Commit Graph

137 Commits

Author SHA1 Message Date
Benjamin Thiel e8da08a088 efi: Pull up arch-specific prototype efi_systab_show_arch()
Pull up arch-specific prototype efi_systab_show_arch() in order to
fix a -Wmissing-prototypes warning:

arch/x86/platform/efi/efi.c:957:7: warning: no previous prototype for
‘efi_systab_show_arch’ [-Wmissing-prototypes]
char *efi_systab_show_arch(char *str)

Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Link: https://lore.kernel.org/r/20200516132647.14568-1-b.thiel@posteo.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-05-17 11:46:50 +02:00
Ard Biesheuvel dd09fad9d2 efi/x86: Ignore the memory attributes table on i386
Commit:

  3a6b6c6fb2 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE initialization common across all architectures")

moved the call to efi_memattr_init() from ARM specific to the generic
EFI init code, in order to be able to apply the restricted permissions
described in that table on x86 as well.

We never enabled this feature fully on i386, and so mapping and
reserving this table is pointless. However, due to the early call to
memblock_reserve(), the memory bookkeeping gets confused to the point
where it produces the splat below when we try to map the memory later
on:

  ------------[ cut here ]------------
  ioremap on RAM at 0x3f251000 - 0x3fa1afff
  WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:166 __ioremap_caller ...
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.20.0 #48
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  EIP: __ioremap_caller.constprop.0+0x249/0x260
  Code: 90 0f b7 05 4e 38 40 de 09 45 e0 e9 09 ff ff ff 90 8d 45 ec c6 05 ...
  EAX: 00000029 EBX: 00000000 ECX: de59c228 EDX: 00000001
  ESI: 3f250fff EDI: 00000000 EBP: de3edf20 ESP: de3edee0
  DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00200296
  CR0: 80050033 CR2: ffd17000 CR3: 1e58c000 CR4: 00040690
  Call Trace:
   ioremap_cache+0xd/0x10
   ? old_map_region+0x72/0x9d
   old_map_region+0x72/0x9d
   efi_map_region+0x8/0xa
   efi_enter_virtual_mode+0x260/0x43b
   start_kernel+0x329/0x3aa
   i386_start_kernel+0xa7/0xab
   startup_32_smp+0x164/0x168
  ---[ end trace e15ccf6b9f356833 ]---

Let's work around this by disregarding the memory attributes table
altogether on i386, which does not result in a loss of functionality
or protection, given that we never consumed the contents.

Fixes: 3a6b6c6fb2 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE ... ")
Tested-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200304165917.5893-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-21-ardb@kernel.org
2020-03-08 09:58:23 +01:00
Ingo Molnar 6120681bdf Merge branch 'efi/urgent' into efi/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-08 09:57:58 +01:00
Ingo Molnar 3be5f0d286 Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
More EFI updates for v5.7

 - Incorporate a stable branch with the EFI pieces of Hans's work on
   loading device firmware from EFI boot service memory regions

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-08 09:23:36 +01:00
Hans de Goede 0e72a6a3cf efi: Export boot-services code and data as debugfs-blobs
Sometimes it is useful to be able to dump the efi boot-services code and
data. This commit adds these as debugfs-blobs to /sys/kernel/debug/efi,
but only if efi=debug is passed on the kernel-commandline as this requires
not freeing those memory-regions, which costs 20+ MB of RAM.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-2-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-03-03 10:27:30 +01:00
Ard Biesheuvel 3e03dca500 efi: Mark all EFI runtime services as unsupported on non-EFI boot
Recent changes to the way we deal with EFI runtime services that
are marked as unsupported by the firmware resulted in a regression
for non-EFI boot. The problem is that all EFI runtime services are
marked as available by default, and any non-NULL checks on the EFI
service function pointers (which will be non-NULL even for runtime
services that are unsupported on an EFI boot) were replaced with
checks against the mask stored in efi.runtime_supported_mask.

When doing a non-EFI boot, this check against the mask will return
a false positive, given the fact that all runtime services are
marked as enabled by default. Since we dropped the non-NULL check
of the runtime service function pointer in favor of the mask check,
we will now unconditionally dereference the function pointer, even
if it is NULL, and go boom.

So let's ensure that the mask reflects reality on a non-EFI boot,
which is that all EFI runtime services are unsupported.

Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20200228121408.9075-7-ardb@kernel.org
2020-02-29 10:16:57 +01:00
Heinrich Schuchardt 98649365e5 efi: Don't shadow 'i' in efi_config_parse_tables()
Shadowing variables is generally frowned upon.

Let's simply reuse the existing loop counter 'i' instead of shadowing it.

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20200223221324.156086-1-xypron.glpk@gmx.de
Link: https://lore.kernel.org/r/20200228121408.9075-4-ardb@kernel.org
2020-02-29 10:16:57 +01:00
Tom Lendacky badc61982a efi/x86: Add RNG seed EFI table to unencrypted mapping check
When booting with SME active, EFI tables must be mapped unencrypted since
they were built by UEFI in unencrypted memory. Update the list of tables
to be checked during early_memremap() processing to account for the EFI
RNG seed table.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Link: https://lore.kernel.org/r/b64385fc13e5d7ad4b459216524f138e7879234f.1582662842.git.thomas.lendacky@amd.com
Link: https://lore.kernel.org/r/20200228121408.9075-3-ardb@kernel.org
2020-02-29 10:16:56 +01:00
Jason A. Donenfeld be36f9e751 efi: READ_ONCE rng seed size before munmap
This function is consistent with using size instead of seed->size
(except for one place that this patch fixes), but it reads seed->size
without using READ_ONCE, which means the compiler might still do
something unwanted. So, this commit simply adds the READ_ONCE
wrapper.

Fixes: 636259880a ("efi: Add support for seeding the RNG from a UEFI ...")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200217123354.21140-1-Jason@zx2c4.com
Link: https://lore.kernel.org/r/20200221084849.26878-5-ardb@kernel.org
2020-02-26 15:31:43 +01:00
Ard Biesheuvel e5c3b1cc99 efi: Register EFI rtc platform device only when available
Drop the separate driver that registers the EFI rtc on all EFI
systems that have runtime services available, and instead, move
the registration into the core EFI code, and make it conditional
on whether the actual time related services are available.

Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel bf67fad19e efi: Use more granular check for availability for variable services
The UEFI spec rev 2.8 permits firmware implementations to support only
a subset of EFI runtime services at OS runtime (i.e., after the call to
ExitBootServices()), so let's take this into account in the drivers that
rely specifically on the availability of the EFI variable services.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel fe4db90a80 efi: Add support for EFI_RT_PROPERTIES table
Take the newly introduced EFI_RT_PROPERTIES_TABLE configuration table
into account, which carries a mask of which EFI runtime services are
still functional after ExitBootServices() has been called by the OS.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 96a3dd3dec efi: Store mask of supported runtime services in struct efi
Revision 2.8 of the UEFI spec introduces provisions for firmware to
advertise lack of support for certain runtime services at OS runtime.
Let's store this mask in struct efi for easy access.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel ac5abc700a efi/arm: Move FDT param discovery code out of efi.c
On ARM systems, we discover the UEFI system table address and memory
map address from the /chosen node in the device tree, or in the Xen
case, from a similar node under /hypervisor.

Before making some functional changes to that code, move it into its
own file that only gets built if CONFIG_EFI_PARAMS_FROM_FDT=y.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 9cd437ac0e efi/x86: Make fw_vendor, config_table and runtime sysfs nodes x86 specific
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 06c0bd9343 efi: Clean up config_parse_tables()
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.

This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 3a0701dc7f efi: Make efi_config_init() x86 only
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 14fb420909 efi: Merge EFI system table revision and vendor checks
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel b7846e6be2 efi: Make memreserve table handling local to efi.c
There is no need for struct efi to carry the address of the memreserve
table and share it with the world. So move it out and make it
__initdata as well.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel a17e809ea5 efi: Move mem_attr_table out of struct efi
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 5d288dbd88 efi: Make rng_seed table handling local to efi.c
Move the rng_seed table address from struct efi into a static global
variable in efi.c, which is the only place we ever refer to it anyway.
This reduces the footprint of struct efi, which is a r/w data structure
that is shared with the world.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel fd506e0cf9 efi: Move UGA and PROP table handling to x86 code
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.

The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 120540f230 efi/ia64: Move HCDP and MPS table handling into IA64 arch code
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel 50d53c58dd efi: Drop handling of 'boot_info' configuration table
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Anshuman Khandual 62b605b53a efi: Fix comment for efi_mem_type() wrt absent physical addresses
A previous commit f99afd08a4 ("efi: Update efi_mem_type() to return an
error rather than 0") changed the return value from EFI_RESERVED_TYPE to
-EINVAL when the searched physical address is not present in any memory
descriptor. But the comment preceding the function never changed. Let's
change the comment now to reflect the new return value -EINVAL.

Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-10-ardb@kernel.org
2020-01-20 08:14:28 +01:00
Linus Torvalds a114a18c7d Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI fixes from Ingo Molnar:
 "Protect presistent EFI memory reservations from kexec, fix EFIFB early
  console, EFI stub graphics output fixes and other misc fixes."

* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  efi: Don't attempt to map RCI2 config table if it doesn't exist
  efi/earlycon: Remap entire framebuffer after page initialization
  efi: Fix efi_loaded_image_t::unload type
  efi/gop: Fix memory leak in __gop_query32/64()
  efi/gop: Return EFI_SUCCESS if a usable GOP was found
  efi/gop: Return EFI_NOT_FOUND if there are no usable GOPs
  efi/memreserve: Register reservations as 'reserved' in /proc/iomem
2019-12-17 10:39:55 -08:00
Pankaj Bharadiya c593642c8b treewide: Use sizeof_field() macro
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except
at places where these are defined. Later patches will remove the unused
definition of FIELD_SIZEOF().

This patch is generated using following script:

EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h"

git grep -l -e "\bFIELD_SIZEOF\b" | while read file;
do

	if [[ "$file" =~ $EXCLUDE_FILES ]]; then
		continue
	fi
	sed -i  -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file;
done

Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com>
Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David Miller <davem@davemloft.net> # for net
2019-12-09 10:36:44 -08:00
Ard Biesheuvel ab0eb16205 efi/memreserve: Register reservations as 'reserved' in /proc/iomem
Memory regions that are reserved using efi_mem_reserve_persistent()
are recorded in a special EFI config table which survives kexec,
allowing the incoming kernel to honour them as well. However,
such reservations are not visible in /proc/iomem, and so the kexec
tools that load the incoming kernel and its initrd into memory may
overwrite these reserved regions before the incoming kernel has a
chance to reserve them from further use.

Address this problem by adding these reservations to /proc/iomem as
they are created. Note that reservations that are inherited from a
previous kernel are memblock_reserve()'d early on, so they are already
visible in /proc/iomem.

Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: <stable@vger.kernel.org> # v5.4+
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191206165542.31469-2-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-08 12:42:18 +01:00
Rafael J. Wysocki 782b59711e Merge branch 'acpi-mm'
* acpi-mm:
  ACPI: HMAT: use %u instead of %d to print u32 values
  ACPI: NUMA: HMAT: fix a section mismatch
  ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
  ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
  ACPI: NUMA: HMAT: Register HMAT at device_initcall level
  device-dax: Add a driver for "hmem" devices
  dax: Fix alloc_dax_region() compile warning
  lib: Uplevel the pmem "region" ida to a global allocator
  x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
  arm/efi: EFI soft reservation to memblock
  x86/efi: EFI soft reservation to E820 enumeration
  efi: Common enable/disable infrastructure for EFI soft reservation
  x86/efi: Push EFI_MEMMAP check into leaf routines
  efi: Enumerate EFI_MEMORY_SP
  ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
2019-11-26 10:31:02 +01:00
Rafael J. Wysocki 713608a30b Merge branch 'acpica'
* acpica:
  ACPICA: Update version to 20191018
  ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
  ACPICA: acpiexec: initialize all simple types and field units from user input
  ACPICA: debugger: add field unit support for acpi_db_get_next_token
  ACPICA: debugger: surround field unit output with braces '{'
  ACPICA: debugger: add command to dump all fields of particular subtype
  ACPICA: utilities: add flag to only display data when dumping buffers
  ACPICA: make acpi_load_table() return table index
  ACPICA: Add new external interface, acpi_unload_table()
  ACPICA: More Clang changes
  ACPICA: Win OSL: Replace get_tick_count with get_tick_count64
  ACPICA: Results from Clang
2019-11-26 10:29:54 +01:00
Dan Williams b617c5266e efi: Common enable/disable infrastructure for EFI soft reservation
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".

The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback.  Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.

As for this patch, define the common helpers to determine if the
EFI_MEMORY_SP attribute should be honored. The determination needs to be
made early to prevent the kernel from being loaded into soft-reserved
memory, or otherwise allowing early allocations to land there. Follow-on
changes are needed per architecture to leverage these helpers in their
respective mem-init paths.

Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:08 +01:00
Dan Williams fe3e5e65c0 efi: Enumerate EFI_MEMORY_SP
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose". The intent of this bit is to allow the OS to identify precious
or scarce memory resources and optionally manage it separately from
EfiConventionalMemory. As defined older OSes that do not know about this
attribute are permitted to ignore it and the memory will be handled
according to the OS default policy for the given memory type.

In other words, this "specific purpose" hint is deliberately weaker than
EfiReservedMemoryType in that the system continues to operate if the OS
takes no action on the attribute. The risk of taking no action is
potentially unwanted / unmovable kernel allocations from the designated
resource that prevent the full realization of the "specific purpose".
For example, consider a system with a high-bandwidth memory pool. Older
kernels are permitted to boot and consume that memory as conventional
"System-RAM" newer kernels may arrange for that memory to be set aside
(soft reserved) by the system administrator for a dedicated
high-bandwidth memory aware application to consume.

Specifically, this mechanism allows for the elimination of scenarios
where platform firmware tries to game OS policy by lying about ACPI SLIT
values, i.e. claiming that a precious memory resource has a high
distance to trigger the OS to avoid it by default. This reservation hint
allows platform-firmware to instead tell the truth about performance
characteristics by indicate to OS memory management to put immovable
allocations elsewhere.

Implement simple detection of the bit for EFI memory table dumps and
save the kernel policy for a follow-on change.

Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:43:54 +01:00
Dominik Brodowski 18b915ac6b efi/random: Treat EFI_RNG_PROTOCOL output as bootloader randomness
Commit 428826f535 ("fdt: add support for rng-seed") introduced
add_bootloader_randomness(), permitting randomness provided by the
bootloader or firmware to be credited as entropy. However, the fact
that the UEFI support code was already wired into the RNG subsystem
via a call to add_device_randomness() was overlooked, and so it was
not converted at the same time.

Note that this UEFI (v2.4 or newer) feature is currently only
implemented for EFI stub booting on ARM, and further note that
CONFIG_RANDOM_TRUST_BOOTLOADER must be enabled, and this should be
done only if there indeed is sufficient trust in the bootloader
_and_ its source of randomness.

[ ardb: update commit log ]

Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191029173755.27149-4-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-31 09:40:18 +01:00
Nikolaus Voss 1770093c5b ACPICA: make acpi_load_table() return table index
ACPICA commit d1716a829d19be23277d9157c575a03b9abb7457

For unloading an ACPI table, it is necessary to provide the index of
the table. The method intended for dynamically loading or hotplug
addition of tables, acpi_load_table(), should provide this information
via an optional pointer to the loaded table index.

This patch fixes the table unload function of acpi_configfs.

Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Fixes: d06c47e3dd ("ACPI: configfs: Resolve objects on host-directed table loads")
Link: https://github.com/acpica/acpica/commit/d1716a82
Signed-off-by: Nikolaus Voss <nikolaus.voss@loewensteinmedical.de>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-10-28 22:12:46 +01:00
Ard Biesheuvel c05f8f92b7 efivar/ssdt: Don't iterate over EFI vars if no SSDT override was specified
The kernel command line option efivar_ssdt= allows the name to be
specified of an EFI variable containing an ACPI SSDT table that should
be loaded into memory by the OS, and treated as if it was provided by
the firmware.

Currently, that code will always iterate over the EFI variables and
compare each name with the provided name, even if the command line
option wasn't set to begin with.

So bail early when no variable name was provided. This works around a
boot regression on the 2012 Mac Pro, as reported by Scott.

Tested-by: Scott Talbert <swt@techie.net>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Fixes: 475fb4e8b2 ("efi / ACPI: load SSTDs from EFI variables")
Link: https://lkml.kernel.org/r/20191002165904.8819-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-07 15:24:35 +02:00
Linus Torvalds aefcf2f4b5 Merge branch 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull kernel lockdown mode from James Morris:
 "This is the latest iteration of the kernel lockdown patchset, from
  Matthew Garrett, David Howells and others.

  From the original description:

    This patchset introduces an optional kernel lockdown feature,
    intended to strengthen the boundary between UID 0 and the kernel.
    When enabled, various pieces of kernel functionality are restricted.
    Applications that rely on low-level access to either hardware or the
    kernel may cease working as a result - therefore this should not be
    enabled without appropriate evaluation beforehand.

    The majority of mainstream distributions have been carrying variants
    of this patchset for many years now, so there's value in providing a
    doesn't meet every distribution requirement, but gets us much closer
    to not requiring external patches.

  There are two major changes since this was last proposed for mainline:

   - Separating lockdown from EFI secure boot. Background discussion is
     covered here: https://lwn.net/Articles/751061/

   -  Implementation as an LSM, with a default stackable lockdown LSM
      module. This allows the lockdown feature to be policy-driven,
      rather than encoding an implicit policy within the mechanism.

  The new locked_down LSM hook is provided to allow LSMs to make a
  policy decision around whether kernel functionality that would allow
  tampering with or examining the runtime state of the kernel should be
  permitted.

  The included lockdown LSM provides an implementation with a simple
  policy intended for general purpose use. This policy provides a coarse
  level of granularity, controllable via the kernel command line:

    lockdown={integrity|confidentiality}

  Enable the kernel lockdown feature. If set to integrity, kernel features
  that allow userland to modify the running kernel are disabled. If set to
  confidentiality, kernel features that allow userland to extract
  confidential information from the kernel are also disabled.

  This may also be controlled via /sys/kernel/security/lockdown and
  overriden by kernel configuration.

  New or existing LSMs may implement finer-grained controls of the
  lockdown features. Refer to the lockdown_reason documentation in
  include/linux/security.h for details.

  The lockdown feature has had signficant design feedback and review
  across many subsystems. This code has been in linux-next for some
  weeks, with a few fixes applied along the way.

  Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
  when kernel lockdown is in confidentiality mode") is missing a
  Signed-off-by from its author. Matthew responded that he is providing
  this under category (c) of the DCO"

* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
  kexec: Fix file verification on S390
  security: constify some arrays in lockdown LSM
  lockdown: Print current->comm in restriction messages
  efi: Restrict efivar_ssdt_load when the kernel is locked down
  tracefs: Restrict tracefs when the kernel is locked down
  debugfs: Restrict debugfs when the kernel is locked down
  kexec: Allow kexec_file() with appropriate IMA policy when locked down
  lockdown: Lock down perf when in confidentiality mode
  bpf: Restrict bpf when kernel lockdown is in confidentiality mode
  lockdown: Lock down tracing and perf kprobes when in confidentiality mode
  lockdown: Lock down /proc/kcore
  x86/mmiotrace: Lock down the testmmiotrace module
  lockdown: Lock down module params that specify hardware parameters (eg. ioport)
  lockdown: Lock down TIOCSSERIAL
  lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
  acpi: Disable ACPI table override if the kernel is locked down
  acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
  ACPI: Limit access to custom_method when the kernel is locked down
  x86/msr: Restrict MSR access when the kernel is locked down
  x86: Lock down IO port access when the kernel is locked down
  ...
2019-09-28 08:14:15 -07:00
Matthew Garrett 1957a85b00 efi: Restrict efivar_ssdt_load when the kernel is locked down
efivar_ssdt_load allows the kernel to import arbitrary ACPI code from an
EFI variable, which gives arbitrary code execution in ring 0. Prevent
that when the kernel is locked down.

Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: linux-efi@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
2019-08-19 21:54:17 -07:00
Narendra K 1c5fecb612 efi: Export Runtime Configuration Interface table to sysfs
System firmware advertises the address of the 'Runtime
Configuration Interface table version 2 (RCI2)' via
an EFI Configuration Table entry. This code retrieves the RCI2
table from the address and exports it to sysfs as a binary
attribute 'rci2' under /sys/firmware/efi/tables directory.
The approach adopted is similar to the attribute 'DMI' under
/sys/firmware/dmi/tables.

RCI2 table contains BIOS HII in XML format and is used to populate
BIOS setup page in Dell EMC OpenManage Server Administrator tool.
The BIOS setup page contains BIOS tokens which can be configured.

Signed-off-by: Narendra K <Narendra.K@dell.com>
Reviewed-by: Mario Limonciello <mario.limonciello@dell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:10:25 +03:00
Ard Biesheuvel 5828efb95b efi: ia64: move SAL systab handling out of generic EFI code
The SAL systab is an Itanium specific EFI configuration table, so
move its handling into arch/ia64 where it belongs.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel ec7e1605d7 efi/x86: move UV_SYSTAB handling into arch/x86
The SGI UV UEFI machines are tightly coupled to the x86 architecture
so there is no need to keep any awareness of its existence in the
generic EFI layer, especially since we already have the infrastructure
to handle arch-specific configuration tables, and were even already
using it to some extent.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel e55f31a599 efi: x86: move efi_is_table_address() into arch/x86
The function efi_is_table_address() and the associated array of table
pointers is specific to x86. Since we will be adding some more x86
specific tables, let's move this code out of the generic code first.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Linus Torvalds 884922591e tpmdd updates for Linux v5.3
-----BEGIN PGP SIGNATURE-----
 
 iJYEABYIAD4WIQRE6pSOnaBC00OEHEIaerohdGur0gUCXRGG5iAcamFya2tvLnNh
 a2tpbmVuQGxpbnV4LmludGVsLmNvbQAKCRAaerohdGur0lcRAP9xHUuaHm7/d6Qh
 nAa1Sm+99aO1D/9WfEc4pjy3hASyOAEAwIecBZ5t8JceXXaYEv/rYNJCpogvZyyf
 mdU4p9sc8AU=
 =lzfE
 -----END PGP SIGNATURE-----

Merge tag 'tpmdd-next-20190625' of git://git.infradead.org/users/jjs/linux-tpmdd

Pull tpm updates from Jarkko Sakkinen:
 "This contains two critical bug fixes and support for obtaining TPM
  events triggered by ExitBootServices().

  For the latter I have to give a quite verbose explanation not least
  because I had to revisit all the details myself to remember what was
  going on in Matthew's patches.

  The preboot software stack maintains an event log that gets entries
  every time something gets hashed to any of the PCR registers. What
  gets hashed could be a component to be run or perhaps log of some
  actions taken just to give couple of coarse examples. In general,
  anything relevant for the boot process that the preboot software does
  gets hashed and a log entry with a specific event type [1].

  The main application for this is remote attestation and the reason why
  it is useful is nicely put in the very first section of [1]:

     "Attestation is used to provide information about the platform’s
      state to a challenger. However, PCR contents are difficult to
      interpret; therefore, attestation is typically more useful when
      the PCR contents are accompanied by a measurement log. While not
      trusted on their own, the measurement log contains a richer set of
      information than do the PCR contents. The PCR contents are used to
      provide the validation of the measurement log."

  Because EFI_TCG2_PROTOCOL.GetEventLog() is not available after calling
  ExitBootServices(), Linux EFI stub copies the event log to a custom
  configuration table. Unfortunately, ExitBootServices() also generates
  events and obviously these events do not get copied to that table.
  Luckily firmware does this for us by providing a configuration table
  identified by EFI_TCG2_FINAL_EVENTS_TABLE_GUID.

  This essentially contains necessary changes to provide the full event
  log for the use the user space that is concatenated from these two
  partial event logs [2]"

[1] https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
[2] The final concatenation is done in drivers/char/tpm/eventlog/efi.c

* tag 'tpmdd-next-20190625' of git://git.infradead.org/users/jjs/linux-tpmdd:
  tpm: Don't duplicate events from the final event log in the TCG2 log
  Abstract out support for locating an EFI config table
  tpm: Fix TPM 1.2 Shutdown sequence to prevent future TPM operations
  efi: Attempt to get the TCG2 event log in the boot stub
  tpm: Append the final event log to the TPM event log
  tpm: Reserve the TPM final events table
  tpm: Abstract crypto agile event size calculations
  tpm: Actually fail on TPM errors during "get random"
2019-07-08 18:47:42 -07:00
Matthew Garrett c46f340569 tpm: Reserve the TPM final events table
UEFI systems provide a boot services protocol for obtaining the TPM
event log, but this is unusable after ExitBootServices() is called.
Unfortunately ExitBootServices() itself triggers additional TPM events
that then can't be obtained using this protocol. The platform provides a
mechanism for the OS to obtain these events by recording them to a
separate UEFI configuration table which the OS can then map.

Unfortunately this table isn't self describing in terms of providing its
length, so we need to parse the events inside it to figure out how long
it is. Since the table isn't mapped at this point, we need to extend the
length calculation function to be able to map the event as it goes
along.

(Fixes by Bartosz Szczepanek <bsz@semihalf.com>)

Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Bartosz Szczepanek <bsz@semihalf.com>
Tested-by: Bartosz Szczepanek <bsz@semihalf.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-06-24 23:57:49 +03:00
Ard Biesheuvel 18df7577ad efi/memreserve: deal with memreserve entries in unmapped memory
Ensure that the EFI memreserve entries can be accessed, even if they
are located in memory that the kernel (e.g., a crashkernel) omits from
the linear map.

Fixes: 80424b02d4 ("efi: Reduce the amount of memblock reservations ...")
Cc: <stable@vger.kernel.org> # 5.0+
Reported-by: Jonathan Richardson <jonathan.richardson@broadcom.com>
Reviewed-by: Jonathan Richardson <jonathan.richardson@broadcom.com>
Tested-by: Jonathan Richardson <jonathan.richardson@broadcom.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-06-11 16:07:19 +02:00
Thomas Gleixner 55716d2643 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 428
Based on 1 normalized pattern(s):

  this file is released under the gplv2

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 68 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190114.292346262@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:37:16 +02:00
Rob Bradford 88447c5b93 efi: Allow the number of EFI configuration tables entries to be zero
Only try and access the EFI configuration tables if there there are any
reported. This allows EFI to be continued to used on systems where there
are no configuration table entries.

Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Gen Zhang <blackgod016574@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190525112559.7917-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-25 13:48:17 +02:00
Ard Biesheuvel 582a32e708 efi/arm: Revert "Defer persistent reservations until after paging_init()"
This reverts commit eff8962888, which
deferred the processing of persistent memory reservations to a point
where the memory may have already been allocated and overwritten,
defeating the purpose.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215123333.21209-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-16 15:02:03 +01:00
Ard Biesheuvel 80424b02d4 efi: Reduce the amount of memblock reservations for persistent allocations
The current implementation of efi_mem_reserve_persistent() is rather
naive, in the sense that for each invocation, it creates a separate
linked list entry to describe the reservation. Since the linked list
entries themselves need to persist across subsequent kexec reboots,
every reservation created this way results in two memblock_reserve()
calls at the next boot.

On arm64 systems with 100s of CPUs, this may result in a excessive
number of memblock reservations, and needless fragmentation.

So instead, make use of the newly updated struct linux_efi_memreserve
layout to put multiple reservations into a single linked list entry.
This should get rid of the numerous tiny memblock reservations, and
effectively cut the total number of reservations in half on arm64
systems with many CPUs.

 [ mingo: build warning fix. ]

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-11-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:37:57 +01:00
Ard Biesheuvel 5f0b0ecf04 efi: Permit multiple entries in persistent memreserve data structure
In preparation of updating efi_mem_reserve_persistent() to cause less
fragmentation when dealing with many persistent reservations, update
the struct definition and the code that handles it currently so it
can describe an arbitrary number of reservations using a single linked
list entry. The actual optimization will be implemented in a subsequent
patch.

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-10-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:10:31 +01:00
Ard Biesheuvel 976b489120 efi: Prevent GICv3 WARN() by mapping the memreserve table before first use
Mapping the MEMRESERVE EFI configuration table from an early initcall
is too late: the GICv3 ITS code that creates persistent reservations
for the boot CPU's LPI tables is invoked from init_IRQ(), which runs
much earlier than the handling of the initcalls. This results in a
WARN() splat because the LPI tables cannot be reserved persistently,
which will result in silent memory corruption after a kexec reboot.

So instead, invoke the initialization performed by the initcall from
efi_mem_reserve_persistent() itself as well, but keep the initcall so
that the init is guaranteed to have been called before SMP boot.

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Jan Glauber <jglauber@cavium.com>
Tested-by: John Garry <john.garry@huawei.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Fixes: 63eb322d89 ("efi: Permit calling efi_mem_reserve_persistent() ...")
Link: http://lkml.kernel.org/r/20181123215132.7951-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-27 13:50:20 +01:00