RSP: 0018:ffff880362287d70 EFLAGS: 00010287
[186736.681319] RAX: 000002c002468acf RBX: 0000000012345678 RCX: 0000000000000000
[186736.681319] RDX: 0000000000001000 RSI: 0005d129c5cf9000 RDI: 0005d129c5cf9000
[186736.681319] RBP: ffff880362287d70 R08: 0000000000000000 R09: 0000000000001000
[186736.681319] R10: ffff880000000000 R11: 0000000000000476 R12: 0000000000001000
[186736.681319] R13: ffff8802f91d4c88 R14: ffff8801f2a77830 R15: ffff880352e83e40
[186736.681319] FS: 00007f27b37fe700(0000) GS:ffff88043dda0000(0000) knlGS:0000000000000000
[186736.681319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[186736.681319] CR2: 00007f27a406a000 CR3: 0000000217421000 CR4: 00000000001406e0
[186736.681319] Stack:
[186736.681319] ffff880362287ea0 ffffffffa048d0bd 000000000009f000 0000000000001000
[186736.681319] 0100000000000000 ffff8801f2a77850 ffff8802f91d49b0 ffff880132600400
[186736.681319] 00000000000004f8 ffff8801c1efbe41 0000000000000000 0000000000000038
[186736.681319] Call Trace:
[186736.681319] [<ffffffffa048d0bd>] btrfs_ioctl+0x24cb/0x2731 [btrfs]
[186736.681319] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc
[186736.681319] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d
[186736.681319] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea
[186736.681319] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71
[186736.681319] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79
[186736.681319] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f
[186736.681319] Code: 0a 3c 6e 74 0d 3c 79 74 04 3c 59 75 0c c6 06 01 eb 03 c6 06 00 31 c0 eb 05 b8 ea ff ff ff 5d c3 55 31 c9 48 89 e5 48 39 d1 74 13 <0f> b6
04 0f 44 0f b6 04 0e 48 ff c1 44 29 c0 74 ea eb 02 31 c0
(gdb) list *(btrfs_ioctl+0x24cb)
0x5e0e1 is in btrfs_ioctl (fs/btrfs/ioctl.c:2972).
2967 dst_addr = kmap_atomic(dst_page);
2968
2969 flush_dcache_page(src_page);
2970 flush_dcache_page(dst_page);
2971
2972 if (memcmp(addr, dst_addr, cmp_len))
2973 ret = BTRFS_SAME_DATA_DIFFERS;
2974
2975 kunmap_atomic(addr);
2976 kunmap_atomic(dst_addr);
So fix this by making sure we keep the pages locked and respect the same
locking order as everywhere else: get and lock the pages first and then
lock the range in the inode's io tree (like for example at
__btrfs_buffered_write() and extent_readpages()). If an ordered extent
is found after locking the range in the io tree, unlock the range,
unlock the pages, wait for the ordered extent to complete and repeat the
entire locking process until no overlapping ordered extents are found.
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
In subpagesize-blocksize scenario, the "destination offset" argument passed to
the btrfs_ioctl_clone() can be aligned to sectorsize but may not be
necessarily aligned to the machine's page size. In such cases,
truncate_inode_pages_range() ends up zeroing out the partial page and future
read operations will return incorrect data. Hence this commit explicitly
rounds down the "destination offset" to the machine's page size.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 14e46e0495.
This ends up doing sysfs operations from deep in balance (where we
should be GFP_NOFS) and under heavy balance load, we're making races
against sysfs internals.
Revert it for now while we figure things out.
Signed-off-by: Chris Mason <clm@fb.com>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull more btrfs updates from Chris Mason:
"These are mostly fixes that we've been testing, but also we grabbed
and tested a few small cleanups that had been on the list for a while.
Zhao Lei's patchset also fixes some early ENOSPC buglets"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (21 commits)
btrfs: raid56: Use raid_write_end_io for scrub
btrfs: Remove unnecessary ClearPageUptodate for raid56
btrfs: use rbio->nr_pages to reduce calculation
btrfs: Use unified stripe_page's index calculation
btrfs: Fix calculation of rbio->dbitmap's size calculation
btrfs: Fix no_space in write and rm loop
btrfs: merge functions for wait snapshot creation
btrfs: delete unused argument in btrfs_copy_from_user
btrfs: Use direct way to determine raid56 write/recover mode
btrfs: Small cleanup for get index_srcdev loop
btrfs: Enhance chunk validation check
btrfs: Enhance super validation check
Btrfs: fix deadlock running delayed iputs at transaction commit time
Btrfs: fix typo in log message when starting a balance
btrfs: remove duplicate const specifier
btrfs: initialize the seq counter in struct btrfs_device
Btrfs: clean up an error code in btrfs_init_space_info()
btrfs: fix iterator with update error in backref.c
Btrfs: fix output of compression message in btrfs_parse_options()
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots
...
The files under /sys/fs/UUID/features get out of sync with the actual
incompat bits set for the filesystem if they change after mount (eg. the
LZO compression).
Synchronize the feature bits with the sysfs files representing them
right after we set/clear them.
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This has our usual assortment of fixes and cleanups, but the biggest
change included is Omar Sandoval's free space tree. It's not the
default yet, mounting -o space_cache=v2 enables it and sets a readonly
compat bit. The tree can actually be deleted and regenerated if there
are any problems, but it has held up really well in testing so far.
For very large filesystems (30T+) our existing free space caching code
can end up taking a huge amount of time during commits. The new tree
based code is faster and less work overall to update as the commit
progresses.
Omar worked on this during the summer and we'll hammer on it in
production here at FB over the next few months"
* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (73 commits)
Btrfs: fix fitrim discarding device area reserved for boot loader's use
Btrfs: Check metadata redundancy on balance
btrfs: statfs: report zero available if metadata are exhausted
btrfs: preallocate path for snapshot creation at ioctl time
btrfs: allocate root item at snapshot ioctl time
btrfs: do an allocation earlier during snapshot creation
btrfs: use smaller type for btrfs_path locks
btrfs: use smaller type for btrfs_path lowest_level
btrfs: use smaller type for btrfs_path reada
btrfs: cleanup, use enum values for btrfs_path reada
btrfs: constify static arrays
btrfs: constify remaining structs with function pointers
btrfs tests: replace whole ops structure for free space tests
btrfs: use list_for_each_entry* in backref.c
btrfs: use list_for_each_entry_safe in free-space-cache.c
btrfs: use list_for_each_entry* in check-integrity.c
Btrfs: use linux/sizes.h to represent constants
btrfs: cleanup, remove stray return statements
btrfs: zero out delayed node upon allocation
btrfs: pass proper enum type to start_transaction()
...
The following call trace is seen when btrfs/031 test is executed in a loop,
[ 158.661848] ------------[ cut here ]------------
[ 158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea()
[ 158.664102] BTRFS: Transaction aborted (error -2)
[ 158.664774] Modules linked in:
[ 158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711a #2
[ 158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
[ 158.667392] ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930
[ 158.668515] ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000
[ 158.669647] ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980
[ 158.670769] Call Trace:
[ 158.671153] [<ffffffff81431fc8>] dump_stack+0x44/0x5c
[ 158.671884] [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0
[ 158.672769] [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50
[ 158.673620] [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea
[ 158.674440] [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520
[ 158.675376] [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50
[ 158.676235] [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180
[ 158.677268] [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70
[ 158.678183] [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90
[ 158.678975] [<ffffffff81144b8e>] ? vma_merge+0xee/0x300
[ 158.679751] [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170
[ 158.680599] [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70
[ 158.681686] [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0
[ 158.682581] [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490
[ 158.683399] [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60
[ 158.684297] [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80
[ 158.685051] [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a
[ 158.685958] ---[ end trace 4b63312de5a2cb76 ]---
[ 158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry
[ 158.709508] BTRFS info (device loop0): forced readonly
[ 158.737113] BTRFS info (device loop0): disk space caching is enabled
[ 158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed
[ 158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30
This occurs because,
Mount filesystem
Create subvol with ID 257
Unmount filesystem
Mount filesystem
Delete subvol with ID 257
btrfs_drop_snapshot()
Add root corresponding to subvol 257 into
btrfs_transaction->dropped_roots list
Create new subvol (i.e. create_subvol())
257 is returned as the next free objectid
btrfs_read_fs_root_no_name()
Finds the btrfs_root instance corresponding to the old subvol with ID 257
in btrfs_fs_info->fs_roots_radix.
Returns error since btrfs_root_item->refs has the value of 0.
To fix the issue the commit initializes tree root's and subvolume root's
highest_objectid when loading the roots from disk.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can also preallocate btrfs_path that's used during pending snapshot
creation and avoid another late ENOMEM failure.
Signed-off-by: David Sterba <dsterba@suse.com>
The actual snapshot creation is delayed until transaction commit. If we
cannot get enough memory for the root item there, we have to fail the
whole transaction commit which is bad. So we'll allocate the memory at
the ioctl call and pass it along with the pending_snapshot struct. The
potential ENOMEM will be returned to the caller of snapshot ioctl.
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few statically initialized arrays that can be made const.
The remaining (like file_system_type, sysfs attributes or prop handlers)
do not allow that due to type mismatch when passed to the APIs or
because the structures are modified through other members.
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the VFS encapsulates the dedupe ioctl, wire up btrfs to it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The btrfs clone ioctls are now adopted by other file systems, with NFS
and CIFS already having support for them, and XFS being under active
development. To avoid growth of various slightly incompatible
implementations, add one to the VFS. Note that clones are different from
file copies in several ways:
- they are atomic vs other writers
- they support whole file clones
- they support 64-bit legth clones
- they do not allow partial success (aka short writes)
- clones are expected to be a fast metadata operation
Because of that it would be rather cumbersome to try to piggyback them on
top of the recent clone_file_range infrastructure. The converse isn't
true and the clone_file_range system call could try clone file range as
a first attempt to copy, something that further patches will enable.
Based on earlier work from Peng Tao.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We don't have to use GFP_NOFS in the ioctl handlers because there's no
risk of looping through the allocators back to the filesystem. This
patch covers only allocations that are directly in the ioctl handlers.
Signed-off-by: David Sterba <dsterba@suse.com>
This rearranges the existing COPY_RANGE ioctl implementation so that the
.copy_file_range file operation can call the core loop that copies file
data extent items.
The extent copying loop is lifted up into its own function. It retains
the core btrfs error checks that should be shared.
Signed-off-by: Zach Brown <zab@redhat.com>
[Anna Schumaker: Make flags an unsigned int,
Check for COPY_FR_REFLINK]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs updates from Chris Mason:
"We have a lot of subvolume quota improvements in here, along with big
piles of cleanups from Dave Sterba and Anand Jain and others.
Josef pitched in a batch of allocator fixes based on production use
here at FB. We found that mount -o ssd_spread greatly improved our
performance on hardware raid5/6, but it exposed some CPU bottlenecks
in the allocator. These patches make a huge difference"
* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (100 commits)
Btrfs: fix hole punching when using the no-holes feature
Btrfs: find_free_extent: Do not erroneously skip LOOP_CACHING_WAIT state
btrfs: Fix a data space underflow warning
btrfs: qgroup: Fix a rebase bug which will cause qgroup double free
btrfs: qgroup: Fix a race in delayed_ref which leads to abort trans
btrfs: clear PF_NOFREEZE in cleaner_kthread()
btrfs: qgroup: Don't copy extent buffer to do qgroup rescan
btrfs: add balance filters limits, stripes and usage to supported mask
btrfs: extend balance filter usage to take minimum and maximum
btrfs: add balance filter for stripes
btrfs: extend balance filter limit to take minimum and maximum
btrfs: fix use after free iterating extrefs
btrfs: check unsupported filters in balance arguments
Btrfs: fix regression running delayed references when using qgroups
Btrfs: fix regression when running delayed references
Btrfs: don't do extra bitmap search in one bit case
Btrfs: keep track of largest extent in bitmaps
Btrfs: don't keep trying to build clusters if we are fragmented
Btrfs: cut down on loops through the allocator
Btrfs: don't continue setting up space cache when enospc
...
We don't verify that all the balance filter arguments supplemented by
the flags are actually known to the kernel. Thus we let it silently pass
and do nothing.
At the moment this means only the 'limit' filter, but we're going to add
a few more soon so it's better to have that fixed. Also in older stable
kernels so that it works with newer userspace tools.
Cc: stable@vger.kernel.org # 3.16+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Cleanup the old facilities which use old btrfs_qgroup_reserve() function
call, replace them with the newer version, and remove the "__" prefix in
them.
Also, make btrfs_qgroup_reserve/free() functions private, as they are
now only used inside qgroup codes.
Now, the whole btrfs qgroup is swithed to use the new reserve facilities.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use new __btrfs_delalloc_reserve_space() and
__btrfs_delalloc_release_space() to reserve and release space for
delalloc.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 8eb934591f ("btrfs: check unsupported filters in balance
arguments") adds a jump to exit label out_bargs in case the argument
check fails. At this point in addition to the bargs memory, the
memory for struct btrfs_balance_control has already been allocated.
Ownership of bctl is passed to btrfs_balance() in the good case,
thus the memory is not freed due to the introduced jump. Make sure
that the memory gets freed in any case as necessary. Detected by
Coverity CID 1328378.
Signed-off-by: Christian Engelmayer <cengelma@gmx.at>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is no removing list element while iterating over list.
So, replace list_for_each_entry_safe to list_for_each_entry.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the clone ioctl allows to clone an inline extent from one file
to another that already has other (non-inlined) extents. This is a problem
because btrfs is not designed to deal with files having inline and regular
extents, if a file has an inline extent then it must be the only extent
in the file and must start at file offset 0. Having a file with an inline
extent followed by regular extents results in EIO errors when doing reads
or writes against the first 4K of the file.
Also, the clone ioctl allows one to lose data if the source file consists
of a single inline extent, with a size of N bytes, and the destination
file consists of a single inline extent with a size of M bytes, where we
have M > N. In this case the clone operation removes the inline extent
from the destination file and then copies the inline extent from the
source file into the destination file - we lose the M - N bytes from the
destination file, a read operation will get the value 0x00 for any bytes
in the the range [N, M] (the destination inode's i_size remained as M,
that's why we can read past N bytes).
So fix this by not allowing such destructive operations to happen and
return errno EOPNOTSUPP to user space.
Currently the fstest btrfs/035 tests the data loss case but it totally
ignores this - i.e. expects the operation to succeed and does not check
the we got data loss.
The following test case for fstests exercises all these cases that result
in file corruption and data loss:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_cloner
_require_btrfs_fs_feature "no_holes"
_require_btrfs_mkfs_feature "no-holes"
rm -f $seqres.full
test_cloning_inline_extents()
{
local mkfs_opts=$1
local mount_opts=$2
_scratch_mkfs $mkfs_opts >>$seqres.full 2>&1
_scratch_mount $mount_opts
# File bar, the source for all the following clone operations, consists
# of a single inline extent (50 bytes).
$XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \
| _filter_xfs_io
# Test cloning into a file with an extent (non-inlined) where the
# destination offset overlaps that extent. It should not be possible to
# clone the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "File foo data after clone operation:"
# All bytes should have the value 0xaa (clone operation failed and did
# not modify our file).
od -t x1 $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io
# Test cloning the inline extent against a file which has a hole in its
# first 4K followed by a non-inlined extent. It should not be possible
# as well to clone the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "File foo2 data after clone operation:"
# All bytes should have the value 0x00 (clone operation failed and did
# not modify our file).
od -t x1 $SCRATCH_MNT/foo2
$XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io
# Test cloning the inline extent against a file which has a size of zero
# but has a prealloc extent. It should not be possible as well to clone
# the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "First 50 bytes of foo3 after clone operation:"
# Should not be able to read any bytes, file has 0 bytes i_size (the
# clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo3
$XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io
# Test cloning the inline extent against a file which consists of a
# single inline extent that has a size not greater than the size of
# bar's inline extent (40 < 50).
# It should be possible to do the extent cloning from bar to this file.
$XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4
# Doing IO against any range in the first 4K of the file should work.
echo "File foo4 data after clone operation:"
# Must match file bar's content.
od -t x1 $SCRATCH_MNT/foo4
$XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io
# Test cloning the inline extent against a file which consists of a
# single inline extent that has a size greater than the size of bar's
# inline extent (60 > 50).
# It should not be possible to clone the inline extent from file bar
# into this file.
$XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5
# Reading the file should not fail.
echo "File foo5 data after clone operation:"
# Must have a size of 60 bytes, with all bytes having a value of 0x03
# (the clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo5
# Test cloning the inline extent against a file which has no extents but
# has a size greater than bar's inline extent (16K > 50).
# It should not be possible to clone the inline extent from file bar
# into this file.
$XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6
# Reading the file should not fail.
echo "File foo6 data after clone operation:"
# Must have a size of 16K, with all bytes having a value of 0x00 (the
# clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo6
# Test cloning the inline extent against a file which has no extents but
# has a size not greater than bar's inline extent (30 < 50).
# It should be possible to clone the inline extent from file bar into
# this file.
$XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7
# Reading the file should not fail.
echo "File foo7 data after clone operation:"
# Must have a size of 50 bytes, with all bytes having a value of 0xbb.
od -t x1 $SCRATCH_MNT/foo7
# Test cloning the inline extent against a file which has a size not
# greater than the size of bar's inline extent (20 < 50) but has
# a prealloc extent that goes beyond the file's size. It should not be
# possible to clone the inline extent from bar into this file.
$XFS_IO_PROG -f -c "falloc -k 0 1M" \
-c "pwrite -S 0x88 0 20" \
$SCRATCH_MNT/foo8 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8
echo "File foo8 data after clone operation:"
# Must have a size of 20 bytes, with all bytes having a value of 0x88
# (the clone operation did not modify our file).
od -t x1 $SCRATCH_MNT/foo8
_scratch_unmount
}
echo -e "\nTesting without compression and without the no-holes feature...\n"
test_cloning_inline_extents
echo -e "\nTesting with compression and without the no-holes feature...\n"
test_cloning_inline_extents "" "-o compress"
echo -e "\nTesting without compression and with the no-holes feature...\n"
test_cloning_inline_extents "-O no-holes" ""
echo -e "\nTesting with compression and with the no-holes feature...\n"
test_cloning_inline_extents "-O no-holes" "-o compress"
status=0
exit
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
We don't verify that all the balance filter arguments supplemented by
the flags are actually known to the kernel. Thus we let it silently pass
and do nothing.
At the moment this means only the 'limit' filter, but we're going to add
a few more soon so it's better to have that fixed. Also in older stable
kernels so that it works with newer userspace tools.
Cc: stable@vger.kernel.org # 3.16+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert the simple cases, not all functions provide a way to reach the
fs_info. Also skipped debugging messages (print-tree, integrity
checker and pr_debug) and messages that are printed from possibly
unfinished mount.
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_error() and btrfs_std_error() does the same thing
and calls _btrfs_std_error(), so consolidate them together.
And the main motivation is that btrfs_error() is closely
named with btrfs_err(), one handles error action the other
is to log the error, so don't closely name them.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Clone and extent same lock their source and target inodes in opposite order.
In addition to this, the range locking in clone doesn't take ordering into
account. Fix this by having clone use the same locking helpers as
btrfs-extent-same.
In addition, I do a small cleanup of the locking helpers, removing a case
(both inodes being the same) which was poorly accounted for and never
actually used by the callers.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The file layout is
[extent 1]...[extent n][4k extent][HOLE][extent x]
extent 1~n and 4k extent can be merged during defrag, and the whole
defrag bytes is larger than our defrag thresh(256k), 4k extent as a
tail is left unmerged since we check if its next extent can be merged
(the next one is a hole, so the check will fail), the layout thus can
be
[new extent][4k extent][HOLE][extent x]
(1~n)
To fix it, beside looking at the next one, this also looks at the
previous one by checking @defrag_end, which is set to 0 when we
decide to stop merging contiguous extents, otherwise, we can merge
the previous one with our extent.
Also, this makes btrfs behave consistent with how xfs and ext4 do.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The search key advancing condition used in copy_to_sk() is loose. It can
advance the key even if it reaches sk->max_*: e.g. when the max key = (512,
1024, -1) and the current key = (512, 1025, 10), it increments the
offset by 1, continues hopeless search from (512, 1025, 11). This issue
make ioctl() to take unexpectedly long time scanning all the leaf a blocks
one by one.
This commit fix the problem using standard way of key comparison:
btrfs_comp_cpu_keys()
Signed-off-by: Naohiro Aota <naota@elisp.net>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Using the clone ioctl (or extent_same ioctl, which calls the same extent
cloning function as well) we end up allowing copy an inline extent from
the source file into a non-zero offset of the destination file. This is
something not expected and that the btrfs code is not prepared to deal
with - all inline extents must be at a file offset equals to 0.
For example, the following excerpt of a test case for fstests triggers
a crash/BUG_ON() on a write operation after an inline extent is cloned
into a non-zero offset:
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test files. File foo has the same 2K of data at offset 4K
# as file bar has at its offset 0.
$XFS_IO_PROG -f -s -c "pwrite -S 0xaa 0 4K" \
-c "pwrite -S 0xbb 4k 2K" \
-c "pwrite -S 0xcc 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# File bar consists of a single inline extent (2K size).
$XFS_IO_PROG -f -s -c "pwrite -S 0xbb 0 2K" \
$SCRATCH_MNT/bar | _filter_xfs_io
# Now call the clone ioctl to clone the extent of file bar into file
# foo at its offset 4K. This made file foo have an inline extent at
# offset 4K, something which the btrfs code can not deal with in future
# IO operations because all inline extents are supposed to start at an
# offset of 0, resulting in all sorts of chaos.
# So here we validate that clone ioctl returns an EOPNOTSUPP, which is
# what it returns for other cases dealing with inlined extents.
$CLONER_PROG -s 0 -d $((4 * 1024)) -l $((2 * 1024)) \
$SCRATCH_MNT/bar $SCRATCH_MNT/foo
# Because of the inline extent at offset 4K, the following write made
# the kernel crash with a BUG_ON().
$XFS_IO_PROG -c "pwrite -S 0xdd 6K 2K" $SCRATCH_MNT/foo | _filter_xfs_io
status=0
exit
The stack trace of the BUG_ON() triggered by the last write is:
[152154.035903] ------------[ cut here ]------------
[152154.036424] kernel BUG at mm/page-writeback.c:2286!
[152154.036424] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[152154.036424] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpu$
[152154.036424] CPU: 2 PID: 17873 Comm: xfs_io Tainted: G W 4.1.0-rc6-btrfs-next-11+ #2
[152154.036424] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[152154.036424] task: ffff880429f70990 ti: ffff880429efc000 task.ti: ffff880429efc000
[152154.036424] RIP: 0010:[<ffffffff8111a9d5>] [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP: 0018:ffff880429effc68 EFLAGS: 00010246
[152154.036424] RAX: 0200000000000806 RBX: ffffea0006a6d8f0 RCX: 0000000000000001
[152154.036424] RDX: 0000000000000000 RSI: ffffffff81155d1b RDI: ffffea0006a6d8f0
[152154.036424] RBP: ffff880429effc78 R08: ffff8801ce389fe0 R09: 0000000000000001
[152154.036424] R10: 0000000000002000 R11: ffffffffffffffff R12: ffff8800200dce68
[152154.036424] R13: 0000000000000000 R14: ffff8800200dcc88 R15: ffff8803d5736d80
[152154.036424] FS: 00007fbf119f6700(0000) GS:ffff88043d280000(0000) knlGS:0000000000000000
[152154.036424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[152154.036424] CR2: 0000000001bdc000 CR3: 00000003aa555000 CR4: 00000000000006e0
[152154.036424] Stack:
[152154.036424] ffff8803d5736d80 0000000000000001 ffff880429effcd8 ffffffffa04e97c1
[152154.036424] ffff880429effd68 ffff880429effd60 0000000000000001 ffff8800200dc9c8
[152154.036424] 0000000000000001 ffff8800200dcc88 0000000000000000 0000000000001000
[152154.036424] Call Trace:
[152154.036424] [<ffffffffa04e97c1>] lock_and_cleanup_extent_if_need+0x147/0x18d [btrfs]
[152154.036424] [<ffffffffa04ea82c>] __btrfs_buffered_write+0x245/0x4c8 [btrfs]
[152154.036424] [<ffffffffa04ed14b>] ? btrfs_file_write_iter+0x150/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed15a>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed2c7>] btrfs_file_write_iter+0x2cc/0x3e0 [btrfs]
[152154.036424] [<ffffffff81165a4a>] __vfs_write+0x7c/0xa5
[152154.036424] [<ffffffff81165f89>] vfs_write+0xa0/0xe4
[152154.036424] [<ffffffff81166855>] SyS_pwrite64+0x64/0x82
[152154.036424] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[152154.036424] Code: 48 89 c7 e8 0f ff ff ff 5b 41 5c 5d c3 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb e8 ae ef 00 00 49 89 c4 48 8b 03 a8 01 75 02 <0f> 0b 4d 85 e4 74 59 49 8b 3c 2$
[152154.036424] RIP [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP <ffff880429effc68>
[152154.242621] ---[ end trace e3d3376b23a57041 ]---
Fix this by returning the error EOPNOTSUPP if an attempt to copy an
inline extent into a non-zero offset happens, just like what is done for
other scenarios that would require copying/splitting inline extents,
which were introduced by the following commits:
00fdf13a2e ("Btrfs: fix a crash of clone with inline extents's split")
3f9e3df8da ("btrfs: replace error code from btrfs_drop_extents")
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
We were allocating memory with memdup_user() but we were never releasing
that memory. This affected pretty much every call to the ioctl, whether
it deduplicated extents or not.
This issue was reported on IRC by Julian Taylor and on the mailing list
by Marcel Ritter, credit goes to them for finding the issue.
Reported-by: Julian Taylor <jtaylor.debian@googlemail.com>
Reported-by: Marcel Ritter <ritter.marcel@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
One issue users have reported is that dedupe changes mtime on files,
resulting in tools like rsync thinking that their contents have changed when
in fact the data is exactly the same. We also skip the ctime update as no
user-visible metadata changes here and we want dedupe to be transparent to
the user.
Clone still wants time changes, so we special case this in the code.
This was tested with the btrfs-extent-same tool.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
clone() supports cloning within an inode so extent-same can do
the same now. This patch fixes up the locking in extent-same to
know about the single-inode case. In addition to that, we add a
check for overlapping ranges, which clone does not allow.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
->readpage() does page_lock() before extent_lock(), we do the opposite in
extent-same. We want to reverse the order in btrfs_extent_same() but it's
not quite straightforward since the page locks are taken inside btrfs_cmp_data().
So I split btrfs_cmp_data() into 3 parts with a small context structure that
is passed between them. The first, btrfs_cmp_data_prepare() gathers up the
pages needed (taking page lock as required) and puts them on our context
structure. At this point, we are safe to lock the extent range. Afterwards,
we use btrfs_cmp_data() to do the data compare as usual and btrfs_cmp_data_free()
to clean up our context.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In the case that we dedupe the tail of a file, we might expand the dedupe
len out to the end of our last block. We don't want to compare data past
i_size however, so pass the original length to btrfs_cmp_data().
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The extent-same code rejects requests with an unaligned length. This
poses a problem when we want to dedupe the tail extent of files as we
skip cloning the portion between i_size and the extent boundary.
If we don't clone the entire extent, it won't be deleted. So the
combination of these behaviors winds up giving us worst-case dedupe on
many files.
We can fix this by allowing a length that extents to i_size and
internally aligining those to the end of the block. This is what
btrfs_ioctl_clone() so we can just copy that check over.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
max_to_defrag represents the number of pages to defrag rather than the last
page of the file range to be defragged.
Consider a file having 10 4k blocks (i.e. blocks in the range [0 - 9]). If the
defrag ioctl was invoked for the block range [3 - 6], then max_to_defrag
should actually have the value 4. Instead in the current code we end up
setting it to 6.
Now, this does not (yet) cause an issue since the first part of the while loop
condition in btrfs_defrag_file() (i.e. "i <= last_index") causes the control
to flow out of the while loop before any buggy behavior is actually caused. So
the patch just makes sure that max_to_defrag ends up having the right value
rather than fixing a bug. I did run the xfstests suite to make sure that the
code does not regress.
Changelog: v1->v2:
Provide a much descriptive commit message.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
Read-ahead is done for the pages in the range [ra_index, ra_index + cluster -
1]. So the next read-ahead should be starting from the page at index 'ra_index
+ cluster' (unless we deemed that the extent at 'ra_index + cluster' as
non-defraggable) rather than from the page at index 'ra_index +
max_cluster'. This patch fixes this. I did run the xfstests suite to make sure
that the code does not regress.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
The INO_LOOKUP ioctl can lookup path for a given inode number and is
thus restricted. As a sideefect it can find the root id of the
containing subvolume and we're using this int the 'btrfs inspect rootid'
command.
The restriction is unnecessary in case we set the ioctl args
args::treeid = 0
args::objectid = 256 (BTRFS_FIRST_FREE_OBJECTID)
Then the path will be empty and the treeid is filled with the root id of
the inode on which the ioctl is called. This behaviour is unchanged,
after the root restriction is removed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/volumes.c: In function ‘btrfs_create_uuid_tree’:
fs/btrfs/volumes.c:3909:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=]
btrfs_abort_transaction(trans, tree_root,
^
CC [M] fs/btrfs/ioctl.o
fs/btrfs/ioctl.c: In function ‘create_subvol’:
fs/btrfs/ioctl.c:549:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=]
btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
PTR_ERR returns long, but we're really using 'int' for the error codes
everywhere so just set and use the local variable.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Since commit bafc9b754f ("vfs: More precise tests in d_invalidate"),
mounted subvolumes can be deleted because d_invalidate() won't fail.
However, we run into problems when we attempt to delete the default
subvolume while it is mounted as the root filesystem:
# btrfs subvol list /
ID 257 gen 306 top level 5 path rootvol
ID 267 gen 334 top level 5 path snap1
# btrfs subvol get-default /
ID 267 gen 334 top level 5 path snap1
# btrfs inspect-internal rootid /
267
# mount -o subvol=/ /dev/vda1 /mnt
# btrfs subvol del /mnt/snap1
Delete subvolume (no-commit): '/mnt/snap1'
ERROR: cannot delete '/mnt/snap1' - Operation not permitted
# findmnt /
findmnt: can't read /proc/mounts: No such file or directory
# ls /proc
#
Markus reported that this same scenario simply led to a kernel oops.
This happens because in btrfs_ioctl_snap_destroy(), we call
d_invalidate() before we check may_destroy_subvol(), which means that we
detach the submounts and drop the dentry before erroring out. Instead,
we should only invalidate the dentry once the deletion has succeeded.
Additionally, the shrink_dcache_sb() isn't necessary; d_invalidate()
will prune the dcache for the deleted subvolume.
Cc: <stable@vger.kernel.org>
Fixes: bafc9b754f ("vfs: More precise tests in d_invalidate")
Reported-by: Markus Schauler <mschauler@gmail.com>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"A few more btrfs fixes.
These range from corners Filipe found in the new free space cache
writeback to a grab bag of fixes from the list"
* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: btrfs_release_extent_buffer_page didn't free pages of dummy extent
Btrfs: fill ->last_trans for delayed inode in btrfs_fill_inode.
btrfs: unlock i_mutex after attempting to delete subvolume during send
btrfs: check io_ctl_prepare_pages return in __btrfs_write_out_cache
btrfs: fix race on ENOMEM in alloc_extent_buffer
btrfs: handle ENOMEM in btrfs_alloc_tree_block
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Btrfs: don't check for delalloc_bytes in cache_save_setup
Btrfs: fix deadlock when starting writeback of bg caches
Btrfs: fix race between start dirty bg cache writeout and bg deletion
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
Whenever the check for a send in progress introduced in commit
521e0546c9 (btrfs: protect snapshots from deleting during send) is
hit, we return without unlocking inode->i_mutex. This is easy to see
with lockdep enabled:
[ +0.000059] ================================================
[ +0.000028] [ BUG: lock held when returning to user space! ]
[ +0.000029] 4.0.0-rc5-00096-g3c435c1 #93 Not tainted
[ +0.000026] ------------------------------------------------
[ +0.000029] btrfs/211 is leaving the kernel with locks still held!
[ +0.000029] 1 lock held by btrfs/211:
[ +0.000023] #0: (&type->i_mutex_dir_key){+.+.+.}, at: [<ffffffff8135b8df>] btrfs_ioctl_snap_destroy+0x2df/0x7a0
Make sure we unlock it in the error path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Previous patch modified the in memory struct but it's not written in
quota tree until next commit.
So user will still get old data using "btrfs qgroup show" after
assign/remove.
This patch will call btrfs_run_qgroups in assign ioctl so it will be
updated to in memory quota trees and user will get up-to-date results.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs will create qgroup on subvolume creation if quota is enabled, but
qgroup uses the high bits(currently 16 bits) as level, to build the
inheritance.
However it is fully possible a subvolume can be created with a
subvolumeid larger than 1 << BTRFS_QGROUP_LEVEL_SHIFT, so it will be
considered as level 1 and can't be assigned to other qgroup in level 1.
This patch will prevent such things so qgroup inheritance will not be
screwed up.
The downside is very clear, btrfs subvolume number limit will decrease
from (u64 max - 256(fisrt free objectid) - 256(last free objectid)) to
(u48 max -256(first free objectid)).
But we still have near u48(that's 15 digits in dec), so that should not
be a huge problem.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 0d97a64e0 creates a new variable but doesn't always set it up.
This puts it back to the original method (key.offset + 1) for the cases
not covered by Filipe's new logic.
Signed-off-by: Chris Mason <clm@fb.com>
If we attempt to clone a 0 length region into a file we can end up
inserting a range in the inode's extent_io tree with a start offset
that is greater then the end offset, which triggers immediately the
following warning:
[ 3914.619057] WARNING: CPU: 17 PID: 4199 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]()
[ 3914.620886] BTRFS: end < start 4095 4096
(...)
[ 3914.638093] Call Trace:
[ 3914.638636] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[ 3914.639620] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[ 3914.640789] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs]
[ 3914.642041] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[ 3914.643236] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs]
[ 3914.644441] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs]
[ 3914.645711] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs]
[ 3914.646914] [<ffffffff8142b2fb>] ? _raw_spin_unlock+0x28/0x33
[ 3914.648058] [<ffffffffa03cbac4>] ? test_range_bit+0xcc/0xde [btrfs]
[ 3914.650105] [<ffffffffa03cb3c3>] lock_extent+0x13/0x15 [btrfs]
[ 3914.651361] [<ffffffffa03db39e>] lock_extent_range+0x3d/0xcd [btrfs]
[ 3914.652761] [<ffffffffa03de1fe>] btrfs_ioctl_clone+0x278/0x388 [btrfs]
[ 3914.654128] [<ffffffff811226dd>] ? might_fault+0x58/0xb5
[ 3914.655320] [<ffffffffa03e0909>] btrfs_ioctl+0xb51/0x2195 [btrfs]
(...)
[ 3914.669271] ---[ end trace 14843d3e2e622fc1 ]---
This later makes the inode eviction handler enter an infinite loop that
keeps dumping the following warning over and over:
[ 3915.117629] WARNING: CPU: 22 PID: 4228 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]()
[ 3915.119913] BTRFS: end < start 4095 4096
(...)
[ 3915.137394] Call Trace:
[ 3915.137913] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[ 3915.139154] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[ 3915.140316] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs]
[ 3915.141505] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[ 3915.142709] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs]
[ 3915.143849] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs]
[ 3915.145120] [<ffffffffa038c1e3>] ? btrfs_kill_super+0x17/0x23 [btrfs]
[ 3915.146352] [<ffffffff811548f6>] ? deactivate_locked_super+0x3b/0x50
[ 3915.147565] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs]
[ 3915.148785] [<ffffffff8142b7e2>] ? _raw_write_unlock+0x28/0x33
[ 3915.149931] [<ffffffffa03bc325>] btrfs_evict_inode+0x196/0x482 [btrfs]
[ 3915.151154] [<ffffffff81168904>] evict+0xa0/0x148
[ 3915.152094] [<ffffffff811689e5>] dispose_list+0x39/0x43
[ 3915.153081] [<ffffffff81169564>] evict_inodes+0xdc/0xeb
[ 3915.154062] [<ffffffff81154418>] generic_shutdown_super+0x49/0xef
[ 3915.155193] [<ffffffff811546d1>] kill_anon_super+0x13/0x1e
[ 3915.156274] [<ffffffffa038c1e3>] btrfs_kill_super+0x17/0x23 [btrfs]
(...)
[ 3915.167404] ---[ end trace 14843d3e2e622fc2 ]---
So just bail out of the clone ioctl if the length of the region to clone
is zero, without locking any extent range, in order to prevent this issue
(same behaviour as a pwrite with a 0 length for example).
This is trivial to reproduce. For example, the steps for the test I just
made for fstests:
mkfs.btrfs -f SCRATCH_DEV
mount SCRATCH_DEV $SCRATCH_MNT
touch $SCRATCH_MNT/foo
touch $SCRATCH_MNT/bar
$CLONER_PROG -s 0 -d 4096 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar
umount $SCRATCH_MNT
A test case for fstests follows soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we pass a length of 0 to the extent_same ioctl, we end up locking an
extent range with a start offset greater then its end offset (if the
destination file's offset is greater than zero). This results in a warning
from extent_io.c:insert_state through the following call chain:
btrfs_extent_same()
btrfs_double_lock()
lock_extent_range()
lock_extent(inode->io_tree, offset, offset + len - 1)
lock_extent_bits()
__set_extent_bit()
insert_state()
--> WARN_ON(end < start)
This leads to an infinite loop when evicting the inode. This is the same
problem that my previous patch titled
"Btrfs: fix inode eviction infinite loop after cloning into it" addressed
but for the extent_same ioctl instead of the clone ioctl.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Chris Mason <clm@fb.com>
While searching for extents to clone we might find one where we only use
a part of it coming from its tail. If our destination inode is the same
the source inode, we end up removing the tail part of the extent item and
insert after a new one that point to the same extent with an adjusted
key file offset and data offset. After this we search for the next extent
item in the fs/subvol tree with a key that has an offset incremented by
one. But this second search leaves us at the new extent item we inserted
previously, and since that extent item has a non-zero data offset, it
it can make us call btrfs_drop_extents with an empty range (start == end)
which causes the following warning:
[23978.537119] WARNING: CPU: 6 PID: 16251 at fs/btrfs/file.c:550 btrfs_drop_extent_cache+0x43/0x385 [btrfs]()
(...)
[23978.557266] Call Trace:
[23978.557978] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[23978.559191] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[23978.560699] [<ffffffffa047f0ea>] ? btrfs_drop_extent_cache+0x43/0x385 [btrfs]
[23978.562389] [<ffffffff8104544d>] warn_slowpath_null+0x1a/0x1c
[23978.563613] [<ffffffffa047f0ea>] btrfs_drop_extent_cache+0x43/0x385 [btrfs]
[23978.565103] [<ffffffff810e3a18>] ? time_hardirqs_off+0x15/0x28
[23978.566294] [<ffffffff81079ff8>] ? trace_hardirqs_off+0xd/0xf
[23978.567438] [<ffffffffa047f73d>] __btrfs_drop_extents+0x6b/0x9e1 [btrfs]
[23978.568702] [<ffffffff8107c03f>] ? trace_hardirqs_on+0xd/0xf
[23978.569763] [<ffffffff811441c0>] ? ____cache_alloc+0x69/0x2eb
[23978.570817] [<ffffffff81142269>] ? virt_to_head_page+0x9/0x36
[23978.571872] [<ffffffff81143c15>] ? cache_alloc_debugcheck_after.isra.42+0x16c/0x1cb
[23978.573466] [<ffffffff811420d5>] ? kmemleak_alloc_recursive.constprop.52+0x16/0x18
[23978.574962] [<ffffffffa0480d07>] btrfs_drop_extents+0x66/0x7f [btrfs]
[23978.576179] [<ffffffffa049aa35>] btrfs_clone+0x516/0xaf5 [btrfs]
[23978.577311] [<ffffffffa04983dc>] ? lock_extent_range+0x7b/0xcd [btrfs]
[23978.578520] [<ffffffffa049b2a2>] btrfs_ioctl_clone+0x28e/0x39f [btrfs]
[23978.580282] [<ffffffffa049d9ae>] btrfs_ioctl+0xb51/0x219a [btrfs]
(...)
[23978.591887] ---[ end trace 988ec2a653d03ed3 ]---
Then we attempt to insert a new extent item with a key that already
exists, which makes btrfs_insert_empty_item return -EEXIST resulting in
abortion of the current transaction:
[23978.594355] WARNING: CPU: 6 PID: 16251 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]()
(...)
[23978.622589] Call Trace:
[23978.623181] [<ffffffff81425fd9>] dump_stack+0x4c/0x65
[23978.624359] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb
[23978.625573] [<ffffffffa044ab6c>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs]
[23978.626971] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48
[23978.628003] [<ffffffff8108a6c8>] ? vprintk_default+0x1d/0x1f
[23978.629138] [<ffffffffa044ab6c>] __btrfs_abort_transaction+0x52/0x114 [btrfs]
[23978.630528] [<ffffffffa049ad1b>] btrfs_clone+0x7fc/0xaf5 [btrfs]
[23978.631635] [<ffffffffa04983dc>] ? lock_extent_range+0x7b/0xcd [btrfs]
[23978.632886] [<ffffffffa049b2a2>] btrfs_ioctl_clone+0x28e/0x39f [btrfs]
[23978.634119] [<ffffffffa049d9ae>] btrfs_ioctl+0xb51/0x219a [btrfs]
(...)
[23978.647714] ---[ end trace 988ec2a653d03ed4 ]---
This is wrong because we should not process the extent item that we just
inserted previously, and instead process the extent item that follows it
in the tree
For example for the test case I wrote for fstests:
bs=$((64 * 1024))
mkfs.btrfs -f -l $bs -O ^no-holes /dev/sdc
mount /dev/sdc /mnt
xfs_io -f -c "pwrite -S 0xaa $(($bs * 2)) $(($bs * 2))" /mnt/foo
$CLONER_PROG -s $((3 * $bs)) -d $((267 * $bs)) -l 0 /mnt/foo /mnt/foo
$CLONER_PROG -s $((217 * $bs)) -d $((95 * $bs)) -l 0 /mnt/foo /mnt/foo
The second clone call fails with -EEXIST, because when we process the
first extent item (offset 262144), we drop part of it (counting from the
end) and then insert a new extent item with a key greater then the key we
found. The next time we search the tree we search for a key with offset
262144 + 1, which leaves us at the new extent item we have just inserted
but we think it refers to an extent that we need to clone.
Fix this by ensuring the next search key uses an offset corresponding to
the offset of the key we found previously plus the data length of the
corresponding extent item. This ensures we skip new extent items that we
inserted and works for the case of implicit holes too (NO_HOLES feature).
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type.
Get rid of a few more do_div instances.
Signed-off-by: David Sterba <dsterba@suse.cz>
Using {} as initializer for struct seq_elem does not properly initialize
the list_head member, but it currently works because it gets set through
btrfs_get_tree_mod_seq if 'seq' is 0.
Signed-off-by: David Sterba <dsterba@suse.cz>
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs update from Chris Mason:
"From a feature point of view, most of the code here comes from Miao
Xie and others at Fujitsu to implement scrubbing and replacing devices
on raid56. This has been in development for a while, and it's a big
improvement.
Filipe and Josef have a great assortment of fixes, many of which solve
problems corruptions either after a crash or in error conditions. I
still have a round two from Filipe for next week that solves
corruptions with discard and block group removal"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
Btrfs: make get_caching_control unconditionally return the ctl
Btrfs: fix unprotected deletion from pending_chunks list
Btrfs: fix fs mapping extent map leak
Btrfs: fix memory leak after block remove + trimming
Btrfs: make btrfs_abort_transaction consider existence of new block groups
Btrfs: fix race between writing free space cache and trimming
Btrfs: fix race between fs trimming and block group remove/allocation
Btrfs, replace: enable dev-replace for raid56
Btrfs: fix freeing used extents after removing empty block group
Btrfs: fix crash caused by block group removal
Btrfs: fix invalid block group rbtree access after bg is removed
Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
Btrfs, replace: write raid56 parity into the replace target device
Btrfs, replace: write dirty pages into the replace target device
Btrfs, raid56: support parity scrub on raid56
Btrfs, raid56: use a variant to record the operation type
Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
Btrfs, raid56: don't change bbio and raid_map
Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
...
If right after starting the snapshot creation ioctl we perform a write against a
file followed by a truncate, with both operations increasing the file's size, we
can get a snapshot tree that reflects a state of the source subvolume's tree where
the file truncation happened but the write operation didn't. This leaves a gap
between 2 file extent items of the inode, which makes btrfs' fsck complain about it.
For example, if we perform the following file operations:
$ mkfs.btrfs -f /dev/vdd
$ mount /dev/vdd /mnt
$ xfs_io -f \
-c "pwrite -S 0xaa -b 32K 0 32K" \
-c "fsync" \
-c "pwrite -S 0xbb -b 32770 16K 32770" \
-c "truncate 90123" \
/mnt/foobar
and the snapshot creation ioctl was just called before the second write, we often
can get the following inode items in the snapshot's btree:
item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160
inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0
item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20
inode ref index 282 namelen 10 name: foobar
item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53
extent data disk byte 1104855040 nr 32768
extent data offset 0 nr 32768 ram 32768
extent compression 0
item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53
extent data disk byte 0 nr 0
extent data offset 0 nr 40960 ram 40960
extent compression 0
There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[
for which there's no file extent item covering it. This is because the file write
and file truncate operations happened both right after the snapshot creation ioctl
called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the
ordered extent that matches the write and, in btrfs_setsize(), we were able to call
btrfs_cont_expand() before being able to commit the current transaction in the
snapshot creation ioctl. So this made it possibe to insert the hole file extent
item in the source subvolume (which represents the region added by the truncate)
right before the transaction commit from the snapshot creation ioctl.
Btrfs' fsck tool complains about such cases with a message like the following:
"root 331 inode 257 errors 100, file extent discount"
>From a user perspective, the expectation when a snapshot is created while those
file operations are being performed is that the snapshot will have a file that
either:
1) is empty
2) only the first write was captured
3) only the 2 writes were captured
4) both writes and the truncation were captured
But never capture a state where only the first write and the truncation were
captured (since the second write was performed before the truncation).
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Move the logic from the snapshot creation ioctl into send. This avoids
doing the transaction commit if send isn't used, and ensures that if
a crash/reboot happens after the transaction commit that created the
snapshot and before the transaction commit that switched the commit
root, send will not get a commit root that differs from the main root
(that has orphan items).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's already duplicated in btrfs and about to be used in overlayfs too.
Move the sticky bit check to an inline helper and call the out-of-line
helper only in the unlikly case of the sticky bit being set.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Pull btrfs data corruption fix from Chris Mason:
"I'm testing a pull with more fixes, but wanted to get this one out so
Greg can pick it up.
The corruption isn't easy to hit, you have to do a readonly snapshot
and have orphans in the snapshot. But my review and testing missed
the bug. Filipe has added a better xfstest to cover it"
* 'for-linus-update' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Revert "Btrfs: race free update of commit root for ro snapshots"
This reverts commit 9c3b306e1c.
Switching only one commit root during a transaction is wrong because it
leads the fs into an inconsistent state. All commit roots should be
switched at once, at transaction commit time, otherwise backref walking
can often miss important references that were only accessible through
the old commit root. Plus, the root item for the snapshot's root wasn't
getting updated and preventing the next transaction commit to do it.
This made several users get into random corruption issues after creation
of readonly snapshots.
A regression test for xfstests will follow soon.
Cc: stable@vger.kernel.org # 3.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"The big thing in this pile is Eric's unmount-on-rmdir series; we
finally have everything we need for that. The final piece of prereqs
is delayed mntput() - now filesystem shutdown always happens on
shallow stack.
Other than that, we have several new primitives for iov_iter (Matt
Wilcox, culled from his XIP-related series) pushing the conversion to
->read_iter()/ ->write_iter() a bit more, a bunch of fs/dcache.c
cleanups and fixes (including the external name refcounting, which
gives consistent behaviour of d_move() wrt procfs symlinks for long
and short names alike) and assorted cleanups and fixes all over the
place.
This is just the first pile; there's a lot of stuff from various
people that ought to go in this window. Starting with
unionmount/overlayfs mess... ;-/"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (60 commits)
fs/file_table.c: Update alloc_file() comment
vfs: Deduplicate code shared by xattr system calls operating on paths
reiserfs: remove pointless forward declaration of struct nameidata
don't need that forward declaration of struct nameidata in dcache.h anymore
take dname_external() into fs/dcache.c
let path_init() failures treated the same way as subsequent link_path_walk()
fix misuses of f_count() in ppp and netlink
ncpfs: use list_for_each_entry() for d_subdirs walk
vfs: move getname() from callers to do_mount()
gfs2_atomic_open(): skip lookups on hashed dentry
[infiniband] remove pointless assignments
gadgetfs: saner API for gadgetfs_create_file()
f_fs: saner API for ffs_sb_create_file()
jfs: don't hash direct inode
[s390] remove pointless assignment of ->f_op in vmlogrdr ->open()
ecryptfs: ->f_op is never NULL
android: ->f_op is never NULL
nouveau: __iomem misannotations
missing annotation in fs/file.c
fs: namespace: suppress 'may be used uninitialized' warnings
...
Now that d_invalidate can no longer fail, stop returning a useless
return code. For the few callers that checked the return code update
remove the handling of d_invalidate failure.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rename to btrfs_alloc_tree_block as it fits to the alloc/find/free +
_tree_block family. The parameter blocksize was set to the metadata
block size, directly or indirectly.
Signed-off-by: David Sterba <dsterba@suse.cz>
There are the branch hints that obviously depend on the data being
processed, the CPU predictor will do better job according to the actual
load. It also does not make sense to use the hints in slow paths that do
a lot of other operations like locking, waiting or IO.
Signed-off-by: David Sterba <dsterba@suse.cz>
->total_bytes,->disk_total_bytes,->bytes_used is protected by chunk
lock when we change them, but sometimes we read them without any lock,
and we might get unexpected value. We fix this problem like inode's
i_size.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The behaviour of a 'chattr -c' consists of getting the current flags,
clearing the FS_COMPR_FL bit and then sending the result to the set
flags ioctl - this means the bit FS_NOCOMP_FL isn't set in the flags
passed to the ioctl. This results in the compression property not being
cleared from the inode - it was cleared only if the bit FS_NOCOMP_FL
was set in the received flags.
Reproducer:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt && cd /mnt
$ mkdir a
$ chattr +c a
$ touch a/file
$ lsattr a/file
--------c------- a/file
$ chattr -c a
$ touch a/file2
$ lsattr a/file2
--------c------- a/file2
$ lsattr -d a
---------------- a
Reported-by: Andreas Schneider <asn@cryptomilk.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.
This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The transaction thread may want to do more work, namely it pokes the
cleaner ktread that will start processing uncleaned subvols.
This can be triggered by user via the 'btrfs fi sync' command, otherwise
there was a delay up to 30 seconds before the cleaner started to clean
old snapshots.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
as in the disk add patch, disk detached from the volume must be
recorded in the syslog as well for the same reason.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
when we add a new disk to the mounted btrfs we don't record it
as of now, disk add is a critical change of btrfs configuration,
it must be recorded in the syslog to help offline investigations
of customer problems when reported.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The form
(value + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT
is equivalent to
(value + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE
The rest is a simple subsitution, no difference in the generated
assembly code.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.
Shaves a few bytes from .text:
text data bss dec hex filename
852418 24560 23112 900090 dbbfa btrfs.ko.before
851074 24584 23112 898770 db6d2 btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_set_key_type and btrfs_key_type are used inconsistently along with
open coded variants. Other members of btrfs_key are accessed directly
without any helpers anyway.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The naming is confusing, generic yet used for a specific cache. Add a
prefix 'ino_' or rename appropriately.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The "inherit" in btrfs_ioctl_snap_create_v2() and "vol_args" in
btrfs_ioctl_rm_dev() are ERR_PTRs so we can't call kfree() on them.
These kind of bugs are "One Err Bugs" where there is just one error
label that does everything. I could set the "inherit = NULL" and keep
the single out label but it ends up being more complicated that way. It
makes the code simpler to re-order the unwind so it's in the mirror
order of the allocation and introduce some new error labels.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The autodefrag code skips defrag when two extents are adjacent. But one
big advantage for autodefrag is cutting down on the number of small
extents, even when they are adjacent. This commit changes it to defrag
all small extents.
Signed-off-by: Chris Mason <clm@fb.com>
When cloning a file that consists of an inline extent, we were creating
an extent map that represents a non-existing trailing hole starting at a
file offset that isn't a multiple of the sector size. This happened because
when processing an inline extent we weren't aligning the extent's length to
the sector size, and therefore incorrectly treating the range
[inline_extent_length; sector_size[ as a hole.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is a better solution for the problem addressed in the following
commit:
Btrfs: update commit root on snapshot creation after orphan cleanup
(3821f34888)
The previous solution wasn't the best because of 2 reasons:
1) It added another full transaction commit, which is more expensive
than just swapping the commit root with the root;
2) If a reboot happened after the first transaction commit (the one
that creates the snapshot) and before the second transaction commit,
then we would end up with the same problem if a send using that
snapshot was requested before the first transaction commit after
the reboot.
This change addresses those 2 issues. The second issue is addressed by
switching the commit root in the dentry lookup VFS callback, which is
also called by the snapshot/subvol creation ioctl and performs orphan
cleanup if needed. Like the vfs, the ioctl locks the parent inode too,
preventing race issues between a dentry lookup and snapshot creation.
Cc: Alex Lyakas <alex.btrfs@zadarastorage.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"We've queued up a few fixes in my for-linus branch"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix crash when starting transaction
Btrfs: fix btrfs_print_leaf for skinny metadata
Btrfs: fix race of using total_bytes_pinned
btrfs: use E2BIG instead of EIO if compression does not help
btrfs: remove stale comment from btrfs_flush_all_pending_stuffs
Btrfs: fix use-after-free when cloning a trailing file hole
btrfs: fix null pointer dereference in btrfs_show_devname when name is null
btrfs: fix null pointer dereference in clone_fs_devices when name is null
btrfs: fix nossd and ssd_spread mount option regression
Btrfs: fix race between balance recovery and root deletion
Btrfs: atomically set inode->i_flags in btrfs_update_iflags
btrfs: only unlock block in verify_parent_transid if we locked it
Btrfs: assert send doesn't attempt to start transactions
btrfs compression: reuse recently used workspace
Btrfs: fix crash when mounting raid5 btrfs with missing disks
btrfs: create sprout should rename fsid on the sysfs as well
btrfs: dev replace should replace the sysfs entry
btrfs: dev add should add its sysfs entry
btrfs: dev delete should remove sysfs entry
btrfs: rename add_device_membership to btrfs_kobj_add_device
The transaction handle was being used after being freed.
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change is based on the corresponding recent change for ext4:
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
That has the following commit message that applies to btrfs as well:
"Use cmpxchg() to atomically set i_flags instead of clearing out the
S_IMMUTABLE, S_APPEND, etc. flags and then setting them from the
EXT4_IMMUTABLE_FL, EXT4_APPEND_FL flags, since this opens up a race
where an immutable file has the immutable flag cleared for a brief
window of time."
Replacing EXT4_IMMUTABLE_FL and EXT4_APPEND_FL with BTRFS_INODE_IMMUTABLE
and BTRFS_INODE_APPEND, respectively.
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull more btrfs updates from Chris Mason:
"This has a few fixes since our last pull and a new ioctl for doing
btree searches from userland. It's very similar to the existing
ioctl, but lets us return larger items back down to the app"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix error handling in create_pending_snapshot
btrfs: fix use of uninit "ret" in end_extent_writepage()
btrfs: free ulist in qgroup_shared_accounting() error path
Btrfs: fix qgroups sanity test crash or hang
btrfs: prevent RCU warning when dereferencing radix tree slot
Btrfs: fix unfinished readahead thread for raid5/6 degraded mounting
btrfs: new ioctl TREE_SEARCH_V2
btrfs: tree_search, search_ioctl: direct copy to userspace
btrfs: new function read_extent_buffer_to_user
btrfs: tree_search, copy_to_sk: return needed size on EOVERFLOW
btrfs: tree_search, copy_to_sk: return EOVERFLOW for too small buffer
btrfs: tree_search, search_ioctl: accept varying buffer
btrfs: tree_search: eliminate redundant nr_items check
This new ioctl call allows the user to supply a buffer of varying size in which
a tree search can store its results. This is much more flexible if you want to
receive items which are larger than the current fixed buffer of 3992 bytes or
if you want to fetch more items at once. Items larger than this buffer are for
example some of the type EXTENT_CSUM.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
By copying each found item seperatly to userspace, we do not need extra
buffer in the kernel.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
If an item in tree_search is too large to be stored in the given buffer, return
the needed size (including the header).
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
In copy_to_sk, if an item is too large for the given buffer, it now returns
-EOVERFLOW instead of copying a search_header with len = 0. For backward
compatibility for the first item it still copies such a header to the buffer,
but not any other following items, which could have fitted.
tree_search changes -EOVERFLOW back to 0 to behave similiar to the way it
behaved before this patch.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
rewrite search_ioctl to accept a buffer with varying size
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
If the amount of items reached the given limit of nr_items, we can leave
copy_to_sk without updating the key. Also by returning 1 we leave the loop in
search_ioctl without rechecking if we reached the given limit.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
Pull btrfs updates from Chris Mason:
"The biggest change here is Josef's rework of the btrfs quota
accounting, which improves the in-memory tracking of delayed extent
operations.
I had been working on Btrfs stack usage for a while, mostly because it
had become impossible to do long stress runs with slab, lockdep and
pagealloc debugging turned on without blowing the stack. Even though
you upgraded us to a nice king sized stack, I kept most of the
patches.
We also have some very hard to find corruption fixes, an awesome sysfs
use after free, and the usual assortment of optimizations, cleanups
and other fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (80 commits)
Btrfs: convert smp_mb__{before,after}_clear_bit
Btrfs: fix scrub_print_warning to handle skinny metadata extents
Btrfs: make fsync work after cloning into a file
Btrfs: use right type to get real comparison
Btrfs: don't check nodes for extent items
Btrfs: don't release invalid page in btrfs_page_exists_in_range()
Btrfs: make sure we retry if page is a retriable exception
Btrfs: make sure we retry if we couldn't get the page
btrfs: replace EINVAL with EOPNOTSUPP for dev_replace raid56
trivial: fs/btrfs/ioctl.c: fix typo s/substract/subtract/
Btrfs: fix leaf corruption after __btrfs_drop_extents
Btrfs: ensure btrfs_prev_leaf doesn't miss 1 item
Btrfs: fix clone to deal with holes when NO_HOLES feature is enabled
btrfs: free delayed node outside of root->inode_lock
btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX
Btrfs: fix transaction leak during fsync call
btrfs: Avoid trucating page or punching hole in a already existed hole.
Btrfs: update commit root on snapshot creation after orphan cleanup
Btrfs: ioctl, don't re-lock extent range when not necessary
Btrfs: avoid visiting all extent items when cloning a range
...
When cloning into a file, we were correctly replacing the extent
items in the target range and removing the extent maps. However
we weren't replacing the extent maps with new ones that point to
the new extents - as a consequence, an incremental fsync (when the
inode doesn't have the full sync flag) was a NOOP, since it relies
on the existence of extent maps in the modified list of the inode's
extent map tree, which was empty. Therefore add new extent maps to
reflect the target clone range.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Antonio Ospite <ao2@ao2.it>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <clm@fb.com>
If the NO_HOLES feature is enabled holes don't have file extent items in
the btree that represent them anymore. This made the clone operation
ignore the gaps that exist between consecutive file extent items and
therefore not create the holes at the destination. When not using the
NO_HOLES feature, the holes were created at the destination.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
To be accurate about the error case,
if the new size is beyond ULLONG_MAX, return ERANGE instead of EINVAL.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
On snapshot creation (either writable or read-only), we do orphan cleanup
against the root of the snapshot. If the cleanup did remove any orphans,
then the current root node will be different from the commit root node
until the next transaction commit happens.
A send operation always uses the commit root of a snapshot - this means
it will see the orphans if it starts computing the send stream before the
next transaction commit happens (triggered by a timer or sync() for .e.g),
which is when the commit root gets assigned a reference to current root,
where the orphans are not visible anymore. The consequence of send seeing
the orphans is explained below.
For example:
mkfs.btrfs -f /dev/sdd
mount -o commit=999 /dev/sdd /mnt
# open a file with O_TMPFILE and leave it open
# write some data to the file
btrfs subvolume snapshot -r /mnt /mnt/snap1
btrfs send /mnt/snap1 -f /tmp/send.data
The send operation will fail with the following error:
ERROR: send ioctl failed with -116: Stale file handle
What happens here is that our snapshot has an orphan inode still visible
through the commit root, that corresponds to the tmpfile. However send
will attempt to call inode.c:btrfs_iget(), with the goal of reading the
file's data, which will return -ESTALE because it will use the current
root (and not the commit root) of the snapshot.
Of course, there are other cases where we can get orphans, but this
example using a tmpfile makes it much easier to reproduce the issue.
Therefore on snapshot creation, after calling btrfs_orphan_cleanup, if
the commit root is different from the current root, just commit the
transaction associated with the snapshot's root (if it exists), so that
a send will not see any orphans that don't exist anymore. This also
guarantees a send will always see the same content regardless of whether
a transaction commit happened already before the send was requested and
after the orphan cleanup (meaning the commit root and current roots are
the same) or it hasn't happened yet (commit and current roots are
different).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ioctl.c:lock_extent_range(), after locking our target range, the
ordered extent that btrfs_lookup_first_ordered_extent() returns us
may not overlap our target range at all. In this case we would just
unlock our target range, wait for any new ordered extents that overlap
the range to complete, lock again the range and repeat all these steps
until we don't get any ordered extent and the delalloc flag isn't set
in the io tree for our target range.
Therefore just stop if we get an ordered extent that doesn't overlap
our target range and the dealalloc flag isn't set for the range in
the inode's io tree.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
When cloning a range of a file, we were visiting all the extent items in
the btree that belong to our source inode. We don't need to visit those
extent items that don't overlap the range we are cloning, as doing so only
makes us waste time and do unnecessary btree navigations (btrfs_next_leaf)
for inodes that have a large number of file extent items in the btree.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were setting the BTRFS_ROOT_SUBVOL_DEAD flag on the root of the
parent of our target snapshot, instead of setting it in the target
snapshot's root.
This is easy to observe by running the following scenario:
mkfs.btrfs -f /dev/sdd
mount /dev/sdd /mnt
btrfs subvolume create /mnt/first_subvol
btrfs subvolume snapshot -r /mnt /mnt/mysnap1
btrfs subvolume delete /mnt/first_subvol
btrfs subvolume snapshot -r /mnt /mnt/mysnap2
btrfs send -p /mnt/mysnap1 /mnt/mysnap2 -f /tmp/send.data
The send command failed because the send ioctl returned -EPERM.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>