mirror of https://gitee.com/openkylin/linux.git
9372 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Josef Bacik | ca9d473a3e |
btrfs: use BTRFS_NESTED_NEW_ROOT for double splits
I've made this change separate since it requires both of the newly added NESTED flags and I didn't want to slip it into one of those changes. If we do a double split of a node we can end up doing a BTRFS_NESTED_SPLIT on level 0, which throws lockdep off because it appears as a double lock. Since we're maxed out on subclasses, use BTRFS_NESTED_NEW_ROOT if we had to do a double split. This is OK because we won't have to do a double split if we had to insert a new root, and the new root would be at a higher level anyway. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | cf6f34aa3a |
btrfs: introduce BTRFS_NESTING_NEW_ROOT for adding new roots
The way we add new roots is confusing from a locking perspective for lockdep. We generally have the rule that we lock things in order from highest level to lowest, but in the case of adding a new level to the tree we actually allocate a new block for the root, which makes the locking go in reverse. A similar issue exists for snapshotting, we cow the original root for the root of a new tree, however they're at the same level. Address this by using BTRFS_NESTING_NEW_ROOT for these operations. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 4dff97e690 |
btrfs: introduce BTRFS_NESTING_SPLIT for split blocks
If we are splitting a leaf/node, we could do something like the following lock(leaf) BTRFS_NESTING_NORMAL lock(left) BTRFS_NESTING_LEFT + BTRFS_NESTING_COW push from leaf -> left reset path to point to left split left allocate new block, lock block BTRFS_NESTING_SPLIT at the new block point we need to have a different nesting level, because we have already used either BTRFS_NESTING_LEFT or BTRFS_NESTING_RIGHT when pushing items from the original leaf into the adjacent leaves. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | bf59a5a216 |
btrfs: introduce BTRFS_NESTING_LEFT/RIGHT_COW
For similar reasons as BTRFS_NESTING_COW, we need BTRFS_NESTING_LEFT/RIGHT_COW. The pattern is this lock leaf -> BTRFS_NESTING_NORMAL cow leaf -> BTRFS_NESTING_COW split leaf lock left -> BTRFS_NESTING_LEFT cow left -> BTRFS_NESTING_LEFT_COW We need this in order to indicate to lockdep that these locks are discrete and are being taken in a safe order. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | bf77467a93 |
btrfs: introduce BTRFS_NESTING_LEFT/BTRFS_NESTING_RIGHT
Our lockdep maps are based on rootid+level, however in some cases we will lock adjacent blocks on the same level, namely in searching forward or in split/balance. Because of this lockdep will complain, so we need a separate subclass to indicate to lockdep that these are different locks. lock leaf -> BTRFS_NESTING_NORMAL cow leaf -> BTRFS_NESTING_COW split leaf lock left -> BTRFS_NESTING_LEFT lock right -> BTRFS_NESTING_RIGHT The above graph illustrates the need for this new nesting subclass. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 9631e4cc1a |
btrfs: introduce BTRFS_NESTING_COW for cow'ing blocks
When we COW a block we are holding a lock on the original block, and then we lock the new COW block. Because our lockdep maps are based on root + level, this will make lockdep complain. We need a way to indicate a subclass for locking the COW'ed block, so plumb through our btrfs_lock_nesting from btrfs_cow_block down to the btrfs_init_buffer, and then introduce BTRFS_NESTING_COW to be used for cow'ing blocks. The reason I've added all this extra infrastructure is because there will be need of different nesting classes in follow up patches. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | fd7ba1c120 |
btrfs: add nesting tags to the locking helpers
We will need these when we switch to an rwsem, so plumb in the infrastructure here to use later on. I violate the 80 character limit some here because it'll be cleaned up later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 51899412dd |
btrfs: introduce btrfs_path::recurse
Our current tree locking stuff allows us to recurse with read locks if we're already holding the write lock. This is necessary for the space cache inode, as we could be holding a lock on the root_tree root when we need to cache a block group, and thus need to be able to read down the root_tree to read in the inode cache. We can get away with this in our current locking, but we won't be able to with a rwsem. Handle this by purposefully annotating the places where we require recursion, so that in the future we can maybe come up with a way to avoid the recursion. In the case of the free space inode, this will be superseded by the free space tree. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 329ced799b |
btrfs: rename extent_buffer::lock_nested to extent_buffer::lock_recursed
Nested locking with lockdep and everything else refers to lock hierarchy within the same lock map. This is how we indicate the same locks for different objects are ok to take in a specific order, for our use case that would be to take the lock on a leaf and then take a lock on an adjacent leaf. What ->lock_nested _actually_ refers to is if we happen to already be holding the write lock on the extent buffer and we're allowing a read lock to be taken on that extent buffer, which is recursion. Rename this so we don't get confused when we switch to a rwsem and have to start using the _nested helpers. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | b9ba017fb0 |
btrfs: don't opencode sync_blockdev in btrfs_init_new_device
Instead of opencoding filemap_write_and_wait simply call syncblockdev as it makes it abundantly clear what's going on and why this is used. No semantics changes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 4ae312e972 |
btrfs: remove redundant code from btrfs_free_stale_devices
Following the refactor of btrfs_free_stale_devices in |
|
Nikolay Borisov | 44cab9ba37 |
btrfs: refactor locked condition in btrfs_init_new_device
Invert unlocked to locked and exploit the fact it can only ever be modified if we are adding a new device to a seed filesystem. This allows to simplify the check in error: label. No semantics changes. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | f4cfa9bdd4 |
btrfs: use RCU for quick device check in btrfs_init_new_device
When adding a new device there's a mandatory check to see if a device is being duplicated to the filesystem it's added to. Since this is a read-only operations not necessary to take device_list_mutex and can simply make do with an rcu-readlock. Using just RCU is safe because there won't be another device add delete running in parallel as btrfs_init_new_device is called only from btrfs_ioctl_add_dev. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | d16c702fe4 |
btrfs: ctree: check key order before merging tree blocks
[BUG] With a crafted image, btrfs can panic at btrfs_del_csums(): kernel BUG at fs/btrfs/ctree.c:3188! invalid opcode: 0000 [#1] SMP PTI CPU: 0 PID: 1156 Comm: btrfs-transacti Not tainted 5.0.0-rc8+ #9 RIP: 0010:btrfs_set_item_key_safe+0x16c/0x180 RSP: 0018:ffff976141257ab8 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff898a6b890930 RCX: 0000000004b70000 RDX: 0000000000000000 RSI: ffff976141257bae RDI: ffff976141257acf RBP: ffff976141257b10 R08: 0000000000001000 R09: ffff9761412579a8 R10: 0000000000000000 R11: 0000000000000000 R12: ffff976141257abe R13: 0000000000000003 R14: ffff898a6a8be578 R15: ffff976141257bae FS: 0000000000000000(0000) GS:ffff898a77a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f779d9cd624 CR3: 000000022b2b4006 CR4: 00000000000206f0 Call Trace: truncate_one_csum+0xac/0xf0 btrfs_del_csums+0x24f/0x3a0 __btrfs_free_extent.isra.72+0x5a7/0xbe0 __btrfs_run_delayed_refs+0x539/0x1120 btrfs_run_delayed_refs+0xdb/0x1b0 btrfs_commit_transaction+0x52/0x950 ? start_transaction+0x94/0x450 transaction_kthread+0x163/0x190 kthread+0x105/0x140 ? btrfs_cleanup_transaction+0x560/0x560 ? kthread_destroy_worker+0x50/0x50 ret_from_fork+0x35/0x40 Modules linked in: ---[ end trace 93bf9db00e6c374e ]--- [CAUSE] This crafted image has a tricky key order corruption: checksum tree key (CSUM_TREE ROOT_ITEM 0) node 29741056 level 1 items 14 free 107 generation 19 owner CSUM_TREE ... key (EXTENT_CSUM EXTENT_CSUM 73785344) block 29757440 gen 19 key (EXTENT_CSUM EXTENT_CSUM 77594624) block 29753344 gen 19 ... leaf 29757440 items 5 free space 150 generation 19 owner CSUM_TREE item 0 key (EXTENT_CSUM EXTENT_CSUM 73785344) itemoff 2323 itemsize 1672 range start 73785344 end 75497472 length 1712128 item 1 key (EXTENT_CSUM EXTENT_CSUM 75497472) itemoff 2319 itemsize 4 range start 75497472 end 75501568 length 4096 item 2 key (EXTENT_CSUM EXTENT_CSUM 75501568) itemoff 579 itemsize 1740 range start 75501568 end 77283328 length 1781760 item 3 key (EXTENT_CSUM EXTENT_CSUM 77283328) itemoff 575 itemsize 4 range start 77283328 end 77287424 length 4096 item 4 key (EXTENT_CSUM EXTENT_CSUM 4120596480) itemoff 275 itemsize 300 <<< range start 4120596480 end 4120903680 length 307200 leaf 29753344 items 3 free space 1936 generation 19 owner CSUM_TREE item 0 key (18446744073457893366 EXTENT_CSUM 77594624) itemoff 2323 itemsize 1672 range start 77594624 end 79306752 length 1712128 ... Note the item 4 key of leaf 29757440, which is obviously too large, and even larger than the first key of the next leaf. However it still follows the key order in that tree block, thus tree checker is unable to detect it at read time, since tree checker can only work inside one leaf, thus such complex corruption can't be detected in advance. [FIX] The next time to detect such problem is at tree block merge time, which is in push_node_left(), balance_node_right(), push_leaf_left() or push_leaf_right(). Now we check if the key order of the right-most key of the left node is larger than the left-most key of the right node. By this we don't need to call the full tree-checker, while still keeping the key order correct as key order in each node is already checked by tree checker thus we only need to check the above two slots. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202833 Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 07cce5cf3b |
btrfs: extent-tree: kill the BUG_ON() in insert_inline_extent_backref()
[BUG] With a crafted image, btrfs can panic at insert_inline_extent_backref(): kernel BUG at fs/btrfs/extent-tree.c:1857! invalid opcode: 0000 [#1] SMP PTI CPU: 0 PID: 1117 Comm: btrfs-transacti Not tainted 5.0.0-rc8+ #9 RIP: 0010:insert_inline_extent_backref+0xcc/0xe0 RSP: 0018:ffffac4dc1287be8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000007 RCX: 0000000000000001 RDX: 0000000000001000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffac4dc1287c28 R08: ffffac4dc1287ab8 R09: ffffac4dc1287ac0 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff8febef88a540 R14: ffff8febeaa7bc30 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8febf7a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f663ace94c0 CR3: 0000000235698006 CR4: 00000000000206f0 Call Trace: ? _cond_resched+0x1a/0x50 __btrfs_inc_extent_ref.isra.64+0x7e/0x240 ? btrfs_merge_delayed_refs+0xa5/0x330 __btrfs_run_delayed_refs+0x653/0x1120 btrfs_run_delayed_refs+0xdb/0x1b0 btrfs_commit_transaction+0x52/0x950 ? start_transaction+0x94/0x450 transaction_kthread+0x163/0x190 kthread+0x105/0x140 ? btrfs_cleanup_transaction+0x560/0x560 ? kthread_destroy_worker+0x50/0x50 ret_from_fork+0x35/0x40 Modules linked in: ---[ end trace 2ad8b3de903cf825 ]--- [CAUSE] Due to extent tree corruption (still valid by itself, but bad cross ref), we can allocate an extent which is still in extent tree. The offending tree block of that case is from csum tree. The newly allocated tree block is also for csum tree. Then we will try to insert a tree block ref for the existing tree block ref. For a tree extent item, tree block can never be shared directly by the same tree twice. We have such BUG_ON() to prevent such problem, but this is not a proper error handling. [FIX] Replace that BUG_ON() with proper error message and leaf dump for debug build. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202829 Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 1c2a07f598 |
btrfs: extent-tree: kill BUG_ON() in __btrfs_free_extent()
__btrfs_free_extent() is doing two things: 1. Reduce the refs number of an extent backref Either it's an inline extent backref (inside EXTENT/METADATA item) or a keyed extent backref (SHARED_* item). We only need to locate that backref line, either reduce the number or remove the backref line completely. 2. Update the refs count in EXTENT/METADATA_ITEM During step 1), we will try to locate the EXTENT/METADATA_ITEM without triggering another btrfs_search_slot() as fast path. Only when we fail to locate that item, we will trigger another btrfs_search_slot() to get that EXTENT/METADATA_ITEM after we updated/deleted the backref line. And we have a lot of strict checks on things like refs_to_drop against extent refs and special case checks for single ref extents. There are 7 BUG_ON()s, although they're doing correct checks, they can be triggered by crafted images. This patch improves the function: - Introduce two examples to show what __btrfs_free_extent() is doing One inline backref case and one keyed case. Should cover most cases. - Kill all BUG_ON()s with proper error message and optional leaf dump - Add comment to show the overall flow Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202819 [ The report triggers one BUG_ON() in __btrfs_free_extent() ] Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | f98b6215d7 |
btrfs: extent_io: do extra check for extent buffer read write functions
Although we have start, len check for extent buffer reader/write (e.g. read_extent_buffer()), these checks have limitations: - No overflow check Values like start = 1024 len = -1024 can still pass the basic (start + len) > eb->len check. - Checks are not consistent For read_extent_buffer() we only check (start + len) against eb->len. While for memcmp_extent_buffer() we also check start against eb->len. - Different error reporting mechanism We use WARN() in read_extent_buffer() but BUG() in memcpy_extent_buffer(). - Still modify memory if the request is obviously wrong In read_extent_buffer() even we find (start + len) > eb->len, we still call memset(dst, 0, len), which can easily cause memory access error if start + len overflows. To address above problems, this patch creates a new common function to check such access, check_eb_range(). - Add overflow check This function checks start, start + len against eb->len and overflow check. - Unified checks - Unified error reports Will call WARN() if CONFIG_BTRFS_DEBUG is configured. And also do btrfs_warn() message for non-debug build. - Exit ASAP if check fails No more possible memory corruption. - Add extra comment for @start @len used in those functions as it's sometimes confused with the logical addressing instead of a range inside the eb space Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202817 [ Inspired by above report, the report itself is already addressed ] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ use check_add_overflow ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 217f5004fe |
btrfs: rework error detection in init_tree_roots
To avoid duplicating 3 lines of code the error detection logic in init_tree_roots is somewhat quirky. It first checks for the presence of any error condition, then checks for the specific condition to perform any specific actions. That's spurious because directly checking for each respective error condition and doing the necessary steps is more obvious. While at it change the -EUCLEAN to -EIO in case the extent buffer is not read correctly, this is in line with other sites which return -EIO when the eb couldn't be read. Additionally it results in smaller code and the code reads more linearly: add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-95 (-95) Function old new delta open_ctree 17243 17148 -95 Total: Before=113104, After=113009, chg -0.08% Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | e85fde5162 |
btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations
[BUG]
When quota is enabled for TEST_DEV, generic/013 sometimes fails like this:
generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg)
And with the following metadata leak:
BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152
------------[ cut here ]------------
WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs]
Call Trace:
btrfs_put_super+0x15/0x17 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x17/0x30 [btrfs]
deactivate_locked_super+0x3b/0xa0
deactivate_super+0x40/0x50
cleanup_mnt+0x135/0x190
__cleanup_mnt+0x12/0x20
task_work_run+0x64/0xb0
__prepare_exit_to_usermode+0x1bc/0x1c0
__syscall_return_slowpath+0x47/0x230
do_syscall_64+0x64/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace a6cfd45ba80e4e06 ]---
BTRFS error (device dm-3): qgroup reserved space leaked
BTRFS info (device dm-3): disk space caching is enabled
BTRFS info (device dm-3): has skinny extents
[CAUSE]
The qgroup preallocated meta rsv operations of that offending root are:
btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152
btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072
btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072
It's pretty obvious that, we reserve qgroup meta rsv in
btrfs_subvolume_reserve_metadata(), but doesn't have corresponding
release/convert calls in btrfs_subvolume_release_metadata().
This leads to the leakage.
[FIX]
To fix this bug, we should follow what we're doing in
btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and
add it to block_rsv->qgroup_rsv_reserved.
And free the qgroup reserved metadata space when releasing the
block_rsv.
To do this, we need to change the btrfs_subvolume_release_metadata() to
accept btrfs_root, and record the qgroup_to_release number, and call
btrfs_qgroup_convert_reserved_meta() for it.
Fixes:
|
|
Qu Wenruo | b4c5d8fdff |
btrfs: qgroup: fix wrong qgroup metadata reserve for delayed inode
For delayed inode facility, qgroup metadata is reserved for it, and
later freed.
However we're freeing more bytes than we reserved.
In btrfs_delayed_inode_reserve_metadata():
num_bytes = btrfs_calc_metadata_size(fs_info, 1);
...
ret = btrfs_qgroup_reserve_meta_prealloc(root,
fs_info->nodesize, true);
...
if (!ret) {
node->bytes_reserved = num_bytes;
But in btrfs_delayed_inode_release_metadata():
if (qgroup_free)
btrfs_qgroup_free_meta_prealloc(node->root,
node->bytes_reserved);
else
btrfs_qgroup_convert_reserved_meta(node->root,
node->bytes_reserved);
This means, we're always releasing more qgroup metadata rsv than we have
reserved.
This won't trigger selftest warning, as btrfs qgroup metadata rsv has
extra protection against cases like quota enabled half-way.
But we still need to fix this problem any way.
This patch will use the same num_bytes for qgroup metadata rsv so we
could handle it correctly.
Fixes:
|
|
Josef Bacik | 425c6ed648 |
btrfs: do not hold device_list_mutex when closing devices
The following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00169-g87212851a027-dirty #929 Not tainted ------------------------------------------------------ fsstress/8739 is trying to acquire lock: ffff88bfd0eb0c90 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x43/0x70 but task is already holding lock: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #10 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x129/0x210 btrfs_page_mkwrite+0x6a/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 -> #9 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #8 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #7 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #6 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x39/0xb0 kmem_cache_create_usercopy+0x28/0x230 kmem_cache_create+0x12/0x20 bioset_init+0x15e/0x2b0 init_bio+0xa3/0xaa do_one_initcall+0x5a/0x2e0 kernel_init_freeable+0x1f4/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #5 (bio_slab_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 bioset_init+0xbc/0x2b0 __blk_alloc_queue+0x6f/0x2d0 blk_mq_init_queue_data+0x1b/0x70 loop_add+0x110/0x290 [loop] fq_codel_tcf_block+0x12/0x20 [sch_fq_codel] do_one_initcall+0x5a/0x2e0 do_init_module+0x5a/0x220 load_module+0x2459/0x26e0 __do_sys_finit_module+0xba/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 lo_open+0x18/0x50 [loop] __blkdev_get+0xec/0x570 blkdev_get+0xe8/0x150 do_dentry_open+0x167/0x410 path_openat+0x7c9/0xa80 do_filp_open+0x93/0x100 do_sys_openat2+0x22a/0x2e0 do_sys_open+0x4b/0x80 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 blkdev_put+0x1d/0x120 close_fs_devices.part.31+0x84/0x130 btrfs_close_devices+0x44/0xb0 close_ctree+0x296/0x2b2 generic_shutdown_super+0x69/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by fsstress/8739: #0: ffff88bee66eeb68 (&mm->mmap_lock#2){++++}-{3:3}, at: exc_page_fault+0x173/0x660 #1: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 #2: ffff88bfbd16e630 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3da/0x5d0 stack backtrace: CPU: 17 PID: 8739 Comm: fsstress Kdump: loaded Not tainted 5.8.0-rc7-00169-g87212851a027-dirty #929 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 ? btrfs_get_alloc_profile+0x150/0x210 lock_acquire+0x9e/0x360 ? btrfs_record_root_in_trans+0x43/0x70 __mutex_lock+0x9f/0x930 ? btrfs_record_root_in_trans+0x43/0x70 ? lock_acquire+0x9e/0x360 ? join_transaction+0x5d/0x450 ? find_held_lock+0x2d/0x90 ? btrfs_record_root_in_trans+0x43/0x70 ? join_transaction+0x3d5/0x450 ? btrfs_record_root_in_trans+0x43/0x70 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 ? handle_mm_fault+0x5e/0x1730 do_page_mkwrite+0x4d/0xc0 ? __do_fault+0x32/0x150 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7faa6c9969c4 Was seen in testing. The fix is similar to that of btrfs: open device without device_list_mutex where we're holding the device_list_mutex and then grab the bd_mutex, which pulls in a bunch of dependencies under the bd_mutex. We only ever call btrfs_close_devices() on mount failure or unmount, so we're save to not have the device_list_mutex here. We're already holding the uuid_mutex which keeps us safe from any external modification of the fs_devices. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 62cf539120 |
btrfs: move btrfs_rm_dev_replace_free_srcdev outside of all locks
When closing and freeing the source device we could end up doing our final blkdev_put() on the bdev, which will grab the bd_mutex. As such we want to be holding as few locks as possible, so move this call outside of the dev_replace->lock_finishing_cancel_unmount lock. Since we're modifying the fs_devices we need to make sure we're holding the uuid_mutex here, so take that as well. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 68abf36016 |
btrfs: remove alloc_list splice in btrfs_prepare_sprout
btrfs_prepare_sprout is called when the first rw device is added to a seed filesystem. This means the filesystem can't have its alloc_list be non-empty, since seed filesystems are read only. Simply remove the code altogether. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 427c8fddb1 |
btrfs: document some invariants of seed code
Without good understanding of how seed devices works it's hard to grok some of what the code in open_seed_devices or btrfs_prepare_sprout does. Add comments hopefully reducing some of the cognitive load. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 944d3f9fac |
btrfs: switch seed device to list api
While this patch touches a bunch of files the conversion is straighforward. Instead of using the implicit linked list anchored at btrfs_fs_devices::seed the code is switched to using list_for_each_entry. Previous patches in the series already factored out code that processed both main and seed devices so in those cases the factored out functions are called on the main fs_devices and then on every seed dev inside list_for_each_entry. Using list api also allows to simplify deletion from the seed dev list performed in btrfs_rm_device and btrfs_rm_dev_replace_free_srcdev by substituting a while() loop with a simple list_del_init. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | c4989c2fd0 |
btrfs: simplify setting/clearing fs_info to btrfs_fs_devices
It makes no sense to have sysfs-related routines be responsible for properly initialising the fs_info pointer of struct btrfs_fs_device. Instead this can be streamlined by making it the responsibility of btrfs_init_devices_late to initialize it. That function already initializes fs_info of every individual device in btrfs_fs_devices. As far as clearing it is concerned it makes sense to move it to close_fs_devices. That function is only called when struct btrfs_fs_devices is no longer in use - either for holding seeds or main devices for a mounted filesystem. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 54eed6ae8d |
btrfs: make close_fs_devices return void
The return value of this function conveys absolutely no information. All callers already check the state of fs_devices->opened to decide how to proceed. So convert the function to returning void. While at it make btrfs_close_devices also return void. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 3712ccb7f1 |
btrfs: factor out loop logic from btrfs_free_extra_devids
This prepares the code to switching seeds devices to a proper list. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | dc0ab488d2 |
btrfs: factor out reada loop in __reada_start_machine
This is in preparation for moving fs_devices to proper lists. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 1028d1c48b |
btrfs: remove err variable from btrfs_get_extent
There's no practical reason too use 'err' as a variable to convey
errors. In fact it's value is either set explicitly in the beginning of
the function or it simply takes the value of 'ret'. Not conforming to
the usual pattern of having ret be the only variable used to convey
errors makes the code more error prone to bugs. In fact one such bug
was introduced by
|
|
Josef Bacik | 0eb79294db |
btrfs: dio iomap DSYNC workaround
iomap dio will run generic_write_sync() for us if the iocb is DSYNC. This is problematic for us because of 2 reasons: 1. we hold the inode_lock() during this operation, and we take it in generic_write_sync() 2. we hold a read lock on the dio_sem but take the write lock in fsync Since we don't want to rip out this code right now, but reworking the locking is a bit much to do at this point, work around this problem with this masterpiece of a patch. First, we clear DSYNC on the iocb so that the iomap stuff doesn't know that it needs to handle the sync. We save this fact in current->journal_info, because we need to see do special things once we're in iomap_begin, and we have no way to pass private information into iomap_dio_rw(). Next we specify a separate iomap_dio_ops for sync, which implements an ->end_io() callback that gets called when the dio completes. This is important for AIO, because we really do need to run generic_write_sync() if we complete asynchronously. However if we're still in the submitting context when we enter ->end_io() we clear the flag so that the submitter knows they're the ones that needs to run generic_write_sync(). This is meant to be temporary. We need to work out how to eliminate the inode_lock() and the dio_sem in our fsync and use another mechanism to protect these operations. Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Goldwyn Rodrigues | f85781fb50 |
btrfs: switch to iomap for direct IO
We're using direct io implementation based on buffer heads. This patch switches to the new iomap infrastructure. Switch from __blockdev_direct_IO() to iomap_dio_rw(). Rename btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it as iomap_begin() for iomap direct I/O functions. This function allocates and locks all the blocks required for the I/O. btrfs_submit_direct() is used as the submit_io() hook for direct I/O ops. Since we need direct I/O reads to go through iomap_dio_rw(), we change file_operations.read_iter() to a btrfs_file_read_iter() which calls btrfs_direct_IO() for direct reads and falls back to generic_file_buffered_read() for incomplete reads and buffered reads. We don't need address_space.direct_IO() anymore: set it to noop. Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is capable of direct I/O reads from a hole, so we don't need to return -ENOENT. Btrfs direct I/O is now done under i_rwsem, shared in case of reads and exclusive in case of writes. This guards against simultaneous truncates. Use iomap->iomap_end() to check for failed or incomplete direct I/O: - for writes, call __endio_write_update_ordered() - for reads, unlock extents btrfs_dio_data is now hooked in iomap->private and not current->journal_info. It carries the reservation variable and the amount of data submitted, so we can calculate the amount of data to call __endio_write_update_ordered in case of an error. This patch removes last use of struct buffer_head from btrfs. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 154f7cb868 |
btrfs: add owner and fs_info to alloc_state io_tree
Commit |
|
Marcos Paulo de Souza | 4c448ce8b4 |
btrfs: make read_block_group_item return void
Since it's inclusion on
|
|
Leon Romanovsky | 24646481fb |
btrfs: sysfs: fix unused-but-set-variable warnings
The compilation with W=1 generates the following warnings:
fs/btrfs/sysfs.c:1630:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable]
1630 | int ret;
| ^~~
fs/btrfs/sysfs.c:1629:6: warning: variable 'features' set but not used [-Wunused-but-set-variable]
1629 | u64 features;
| ^~~~~~~~
[ The unused variables are leftover from
|
|
Filipe Manana | 487781796d |
btrfs: make fast fsyncs wait only for writeback
Currently regardless of a full or a fast fsync we always wait for ordered
extents to complete, and then start logging the inode after that. However
for fast fsyncs we can just wait for the writeback to complete, we don't
need to wait for the ordered extents to complete since we use the list of
modified extents maps to figure out which extents we must log and we can
get their checksums directly from the ordered extents that are still in
flight, otherwise look them up from the checksums tree.
Until commit
|
|
Filipe Manana | 75b463d2b4 |
btrfs: do not commit logs and transactions during link and rename operations
Since commit
|
|
Filipe Manana | 5522a27e59 |
btrfs: do not take the log_mutex of the subvolume when pinning the log
During a rename we pin the log to make sure no one commits a log that
reflects an ongoing rename operation, as it might result in a committed
log where it recorded the unlink of the old name without having recorded
the new name. However we are taking the subvolume's log_mutex before
incrementing the log_writers counter, which is not necessary since that
counter is atomic and we only remove the old name from the log and add
the new name to the log after we have incremented log_writers, ensuring
that no one can commit the log after we have removed the old name from
the log and before we added the new name to the log.
By taking the log_mutex lock we are just adding unnecessary contention on
the lock, which can become visible for workloads that mix renames with
fsyncs, writes for files opened with O_SYNC and unlink operations (if the
inode or its parent were fsynced before in the current transaction).
So just remove the lock and unlock of the subvolume's log_mutex at
btrfs_pin_log_trans().
Using dbench, which mixes different types of operations that end up taking
that mutex (fsyncs, renames, unlinks and writes into files opened with
O_SYNC) revealed some small gains. The following script that calls dbench
was used:
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/btrfs
MOUNT_OPTIONS="-o ssd -o space_cache=v2"
MKFS_OPTIONS="-m single -d single"
THREADS=32
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -s -t 600 -D $MNT $THREADS
umount $MNT
The test was run on bare metal, no virtualization, on a box with 12 cores
(Intel i7-8700), 64Gb of RAM and using a NVMe device, with a kernel
configuration that is the default of typical distributions (debian in this
case), without debug options enabled (kasan, kmemleak, slub debug, debug
of page allocations, lock debugging, etc).
Results before this patch:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4410848 0.017 738.640
Close 3240222 0.001 0.834
Rename 186850 7.478 1272.476
Unlink 890875 0.128 785.018
Deltree 128 2.846 12.081
Mkdir 64 0.002 0.003
Qpathinfo 3997659 0.009 11.171
Qfileinfo 701307 0.001 0.478
Qfsinfo 733494 0.002 1.103
Sfileinfo 359362 0.004 3.266
Find
|
|
David Sterba | 1b51d6fce4 |
btrfs: send: remove indirect callback parameter for changed_cb
There's a custom callback passed to btrfs_compare_trees which happens to be named exactly same as the existing function implementing it. This is confusing and the indirection is not necessary for our needs. Compiler is clever enough to call it directly so there's effectively no change. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | 8bb1cf1ba6 |
btrfs: scrub: rename ratelimit state varaible to avoid shadowing
There's already defined _rs within ctree.h:btrfs_printk_ratelimited, local variables should not use _ to avoid such name clashes with macro-local variables. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | 0af447d050 |
btrfs: remove unnecessarily shadowed variables
In btrfs_orphan_cleanup, there's another instance of fs_info, but it's the same as the one we already have. In btrfs_backref_finish_upper_links, rb_node is same type and used as temporary cursor to the tree. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | cb4c919830 |
btrfs: compression: move declarations to header
The declarations of compression algorithm callbacks are defined in the .c file as they're used from there. Compiler warns that there are no declarations for public functions when compiling lzo.c/zlib.c/zstd.c. Fix that by moving the declarations to the header as it's the common place for all of them. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | 9e6df7cedf |
btrfs: remove const from btrfs_feature_set_name
The function btrfs_feature_set_name returns a const char pointer, the second const is not necessary and reported as a warning: In file included from fs/btrfs/space-info.c:6: fs/btrfs/sysfs.h:16:1: warning: type qualifiers ignored on function return type [-Wignored-qualifiers] 16 | const char * const btrfs_feature_set_name(enum btrfs_feature_set set); | ^~~~~ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | e21139c621 |
btrfs: cleanup calculation of lockend in lock_and_cleanup_extent_if_need()
We're just doing rounding up to sectorsize to calculate the lockend. There is no need to do the unnecessary length calculation, just direct round_up() is enough. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | c4923027bd |
btrfs: fix possible infinite loop in data async reclaim
Dave reported an issue where generic/102 would sometimes hang. This turned out to be because we'd get into this spot where we were no longer making progress on data reservations because our exit condition was not met. The log is basically while (!space_info->full && !list_empty(&space_info->tickets)) flush_space(space_info, flush_state); where flush state is our various flush states, but doesn't include ALLOC_CHUNK_FORCE. This is because we actually lead with allocating chunks, and so the assumption was that once you got to the actual flushing states you could no longer allocate chunks. This was a stupid assumption, because you could have deleted block groups that would be reclaimed by a transaction commit, thus unsetting space_info->full. This is essentially what happens with generic/102, and so sometimes you'd get stuck in the flushing loop because we weren't allocating chunks, but flushing space wasn't giving us what we needed to make progress. Fix this by adding ALLOC_CHUNK_FORCE to the end of our flushing states, that way we will eventually bail out because we did end up with space_info->full if we free'd a chunk previously. Otherwise, as is the case for this test, we'll allocate our chunk and continue on our happy merry way. Reported-by: David Sterba <dsterba@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 1a7a92c8dd |
btrfs: add a comment explaining the data flush steps
The data flushing steps are not obvious to people other than myself and Chris. Write a giant comment explaining the reasoning behind each flush step for data as well as why it is in that particular order. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 5705674081 |
btrfs: do async reclaim for data reservations
Now that we have the data ticketing stuff in place, move normal data reservations to use an async reclaim helper to satisfy tickets. Before we could have multiple tasks race in and both allocate chunks, resulting in more data chunks than we would necessarily need. Serializing these allocations and making a single thread responsible for flushing will only allocate chunks as needed, as well as cut down on transaction commits and other flush related activities. Priority reservations will still work as they have before, simply trying to allocate a chunk until they can make their reservation. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | cb3e393045 |
btrfs: flush delayed refs when trying to reserve data space
We can end up with freed extents in the delayed refs, and thus may_commit_transaction() may not think we have enough pinned space to commit the transaction and we'll ENOSPC early. Handle this by running the delayed refs in order to make sure pinned is uptodate before we try to commit the transaction. Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 327feeeb2e |
btrfs: run delayed iputs before committing the transaction for data
Before we were waiting on iputs after we committed the transaction, but this doesn't really make much sense. We want to reclaim any space we may have in order to be more likely to commit the transaction, due to pinned space being added by running the delayed iputs. Fix this by making delayed iputs run before committing the transaction. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | bb86bd3db8 |
btrfs: don't force commit if we are data
We used to unconditionally commit the transaction at least 2 times and then on the 3rd try check against pinned space to make sure committing the transaction was worth the effort. This is overkill, we know nobody is going to steal our reservation, and if we can't make our reservation with the pinned amount simply bail out. This also cleans up the passing of bytes_needed to may_commit_transaction, as that was the thing we added into place in order to accomplish this behavior. We no longer need it so remove that mess. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 0282700135 |
btrfs: drop the commit_cycles stuff for data reservations
This was an old wart left over from how we previously did data reservations. Before we could have people race in and take a reservation while we were flushing space, so we needed to make sure we looped a few times before giving up. Now that we're using the ticketing infrastructure we don't have to worry about this and can drop the logic altogether. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | f3bda421c1 |
btrfs: use the same helper for data and metadata reservations
Now that data reservations follow the same pattern as metadata reservations we can simply rename __reserve_metadata_bytes to __reserve_bytes and use that helper for data reservations. Things to keep in mind, btrfs_can_overcommit() returns 0 for data, because we can never overcommit. We also will never pass in FLUSH_ALL for data, so we'll simply be added to the priority list and go straight into handle_reserve_ticket. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 0532a6f8b6 |
btrfs: serialize data reservations if we are flushing
Nikolay reported a problem where generic/371 would fail sometimes with a slow drive. The gist of the test is that we fallocate a file in parallel with a pwrite of a different file. These two files combined are smaller than the file system, but sometimes the pwrite would ENOSPC. A fair bit of investigation uncovered the fact that the fallocate workload was racing in and grabbing the free space that the pwrite workload was trying to free up so it could make its own reservation. After a few loops of this eventually the pwrite workload would error out with an ENOSPC. We've had the same problem with metadata as well, and we serialized all metadata allocations to satisfy this problem. This wasn't usually a problem with data because data reservations are more straightforward, but obviously could still happen. Fix this by not allowing reservations to occur if there are any pending tickets waiting to be satisfied on the space info. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 1004f6860f |
btrfs: use ticketing for data space reservations
Now that we have all the infrastructure in place, use the ticketing infrastructure to make data allocations. This still maintains the exact same flushing behavior, but now we're using tickets to get our reservations satisfied. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 8698fc4eb7 |
btrfs: add btrfs_reserve_data_bytes and use it
Create a new function btrfs_reserve_data_bytes() in order to handle data reservations. This uses the new flush types and flush states to handle making data reservations. This patch specifically does not change any functionality, and is purposefully not cleaned up in order to make bisection easier for the future patches. The new helper is identical to the old helper in how it handles data reservations. We first try to force a chunk allocation, and then we run through the flush states all at once and in the same order that they were done with the old helper. Subsequent patches will clean this up and change the behavior of the flushing, and it is important to keep those changes separate so we can easily bisect down to the patch that caused the regression, rather than the patch that made us start using the new infrastructure. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | a1ed0a8216 |
btrfs: add the data transaction commit logic into may_commit_transaction
Data space flushing currently unconditionally commits the transaction twice in a row, and the last time it checks if there's enough pinned extents to satisfy its reservation before deciding to commit the transaction for the 3rd and final time. Encode this logic into may_commit_transaction(). In the next patch we will pass in U64_MAX for bytes_needed the first two times, and the final time we will pass in the actual bytes we need so the normal logic will apply. This patch exists solely to make the logical changes I will make to the flushing state machine separate to make it easier to bisect any performance related regressions. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 058e6d1d26 |
btrfs: add flushing states for handling data reservations
Currently the way we do data reservations is by seeing if we have enough space in our space_info. If we do not and we're a normal inode we'll 1) Attempt to force a chunk allocation until we can't anymore. 2) If that fails we'll flush delalloc, then commit the transaction, then run the delayed iputs. If we are a free space inode we're only allowed to force a chunk allocation. In order to use the normal flushing mechanism we need to encode this into a flush state array for normal inodes. Since both will start with allocating chunks until the space info is full there is no need to add this as a flush state, this will be handled specially. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 448b966b49 |
btrfs: check tickets after waiting on ordered extents
Right now if the space is freed up after the ordered extents complete (which is likely since the reservations are held until they complete), we would do extra delalloc flushing before we'd notice that we didn't have any more tickets. Fix this by moving the tickets check after our wait_ordered_extents check. Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 38d715f494 |
btrfs: use btrfs_start_delalloc_roots in shrink_delalloc
The original iteration of flushing had us flushing delalloc and then checking to see if we could make our reservation, thus we were very careful about how many pages we would flush at once. But now that everything is async and we satisfy tickets as the space becomes available we don't have to keep track of any of this, simply try and flush the number of dirty inodes we may have in order to reclaim space to make our reservation. This cleans up our delalloc flushing significantly. The async_pages stuff is dropped because btrfs_start_delalloc_roots() handles the case that we generate async extents for us, so we no longer require this extra logic. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 39753e4a3a |
btrfs: use the btrfs_space_info_free_bytes_may_use helper for delalloc
We are going to use the ticket infrastructure for data, so use the btrfs_space_info_free_bytes_may_use() helper in btrfs_free_reserved_data_space_noquota() so we get the btrfs_try_granting_tickets call when we free our reservation. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 99ffb43e5d |
btrfs: call btrfs_try_granting_tickets when reserving space
If we have compression on we could free up more space than we reserved, and thus be able to make a space reservation. Add the call for this scenario. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 2732798c9b |
btrfs: call btrfs_try_granting_tickets when unpinning anything
When unpinning we were only calling btrfs_try_granting_tickets() if global_rsv->space_info == space_info, which is problematic because we use ticketing for SYSTEM chunks, and want to use it for DATA as well. Fix this by moving this call outside of that if statement. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 3308234a7e |
btrfs: call btrfs_try_granting_tickets when freeing reserved bytes
We were missing a call to btrfs_try_granting_tickets in btrfs_free_reserved_bytes, so add it to handle the case where we're able to satisfy an allocation because we've freed a pending reservation. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | c6c453032e |
btrfs: make ALLOC_CHUNK use the space info flags
We have traditionally used flush_space() to flush metadata space, so we've been unconditionally using btrfs_metadata_alloc_profile() for our profile to allocate a chunk. However if we're going to use this for data we need to use btrfs_get_alloc_profile() on the space_info we pass in. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 920a9958c2 |
btrfs: make shrink_delalloc take space_info as an arg
Currently shrink_delalloc just looks up the metadata space info, but this won't work if we're trying to reclaim space for data chunks. We get the right space_info we want passed into flush_space, so simply pass that along to shrink_delalloc. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | d7f81fac97 |
btrfs: handle U64_MAX for shrink_delalloc
Data allocations are going to want to pass in U64_MAX for flushing space, adjust shrink_delalloc to handle this properly. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 288be2d997 |
btrfs: remove orig from shrink_delalloc
We don't use this anywhere inside of shrink_delalloc since
|
|
Josef Bacik | b49121393f |
btrfs: change nr to u64 in btrfs_start_delalloc_roots
We have btrfs_wait_ordered_roots() which takes a u64 for nr, but btrfs_start_delalloc_roots() that takes an int for nr, which makes using them in conjunction, especially for something like (u64)-1, annoying and inconsistent. Fix btrfs_start_delalloc_roots() to take a u64 for nr and adjust start_delalloc_inodes() and it's callers appropriately. This means we've adjusted start_delalloc_inodes() to take a pointer of nr since we want to preserve the ability for start-delalloc_inodes() to return an error, so simply make it do the nr adjusting as necessary. Part of adjusting the callers to this means changing btrfs_writeback_inodes_sb_nr() to take a u64 for items. This may be confusing because it seems unrelated, but the caller of btrfs_writeback_inodes_sb_nr() already passes in a u64, it's just the function variable that needs to be changed. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 8e56008180 |
btrfs: remove fsid argument from btrfs_sysfs_update_sprout_fsid
It can be accessed from 'fs_devices' as it's identical to fs_info->fs_devices. Also add a comment about why we are calling the function. No semantic changes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 57297c1e8e |
btrfs: remove spurious BUG_ON in btrfs_get_extent
That BUG_ON cannot ever trigger because as the comment there states - 'err' is always set. Simply remove it as it brings no value. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Randy Dunlap | 260db43cd2 |
btrfs: delete duplicated words + other fixes in comments
Delete repeated words in fs/btrfs/. {to, the, a, and old} and change "into 2 part" to "into 2 parts". Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 437490fed3 |
btrfs: tracepoints: output proper root owner for trace_find_free_extent()
The current trace event always output result like this: find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA) find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA) find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA) find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA) find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA) find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA) T's saying we're allocating data extent for EXTENT tree, which is not even possible. It's because we always use EXTENT tree as the owner for trace_find_free_extent() without using the @root from btrfs_reserve_extent(). This patch will change the parameter to use proper @root for trace_find_free_extent(): Now it looks much better: find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP) find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA) find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=1(DATA) find_free_extent: root=5(FS_TREE) len=4096 empty_size=0 flags=1(DATA) find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA) find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP) find_free_extent: root=7(CSUM_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP) find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP) find_free_extent: root=1(ROOT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP) Reported-by: Hans van Kranenburg <hans@knorrie.org> CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Linus Torvalds | 4e3b9ce271 |
for-5.9-rc7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl93REAACgkQxWXV+ddt WDv0/A//XYr1XLC/5sMILHqYZ4ogiFxC3Nfjeyt6vfBPX3J0d2eHnw5Rw+ZHHHdQ qtoKWom9ZwCxjybghwmvfxJuohy+6Sc764aEj+rYpUcCmmUZsAZZpmwpZqpYG+0H DEn9p45T0MO+r5lsF/GdNqqsdXZfUlZy7PweIhZucQxENM8cowklqKCo4AU2IEW4 203THU3UxQayn0um6kaiesioh8TtT+R9UVAyyA3n6lGINHKG8AMy0ulS/M2Uzgq5 eAzWne4Opy+wLxubBdeqruPiQrFQp+JV/YhTTEHGKRXykRYXwZnCDYdK27X4UKkt g3Ne0cEd/JuxZfb3Mzsd7+MF0xr9xKJPziFXv7YZt0LkiHE+B0b/DwA9FksR9sdO 4BY2oe0gztstIMqQ5qnriJMDQxonyUt2G65YW8sCI9b32vRYaHLhCWZRYzbmftEO W4FJOnAI2It3Ib0CUkBjkPYkmH113Q6g59k015IpoYRGmExhnC59zhuijdmthxFJ S5PXFymVhxt9iMOKM0jE17Rp/j4hVg/bdFVHJryzlOsldjq63Vukqoo24SQhiqfY qYn/Ilkc/h1YD/pxehFAhZcbGfEdjD5oo8OkGoKIUXfv35r7JH/5F/x+4DxZNnYk n0oHJ7WBR01AlHAcuTvsN7z9O2ZX6wZufkkgKYLBvtGtyC71T3A= =MT2i -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Two more fixes. One is for a lockdep warning/lockup (also caught by syzbot), that one has been seen in practice. Regarding the other syzbot reports mentioned last time, they don't seem to be urgent and reliably reproducible so they'll be fixed later. The second fix is for a potential corruption when device replace finishes and the in-memory state of trim is not copied to the new device" * tag 'for-5.9-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix filesystem corruption after a device replace btrfs: move btrfs_rm_dev_replace_free_srcdev outside of all locks btrfs: move btrfs_scratch_superblocks into btrfs_dev_replace_finishing |
|
Filipe Manana | 4c8f353272 |
btrfs: fix filesystem corruption after a device replace
We use a device's allocation state tree to track ranges in a device used
for allocated chunks, and we set ranges in this tree when allocating a new
chunk. However after a device replace operation, we were not setting the
allocated ranges in the new device's allocation state tree, so that tree
is empty after a device replace.
This means that a fitrim operation after a device replace will trim the
device ranges that have allocated chunks and extents, as we trim every
range for which there is not a range marked in the device's allocation
state tree. It is also important during chunk allocation, since the
device's allocation state is used to determine if a range is already
allocated when allocating a new chunk.
This is trivial to reproduce and the following script triggers the bug:
$ cat reproducer.sh
#!/bin/bash
DEV1="/dev/sdg"
DEV2="/dev/sdh"
DEV3="/dev/sdi"
wipefs -a $DEV1 $DEV2 $DEV3 &> /dev/null
# Create a raid1 test fs on 2 devices.
mkfs.btrfs -f -m raid1 -d raid1 $DEV1 $DEV2 > /dev/null
mount $DEV1 /mnt/btrfs
xfs_io -f -c "pwrite -S 0xab 0 10M" /mnt/btrfs/foo
echo "Starting to replace $DEV1 with $DEV3"
btrfs replace start -B $DEV1 $DEV3 /mnt/btrfs
echo
echo "Running fstrim"
fstrim /mnt/btrfs
echo
echo "Unmounting filesystem"
umount /mnt/btrfs
echo "Mounting filesystem in degraded mode using $DEV3 only"
wipefs -a $DEV1 $DEV2 &> /dev/null
mount -o degraded $DEV3 /mnt/btrfs
if [ $? -ne 0 ]; then
dmesg | tail
echo
echo "Failed to mount in degraded mode"
exit 1
fi
echo
echo "File foo data (expected all bytes = 0xab):"
od -A d -t x1 /mnt/btrfs/foo
umount /mnt/btrfs
When running the reproducer:
$ ./replace-test.sh
wrote 10485760/10485760 bytes at offset 0
10 MiB, 2560 ops; 0.0901 sec (110.877 MiB/sec and 28384.5216 ops/sec)
Starting to replace /dev/sdg with /dev/sdi
Running fstrim
Unmounting filesystem
Mounting filesystem in degraded mode using /dev/sdi only
mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/sdi, missing codepage or helper program, or other error.
[19581.748641] BTRFS info (device sdg): dev_replace from /dev/sdg (devid 1) to /dev/sdi started
[19581.803842] BTRFS info (device sdg): dev_replace from /dev/sdg (devid 1) to /dev/sdi finished
[19582.208293] BTRFS info (device sdi): allowing degraded mounts
[19582.208298] BTRFS info (device sdi): disk space caching is enabled
[19582.208301] BTRFS info (device sdi): has skinny extents
[19582.212853] BTRFS warning (device sdi): devid 2 uuid 1f731f47-e1bb-4f00-bfbb-9e5a0cb4ba9f is missing
[19582.213904] btree_readpage_end_io_hook: 25839 callbacks suppressed
[19582.213907] BTRFS error (device sdi): bad tree block start, want 30490624 have 0
[19582.214780] BTRFS warning (device sdi): failed to read root (objectid=7): -5
[19582.231576] BTRFS error (device sdi): open_ctree failed
Failed to mount in degraded mode
So fix by setting all allocated ranges in the replace target device when
the replace operation is finishing, when we are holding the chunk mutex
and we can not race with new chunk allocations.
A test case for fstests follows soon.
Fixes:
|
|
Josef Bacik | a466c85edc |
btrfs: move btrfs_rm_dev_replace_free_srcdev outside of all locks
When closing and freeing the source device we could end up doing our final blkdev_put() on the bdev, which will grab the bd_mutex. As such we want to be holding as few locks as possible, so move this call outside of the dev_replace->lock_finishing_cancel_unmount lock. Since we're modifying the fs_devices we need to make sure we're holding the uuid_mutex here, so take that as well. There's a report from syzbot probably hitting one of the cases where the bd_mutex and device_list_mutex are taken in the wrong order, however it's not with device replace, like this patch fixes. As there's no reproducer available so far, we can't verify the fix. https://lore.kernel.org/lkml/000000000000fc04d105afcf86d7@google.com/ dashboard link: https://syzkaller.appspot.com/bug?extid=84a0634dc5d21d488419 WARNING: possible circular locking dependency detected 5.9.0-rc5-syzkaller #0 Not tainted ------------------------------------------------------ syz-executor.0/6878 is trying to acquire lock: ffff88804c17d780 (&bdev->bd_mutex){+.+.}-{3:3}, at: blkdev_put+0x30/0x520 fs/block_dev.c:1804 but task is already holding lock: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 btrfs_finish_chunk_alloc+0x281/0xf90 fs/btrfs/volumes.c:5255 btrfs_create_pending_block_groups+0x2f3/0x700 fs/btrfs/block-group.c:2109 __btrfs_end_transaction+0xf5/0x690 fs/btrfs/transaction.c:916 find_free_extent_update_loop fs/btrfs/extent-tree.c:3807 [inline] find_free_extent+0x23b7/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #3 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write+0x234/0x470 fs/super.c:1672 sb_start_intwrite include/linux/fs.h:1690 [inline] start_transaction+0xbe7/0x1170 fs/btrfs/transaction.c:624 find_free_extent_update_loop fs/btrfs/extent-tree.c:3789 [inline] find_free_extent+0x25e1/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #2 ((work_completion)(&(&wb->dwork)->work)){+.+.}-{0:0}: __flush_work+0x60e/0xac0 kernel/workqueue.c:3041 wb_shutdown+0x180/0x220 mm/backing-dev.c:355 bdi_unregister+0x174/0x590 mm/backing-dev.c:872 del_gendisk+0x820/0xa10 block/genhd.c:933 loop_remove drivers/block/loop.c:2192 [inline] loop_control_ioctl drivers/block/loop.c:2291 [inline] loop_control_ioctl+0x3b1/0x480 drivers/block/loop.c:2257 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 lo_open+0x19/0xd0 drivers/block/loop.c:1893 __blkdev_get+0x759/0x1aa0 fs/block_dev.c:1507 blkdev_get fs/block_dev.c:1639 [inline] blkdev_open+0x227/0x300 fs/block_dev.c:1753 do_dentry_open+0x4b9/0x11b0 fs/open.c:817 do_open fs/namei.c:3251 [inline] path_openat+0x1b9a/0x2730 fs/namei.c:3368 do_filp_open+0x17e/0x3c0 fs/namei.c:3395 do_sys_openat2+0x16d/0x420 fs/open.c:1168 do_sys_open fs/open.c:1184 [inline] __do_sys_open fs/open.c:1192 [inline] __se_sys_open fs/open.c:1188 [inline] __x64_sys_open+0x119/0x1c0 fs/open.c:1188 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&bdev->bd_mutex){+.+.}-{3:3}: check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &bdev->bd_mutex --> sb_internal#2 --> &fs_devs->device_list_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_devs->device_list_mutex); lock(sb_internal#2); lock(&fs_devs->device_list_mutex); lock(&bdev->bd_mutex); *** DEADLOCK *** 3 locks held by syz-executor.0/6878: #0: ffff88809070c0e0 (&type->s_umount_key#70){++++}-{3:3}, at: deactivate_super+0xa5/0xd0 fs/super.c:365 #1: ffffffff8a5b37a8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_close_devices+0x23/0x1f0 fs/btrfs/volumes.c:1178 #2: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 stack backtrace: CPU: 0 PID: 6878 Comm: syz-executor.0 Not tainted 5.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x198/0x1fd lib/dump_stack.c:118 check_noncircular+0x324/0x3e0 kernel/locking/lockdep.c:1827 check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x460027 RSP: 002b:00007fff59216328 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 0000000000076035 RCX: 0000000000460027 RDX: 0000000000403188 RSI: 0000000000000002 RDI: 00007fff592163d0 RBP: 0000000000000333 R08: 0000000000000000 R09: 000000000000000b R10: 0000000000000005 R11: 0000000000000246 R12: 00007fff59217460 R13: 0000000002df2a60 R14: 0000000000000000 R15: 00007fff59217460 Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add syzbot reference ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 313b085851 |
btrfs: move btrfs_scratch_superblocks into btrfs_dev_replace_finishing
We need to move the closing of the src_device out of all the device replace locking, but we definitely want to zero out the superblock before we commit the last time to make sure the device is properly removed. Handle this by pushing btrfs_scratch_superblocks into btrfs_dev_replace_finishing, and then later on we'll move the src_device closing and freeing stuff where we need it to be. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Christoph Hellwig | ed7b6b4f6e |
bdi: remove BDI_CAP_CGROUP_WRITEBACK
Just checking SB_I_CGROUPWB for cgroup writeback support is enough. Either the file system allocates its own bdi (e.g. btrfs), in which case it is known to support cgroup writeback, or the bdi comes from the block layer, which always supports cgroup writeback. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Christoph Hellwig | 55b2598e84 |
bdi: initialize ->ra_pages and ->io_pages in bdi_init
Set up a readahead size by default, as very few users have a good reason to change it. This means code, ecryptfs, and orangefs now set up the values while they were previously missing it, while ubifs, mtd and vboxsf manually set it to 0 to avoid readahead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: David Sterba <dsterba@suse.com> [btrfs] Acked-by: Richard Weinberger <richard@nod.at> [ubifs, mtd] Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
Linus Torvalds | bffac4b543 |
for-5.9-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9q8PUACgkQxWXV+ddt WDsHZg//YF3Rfeo7/zaRsfUPvNoKDcM69TW+HROJXu4+rYlOukyuh5T+wboRU1Ft 7ymiR18idPYbtOczmH1Pqw+3wyOr39WafcvAnndoUguXJHsUrriBNqkthQICt0CG hUUiofedaB+j+ti7AYGhF/tkqjd8LkCj8SGEz4cSUFCheIHR+ajFwFmx1Sw6NGJV h9SdKfbBpIqIpoExFhprNFlxdaKN9rlhYY+zXZYeCBdU6r89CkuLqxZ79GzaU0N7 PG7FxuuJXvyHhta2a6p8hnEp7perOG22OTXJhzXd5JXiNCfZ/w4SfhH/aPO/3t5V x42hO+FvloVSLS3woZqkBsCgCIe0a3QOT0YxZiM+1cwSgg8mVw4UBEB3PIgkfOVT LawMbcgSh1evsSazru8gujm4f8RVxpSxxWfhhRwjXtyB8K89e22yBa9Lwfj04SH7 O5O7VrLDDnHsQWinsEf4Rl6byA13jUCgI5eUxZ5B7Au0Pm9uMexDh3lvgE0W0ucY UvD8qAetu2NNZD68gZp597uHPrwu+Lr+VumIh4wF6doeShlIkbf/d+ntOgW9ey1S WFSh7sUdKg5pVf6KJQ4yc3aBA6un5lv9LnvPJOwc9HyMUj/cYuxywxWf1YMr5umv 7/6CkufYjTAmEERQeqE1I6UIgUiWkS9nIisB8BLbYkrMR9Wi1bs= =tFUE -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "syzkaller started to hit us with reports, here's a fix for one type (stack overflow when printing checksums on read error). The other patch is a fix for sysfs object, we have a test for that and it leads to a crash." * tag 'for-5.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix put of uninitialized kobject after seed device delete btrfs: fix overflow when copying corrupt csums for a message |
|
Anand Jain | b5ddcffa37 |
btrfs: fix put of uninitialized kobject after seed device delete
The following test case leads to NULL kobject free error:
mount seed /mnt
add sprout to /mnt
umount /mnt
mount sprout to /mnt
delete seed
kobject: '(null)' (00000000dd2b87e4): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 1 PID: 15784 at lib/kobject.c:736 kobject_put+0x80/0x350
RIP: 0010:kobject_put+0x80/0x350
::
Call Trace:
btrfs_sysfs_remove_devices_dir+0x6e/0x160 [btrfs]
btrfs_rm_device.cold+0xa8/0x298 [btrfs]
btrfs_ioctl+0x206c/0x22a0 [btrfs]
ksys_ioctl+0xe2/0x140
__x64_sys_ioctl+0x1e/0x29
do_syscall_64+0x96/0x150
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f4047c6288b
::
This is because, at the end of the seed device-delete, we try to remove
the seed's devid sysfs entry. But for the seed devices under the sprout
fs, we don't initialize the devid kobject yet. So add a kobject state
check, which takes care of the bug.
Fixes:
|
|
Johannes Thumshirn | 35be8851d1 |
btrfs: fix overflow when copying corrupt csums for a message
Syzkaller reported a buffer overflow in btree_readpage_end_io_hook()
when loop mounting a crafted image:
detected buffer overflow in memcpy
------------[ cut here ]------------
kernel BUG at lib/string.c:1129!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 26 Comm: kworker/u4:2 Not tainted 5.9.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: btrfs-endio-meta btrfs_work_helper
RIP: 0010:fortify_panic+0xf/0x20 lib/string.c:1129
RSP: 0018:ffffc90000e27980 EFLAGS: 00010286
RAX: 0000000000000022 RBX: ffff8880a80dca64 RCX: 0000000000000000
RDX: ffff8880a90860c0 RSI: ffffffff815dba07 RDI: fffff520001c4f22
RBP: ffff8880a80dca00 R08: 0000000000000022 R09: ffff8880ae7318e7
R10: 0000000000000000 R11: 0000000000077578 R12: 00000000ffffff6e
R13: 0000000000000008 R14: ffffc90000e27a40 R15: 1ffff920001c4f3c
FS: 0000000000000000(0000) GS:ffff8880ae700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000557335f440d0 CR3: 000000009647d000 CR4: 00000000001506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
memcpy include/linux/string.h:405 [inline]
btree_readpage_end_io_hook.cold+0x206/0x221 fs/btrfs/disk-io.c:642
end_bio_extent_readpage+0x4de/0x10c0 fs/btrfs/extent_io.c:2854
bio_endio+0x3cf/0x7f0 block/bio.c:1449
end_workqueue_fn+0x114/0x170 fs/btrfs/disk-io.c:1695
btrfs_work_helper+0x221/0xe20 fs/btrfs/async-thread.c:318
process_one_work+0x94c/0x1670 kernel/workqueue.c:2269
worker_thread+0x64c/0x1120 kernel/workqueue.c:2415
kthread+0x3b5/0x4a0 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294
Modules linked in:
---[ end trace b68924293169feef ]---
RIP: 0010:fortify_panic+0xf/0x20 lib/string.c:1129
RSP: 0018:ffffc90000e27980 EFLAGS: 00010286
RAX: 0000000000000022 RBX: ffff8880a80dca64 RCX: 0000000000000000
RDX: ffff8880a90860c0 RSI: ffffffff815dba07 RDI: fffff520001c4f22
RBP: ffff8880a80dca00 R08: 0000000000000022 R09: ffff8880ae7318e7
R10: 0000000000000000 R11: 0000000000077578 R12: 00000000ffffff6e
R13: 0000000000000008 R14: ffffc90000e27a40 R15: 1ffff920001c4f3c
FS: 0000000000000000(0000) GS:ffff8880ae700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f95b7c4d008 CR3: 000000009647d000 CR4: 00000000001506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
The overflow happens, because in btree_readpage_end_io_hook() we assume
that we have found a 4 byte checksum instead of the real possible 32
bytes we have for the checksums.
With the fix applied:
[ 35.726623] BTRFS: device fsid 815caf9a-dc43-4d2a-ac54-764b8333d765 devid 1 transid 5 /dev/loop0 scanned by syz-repro (215)
[ 35.738994] BTRFS info (device loop0): disk space caching is enabled
[ 35.738998] BTRFS info (device loop0): has skinny extents
[ 35.743337] BTRFS warning (device loop0): loop0 checksum verify failed on 1052672 wanted 0xf9c035fc8d239a54 found 0x67a25c14b7eabcf9 level 0
[ 35.743420] BTRFS error (device loop0): failed to read chunk root
[ 35.745899] BTRFS error (device loop0): open_ctree failed
Reported-by: syzbot+e864a35d361e1d4e29a5@syzkaller.appspotmail.com
Fixes:
|
|
Linus Torvalds | fc4f28bb3d |
for-5.9-rc5-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9fju4ACgkQxWXV+ddt WDukWw//d3D33s1SnHI2ooub6VllM5xC/VCB5hfpHdeuLfhIR4iFrXlKCwFNuyuF A1CgKu7W4eMkQ9E6dKIvYhRQj9ELcHWxS1LRUkuXVGojvPVQAbGhUibjcmTy6xoi t4KkvdI0t/puEwRTrF2ooInWzdbiJvzCuCHLWkX4wK0IAkaVt+IK2ZJuSTCZhUEv Gx5CSLqP6zq/XD/03yWQvILE3MoM9BOc28EQ345dhEu+SWWpdhzy4W825A8xUe3Q bThcK8vJgeLUo/KVtUJNLoFTl+2BpxzaiHWqh+3plGjQ1qtZyDgFhZOoP0JEJb/f qEnyN2XbY26p6nj2J+34Euz5OX65ot6bePx6v/h5jY+UjNa8mpZD6d4Y+OII0XW0 kCLPyaNc8P6IkmAYzSLQPmrjCoRgR/2we8HRBylTWaeEcvpduZs/5YlJNO9q59Et voclNx6kk4AdFjSxXHwERlSA3v4+pkq41bjnbpv7a9FGRBUJGVfJFCNukuhCx5Oi nUKg7jBJEZNhE2DOA0MKnrZTBnufkLCiH+f/7pn+ypPdw1dna/ix9Suwbz4+UElx TtwGLF99CQCX09ieJBVWB90a3xgQBIZLaqu1HtZ1u7dzKkutl+uKMcnfEEtLSfJy qMLHHsRQj/iwytQHSdWboL6xQCUSkSefPTmmNfstaKSxeq6w0Q0= =pdp0 -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One of the recent lockdep fixes introduced a bug that breaks the search ioctl, which is used by some applications (bees, compsize). The patch made it to stable trees so we need this fixup to make it work again" * tag 'for-5.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix wrong address when faulting in pages in the search ioctl |
|
Filipe Manana | 1c78544eaa |
btrfs: fix wrong address when faulting in pages in the search ioctl
When faulting in the pages for the user supplied buffer for the search ioctl, we are passing only the base address of the buffer to the function fault_in_pages_writeable(). This means that after the first iteration of the while loop that searches for leaves, when we have a non-zero offset, stored in 'sk_offset', we try to fault in a wrong page range. So fix this by adding the offset in 'sk_offset' to the base address of the user supplied buffer when calling fault_in_pages_writeable(). Several users have reported that the applications compsize and bees have started to operate incorrectly since commit |
|
Linus Torvalds | edf6b0e1e4 |
for-5.9-rc4-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9bj/UACgkQxWXV+ddt WDs1HhAAgAvJVM2WJuMCjQhQiKljFjRT1a0Kbsp+9ayw5Q225t5S5kCMWrsA6mXF /9bGRmmELm/Nr5pSH9hp5Bhbke0vNV+Y9XiRQXpegla4LLMF4MulVgADRIL3WoxO ZAtNmZUokkjvB0CkzDuI7PqrF67TXLqV2hlctZo0p5SAFFgLaELyIYC6uAaO9Qo/ +EAAK+7oJyzWcUp44APu90wBbF79umwNVKEEkDfc6bwiA2Cut1JGzvPWgGvvQnta fAd114LFViKg05GXcbnx4NxHYtf9tKHjDk9yYWssR+uV6vo/pWwAkDwYxXm/LzA4 Zv8QK5uvng1fW4eq9QkN3KflIDn+YhaH1jgwNcgyS+ZCdqZR1Mi949f+6Nj1fXt2 NeXOx3nhtqgNthKQNvHSMVJZrPjV3bdzOz+bULA+hMvTkr5gJy+ToAs30SLxGF5Y BCJEE6b5M5Jnb+UHEBMuoxubBfmPHkY8LxfDzVWDLESsKcW2eYyeJyJXx4DNe/v9 O7Z5pcku+7R9LOlYQEzKeSuiYMqYLtmQtcNXyFBysksikjFJBWNgENna1LmgvmRH j6fC5S9h4sIxzyKQkJgihIDt/a3f9WnhsoHw8EIn62tfdOIvMcT/xWq9YYgWaOjZ H9040WXvEAFVcDn4cQ22DNgV+toJMpe0pLg6UXe7VtESUtbwMFM= =JTfF -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes: - regression fix for a crash after failed snapshot creation - one more lockep fix: use nofs allocation when allocating missing device - fix reloc tree leak on degraded mount - make some extent buffer alignment checks less strict to mount filesystems created by btrfs-convert" * tag 'for-5.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix NULL pointer dereference after failure to create snapshot btrfs: free data reloc tree on failed mount btrfs: require only sector size alignment for parent eb bytenr btrfs: fix lockdep splat in add_missing_dev |
|
Filipe Manana | 2d892ccdc1 |
btrfs: fix NULL pointer dereference after failure to create snapshot
When trying to get a new fs root for a snapshot during the transaction
at transaction.c:create_pending_snapshot(), if btrfs_get_new_fs_root()
fails we leave "pending->snap" pointing to an error pointer, and then
later at ioctl.c:create_snapshot() we dereference that pointer, resulting
in a crash:
[12264.614689] BUG: kernel NULL pointer dereference, address: 00000000000007c4
[12264.615650] #PF: supervisor write access in kernel mode
[12264.616487] #PF: error_code(0x0002) - not-present page
[12264.617436] PGD 0 P4D 0
[12264.618328] Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[12264.619150] CPU: 0 PID: 2310635 Comm: fsstress Tainted: G W 5.9.0-rc3-btrfs-next-67 #1
[12264.619960] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[12264.621769] RIP: 0010:btrfs_mksubvol+0x438/0x4a0 [btrfs]
[12264.622528] Code: bc ef ff ff (...)
[12264.624092] RSP: 0018:ffffaa6fc7277cd8 EFLAGS: 00010282
[12264.624669] RAX: 00000000fffffff4 RBX: ffff9d3e8f151a60 RCX: 0000000000000000
[12264.625249] RDX: 0000000000000001 RSI: ffffffff9d56c9be RDI: fffffffffffffff4
[12264.625830] RBP: ffff9d3e8f151b48 R08: 0000000000000000 R09: 0000000000000000
[12264.626413] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000fffffff4
[12264.626994] R13: ffff9d3ede380538 R14: ffff9d3ede380500 R15: ffff9d3f61b2eeb8
[12264.627582] FS: 00007f140d5d8200(0000) GS:ffff9d3fb5e00000(0000) knlGS:0000000000000000
[12264.628176] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[12264.628773] CR2: 00000000000007c4 CR3: 000000020f8e8004 CR4: 00000000003706f0
[12264.629379] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[12264.629994] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[12264.630594] Call Trace:
[12264.631227] btrfs_mksnapshot+0x7b/0xb0 [btrfs]
[12264.631840] __btrfs_ioctl_snap_create+0x16f/0x1a0 [btrfs]
[12264.632458] btrfs_ioctl_snap_create_v2+0xb0/0xf0 [btrfs]
[12264.633078] btrfs_ioctl+0x1864/0x3130 [btrfs]
[12264.633689] ? do_sys_openat2+0x1a7/0x2d0
[12264.634295] ? kmem_cache_free+0x147/0x3a0
[12264.634899] ? __x64_sys_ioctl+0x83/0xb0
[12264.635488] __x64_sys_ioctl+0x83/0xb0
[12264.636058] do_syscall_64+0x33/0x80
[12264.636616] entry_SYSCALL_64_after_hwframe+0x44/0xa9
(gdb) list *(btrfs_mksubvol+0x438)
0x7c7b8 is in btrfs_mksubvol (fs/btrfs/ioctl.c:858).
853 ret = 0;
854 pending_snapshot->anon_dev = 0;
855 fail:
856 /* Prevent double freeing of anon_dev */
857 if (ret && pending_snapshot->snap)
858 pending_snapshot->snap->anon_dev = 0;
859 btrfs_put_root(pending_snapshot->snap);
860 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
861 free_pending:
862 if (pending_snapshot->anon_dev)
So fix this by setting "pending->snap" to NULL if we get an error from the
call to btrfs_get_new_fs_root() at transaction.c:create_pending_snapshot().
Fixes:
|
|
Josef Bacik | 9e3aa80544 |
btrfs: free data reloc tree on failed mount
While testing a weird problem with -o degraded, I noticed I was getting leaked root errors BTRFS warning (device loop0): writable mount is not allowed due to too many missing devices BTRFS error (device loop0): open_ctree failed BTRFS error (device loop0): leaked root -9-0 refcount 1 This is the DATA_RELOC root, which gets read before the other fs roots, but is included in the fs roots radix tree. Handle this by adding a btrfs_drop_and_free_fs_root() on the data reloc root if it exists. This is ok to do here if we fail further up because we will only drop the ref if we delete the root from the radix tree, and all other cleanup won't be duplicated. CC: stable@vger.kernel.org # 5.8+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | ea57788eb7 |
btrfs: require only sector size alignment for parent eb bytenr
[BUG] A completely sane converted fs will cause kernel warning at balance time: [ 1557.188633] BTRFS info (device sda7): relocating block group 8162107392 flags data [ 1563.358078] BTRFS info (device sda7): found 11722 extents [ 1563.358277] BTRFS info (device sda7): leaf 7989321728 gen 95 total ptrs 213 free space 3458 owner 2 [ 1563.358280] item 0 key (7984947200 169 0) itemoff 16250 itemsize 33 [ 1563.358281] extent refs 1 gen 90 flags 2 [ 1563.358282] ref#0: tree block backref root 4 [ 1563.358285] item 1 key (7985602560 169 0) itemoff 16217 itemsize 33 [ 1563.358286] extent refs 1 gen 93 flags 258 [ 1563.358287] ref#0: shared block backref parent 7985602560 [ 1563.358288] (parent 7985602560 is NOT ALIGNED to nodesize 16384) [ 1563.358290] item 2 key (7985635328 169 0) itemoff 16184 itemsize 33 ... [ 1563.358995] BTRFS error (device sda7): eb 7989321728 invalid extent inline ref type 182 [ 1563.358996] ------------[ cut here ]------------ [ 1563.359005] WARNING: CPU: 14 PID: 2930 at 0xffffffff9f231766 Then with transaction abort, and obviously failed to balance the fs. [CAUSE] That mentioned inline ref type 182 is completely sane, it's BTRFS_SHARED_BLOCK_REF_KEY, it's some extra check making kernel to believe it's invalid. Commit |
|
Josef Bacik | fccc0007b8 |
btrfs: fix lockdep splat in add_missing_dev
Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Linus Torvalds | dcdfd9cc28 |
for-5.9-rc3-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9NWskACgkQxWXV+ddt WDsO5A//Xcjo45Th0T0mTiPXWpCPexOmQd3yvEezME5TVavEKM9hkfxYrv5d5i/k dfFhPg8FYSasW7Sie1PdcP0Hu9mlla5G/4L1pQYMewCdJCSx0mt/dDtEh4GPwcmI 1MgyQ0pnKufNBD9SquO4yGZHR+lP+wY/FTZ6yCePJRvNEvtOWtcxH3vhTrbKC0sc wSO2xL8Ht3VQBDA6YR+A/OMY8t6k2aN0qOk1BJWcMil0HmNw/rZBH/bWvPOn0dMQ vaXQIUNRIUUD5qS7vcv5rgVDDWMnyM41eC6idckg1A2tpLGYZyFO3fv2c/VNKFaZ dWQGeSbg0wRMnQhHhDmAZZwRfTsOhGuSPADnh4qQ07klDto6s5EbmrwkWmGNC6QY B9yGF09mNwcHvgjz6RVv3mA/dINP32Qg3s90TtO2b7Rrolg1sQLRYDewuTUukmvH jIg8q1oZBppHS8y5B4Vxl+18Swz4j66Kurq9jhU669n0CUqYBiqg5dEQzDHm54Ca uEujNWfUGzfiFbj3uVtMG0i9XSHlwEtiGOCkXErlEqAFRSzPQsoFJQ0ae3Hl9FiI PJuTVmS1UekhCB/ubewf5dOHbEk/nRKbIHnXbuJTQcWWzGtzzyBv4uJH3arQcMrC QdiBpbqR1BSQ6ki4GbnG9f/4mvnLffsfPDAh+dt9VGxEru/9Q/c= =cdvW -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Two small fixes and a bunch of lockdep fixes for warnings that show up with an upcoming tree locking update but are valid with current locks as well" * tag 'for-5.9-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: tree-checker: fix the error message for transid error btrfs: set the lockdep class for log tree extent buffers btrfs: set the correct lockdep class for new nodes btrfs: allocate scrub workqueues outside of locks btrfs: fix potential deadlock in the search ioctl btrfs: drop path before adding new uuid tree entry btrfs: block-group: fix free-space bitmap threshold |
|
Qu Wenruo | f96d6960ab |
btrfs: tree-checker: fix the error message for transid error
The error message for inode transid is the same as for inode generation,
which makes us unable to detect the real problem.
Reported-by: Tyler Richmond <t.d.richmond@gmail.com>
Fixes:
|
|
Josef Bacik | d3beaa253f |
btrfs: set the lockdep class for log tree extent buffers
These are special extent buffers that get rewound in order to lookup the state of the tree at a specific point in time. As such they do not go through the normal initialization paths that set their lockdep class, so handle them appropriately when they are created and before they are locked. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | ad24466588 |
btrfs: set the correct lockdep class for new nodes
When flipping over to the rw_semaphore I noticed I'd get a lockdep splat in replace_path(), which is weird because we're swapping the reloc root with the actual target root. Turns out this is because we're using the root->root_key.objectid as the root id for the newly allocated tree block when setting the lockdep class, however we need to be using the actual owner of this new block, which is saved in owner. The affected path is through btrfs_copy_root as all other callers of btrfs_alloc_tree_block (which calls init_new_buffer) have root_objectid == root->root_key.objectid . CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | e89c4a9c8e |
btrfs: allocate scrub workqueues outside of locks
I got the following lockdep splat while testing: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00172-g021118712e59 #932 Not tainted ------------------------------------------------------ btrfs/229626 is trying to acquire lock: ffffffff828513f0 (cpu_hotplug_lock){++++}-{0:0}, at: alloc_workqueue+0x378/0x450 but task is already holding lock: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #7 (&fs_info->scrub_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_scrub_dev+0x11c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #6 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #5 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #1 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 cpus_read_lock+0x39/0xb0 alloc_workqueue+0x378/0x450 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: cpu_hotplug_lock --> &fs_devs->device_list_mutex --> &fs_info->scrub_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->scrub_lock); lock(&fs_devs->device_list_mutex); lock(&fs_info->scrub_lock); lock(cpu_hotplug_lock); *** DEADLOCK *** 2 locks held by btrfs/229626: #0: ffff88bfe8bb86e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_scrub_dev+0xbd/0x630 #1: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 stack backtrace: CPU: 15 PID: 229626 Comm: btrfs Kdump: loaded Not tainted 5.8.0-rc7-00172-g021118712e59 #932 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? alloc_workqueue+0x378/0x450 cpus_read_lock+0x39/0xb0 ? alloc_workqueue+0x378/0x450 alloc_workqueue+0x378/0x450 ? rcu_read_lock_sched_held+0x52/0x80 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 ? start_transaction+0xd1/0x5d0 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ? do_sigaction+0x102/0x250 ? lockdep_hardirqs_on_prepare+0xca/0x160 ? _raw_spin_unlock_irq+0x24/0x30 ? trace_hardirqs_on+0x1c/0xe0 ? _raw_spin_unlock_irq+0x24/0x30 ? do_sigaction+0x102/0x250 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This happens because we're allocating the scrub workqueues under the scrub and device list mutex, which brings in a whole host of other dependencies. Because the work queue allocation is done with GFP_KERNEL, it can trigger reclaim, which can lead to a transaction commit, which in turns needs the device_list_mutex, it can lead to a deadlock. A different problem for which this fix is a solution. Fix this by moving the actual allocation outside of the scrub lock, and then only take the lock once we're ready to actually assign them to the fs_info. We'll now have to cleanup the workqueues in a few more places, so I've added a helper to do the refcount dance to safely free the workqueues. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | a48b73eca4 |
btrfs: fix potential deadlock in the search ioctl
With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Not tainted ------------------------------------------------------ compsize/11122 is trying to acquire lock: ffff889fabca8768 (&mm->mmap_lock#2){++++}-{3:3}, at: __might_fault+0x3e/0x90 but task is already holding lock: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-fs-00){++++}-{3:3}: down_write_nested+0x3b/0x70 __btrfs_tree_lock+0x24/0x120 btrfs_search_slot+0x756/0x990 btrfs_lookup_inode+0x3a/0xb4 __btrfs_update_delayed_inode+0x93/0x270 btrfs_async_run_delayed_root+0x168/0x230 btrfs_work_helper+0xd4/0x570 process_one_work+0x2ad/0x5f0 worker_thread+0x3a/0x3d0 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #1 (&delayed_node->mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_delayed_update_inode+0x50/0x440 btrfs_update_inode+0x8a/0xf0 btrfs_dirty_inode+0x5b/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&mm->mmap_lock#2){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &mm->mmap_lock#2 --> &delayed_node->mutex --> btrfs-fs-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-fs-00); lock(&delayed_node->mutex); lock(btrfs-fs-00); lock(&mm->mmap_lock#2); *** DEADLOCK *** 1 lock held by compsize/11122: #0: ffff889fe720fe40 (btrfs-fs-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 17 PID: 11122 Comm: compsize Kdump: loaded Not tainted 5.8.0-rc7-00165-g04ec4da5f45f-dirty #922 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __might_fault+0x3e/0x90 ? find_held_lock+0x72/0x90 __might_fault+0x68/0x90 ? __might_fault+0x3e/0x90 _copy_to_user+0x1e/0x80 copy_to_sk.isra.32+0x121/0x300 ? btrfs_search_forward+0x2a6/0x360 search_ioctl+0x106/0x200 btrfs_ioctl_tree_search_v2+0x7b/0xf0 btrfs_ioctl+0x106f/0x30a0 ? __do_sys_newfstat+0x5a/0x70 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is we're doing a copy_to_user() while holding tree locks, which can deadlock if we have to do a page fault for the copy_to_user(). This exists even without my locking changes, so it needs to be fixed. Rework the search ioctl to do the pre-fault and then copy_to_user_nofault for the copying. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 9771a5cf93 |
btrfs: drop path before adding new uuid tree entry
With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Not tainted ------------------------------------------------------ btrfs-uuid/7955 is trying to acquire lock: ffff88bfbafec0f8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 but task is already holding lock: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-uuid-00){++++}-{3:3}: down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_uuid_tree_add+0x89/0x2d0 btrfs_uuid_scan_kthread+0x330/0x390 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-uuid-00); lock(btrfs-root-00); lock(btrfs-uuid-00); lock(btrfs-root-00); *** DEADLOCK *** 1 lock held by btrfs-uuid/7955: #0: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 73 PID: 7955 Comm: btrfs-uuid Kdump: loaded Not tainted 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __btrfs_tree_read_lock+0x39/0x180 ? btrfs_root_node+0x1c/0x1d0 down_read_nested+0x3e/0x140 ? __btrfs_tree_read_lock+0x39/0x180 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 ? btree_readpage+0x20/0x20 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x1f/0x30 This problem exists because we have two different rescan threads, btrfs_uuid_scan_kthread which creates the uuid tree, and btrfs_uuid_tree_iterate that goes through and updates or deletes any out of date roots. The problem is they both do things in different order. btrfs_uuid_scan_kthread() reads the tree_root, and then inserts entries into the uuid_root. btrfs_uuid_tree_iterate() scans the uuid_root, but then does a btrfs_get_fs_root() which can read from the tree_root. It's actually easy enough to not be holding the path in btrfs_uuid_scan_kthread() when we add a uuid entry, as we already drop it further down and re-start the search when we loop. So simply move the path release before we add our entry to the uuid tree. This also fixes a problem where we're holding a path open after we do btrfs_end_transaction(), which has it's own problems. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Marcos Paulo de Souza | e3e39c72b9 |
btrfs: block-group: fix free-space bitmap threshold
[BUG] After commit |
|
Linus Torvalds | 9907ab3714 |
for-5.9-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl9D5EkACgkQxWXV+ddt WDto+g/6A/2QzxhgOmqqHTiDvn3DkL60XfjB6lmq3NEvinrST+VH20EoX/EuX2Kn u2+gMiWrgBUwlvERkoSasxdJf/6dCCc+9zYDjjKkAxCckENT85Np71o3iEc7Z5z+ LFgS26mt6aYlCCHyIsHutzHtK2MKiUz7/oaUYZMJBHHkKS/5hL1mzIbwiWAqfU2H q0iMz9L2mjp1kZnpwa/yhg/NJ/oGZsKm3UPGDhdc0RlCWHBbDXHFk1wvNRo/yKQW l+yy0dh6PAZ45pRL0/WZwvOzcAglb+uSmwa64UOvwio4Na9P7oAcBzTFmtbBtvP4 WBrOUPCTzkvgQcmoAsWFpD4nrzgW4oS71EICTOIRlPx7A86TP3wYpFEygUlLCoZC Pd4e9mPClmW78hcRT12eJeGcJIzgoKWhR8597jNUEYz3R5T2wKHOcNnq9a1E1PLv zR+5MFShsylUHd7HbMC1O86XnfXe5esegNQMvx36kTS+cR9Dyt5EWMNIAYK4BPM3 /tXWZRqlZPOh3T7DZ4QR5oSSDDNq7ROTdv9jmsleno+woG0MNDYsA7jCbeJnGTmI CtTUP+p41otyM2lFZjV8PG/XyXDKb3UfU5gcsDOZdGP5S0tkyBiKSA6eqhz6DaTi fQOLGZdkNpNN/burbMq7d7YEHr3F6LC17U3L4k5V4MTAm2lp7ZQ= =ONgI -----END PGP SIGNATURE----- Merge tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix swapfile activation on subvolumes with deleted snapshots - error value mixup when removing directory entries from tree log - fix lzo compression level reset after previous level setting - fix space cache memory leak after transaction abort - fix const function attribute - more error handling improvements * tag 'for-5.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: detect nocow for swap after snapshot delete btrfs: check the right error variable in btrfs_del_dir_entries_in_log btrfs: fix space cache memory leak after transaction abort btrfs: use the correct const function attribute for btrfs_get_num_csums btrfs: reset compression level for lzo on remount btrfs: handle errors from async submission |
|
Boris Burkov | a84d5d429f |
btrfs: detect nocow for swap after snapshot delete
can_nocow_extent and btrfs_cross_ref_exist both rely on a heuristic for detecting a must cow condition which is not exactly accurate, but saves unnecessary tree traversal. The incorrect assumption is that if the extent was created in a generation smaller than the last snapshot generation, it must be referenced by that snapshot. That is true, except the snapshot could have since been deleted, without affecting the last snapshot generation. The original patch claimed a performance win from this check, but it also leads to a bug where you are unable to use a swapfile if you ever snapshotted the subvolume it's in. Make the check slower and more strict for the swapon case, without modifying the general cow checks as a compromise. Turning swap on does not seem to be a particularly performance sensitive operation, so incurring a possibly unnecessary btrfs_search_slot seems worthwhile for the added usability. Note: Until the snapshot is competely cleaned after deletion, check_committed_refs will still cause the logic to think that cow is necessary, so the user must until 'btrfs subvolu sync' finished before activating the swapfile swapon. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | fb2fecbad5 |
btrfs: check the right error variable in btrfs_del_dir_entries_in_log
With my new locking code dbench is so much faster that I tripped over a
transaction abort from ENOSPC. This turned out to be because
btrfs_del_dir_entries_in_log was checking for ret == -ENOSPC, but this
function sets err on error, and returns err. So instead of properly
marking the inode as needing a full commit, we were returning -ENOSPC
and aborting in __btrfs_unlink_inode. Fix this by checking the proper
variable so that we return the correct thing in the case of ENOSPC.
The ENOENT needs to be checked, because btrfs_lookup_dir_item_index()
can return -ENOENT if the dir item isn't in the tree log (which would
happen if we hadn't fsync'ed this guy). We actually handle that case in
__btrfs_unlink_inode, so it's an expected error to get back.
Fixes:
|
|
Filipe Manana | bbc37d6e47 |
btrfs: fix space cache memory leak after transaction abort
If a transaction aborts it can cause a memory leak of the pages array of a block group's io_ctl structure. The following steps explain how that can happen: 1) Transaction N is committing, currently in state TRANS_STATE_UNBLOCKED and it's about to start writing out dirty extent buffers; 2) Transaction N + 1 already started and another task, task A, just called btrfs_commit_transaction() on it; 3) Block group B was dirtied (extents allocated from it) by transaction N + 1, so when task A calls btrfs_start_dirty_block_groups(), at the very beginning of the transaction commit, it starts writeback for the block group's space cache by calling btrfs_write_out_cache(), which allocates the pages array for the block group's io_ctl with a call to io_ctl_init(). Block group A is added to the io_list of transaction N + 1 by btrfs_start_dirty_block_groups(); 4) While transaction N's commit is writing out the extent buffers, it gets an IO error and aborts transaction N, also setting the file system to RO mode; 5) Task A has already returned from btrfs_start_dirty_block_groups(), is at btrfs_commit_transaction() and has set transaction N + 1 state to TRANS_STATE_COMMIT_START. Immediately after that it checks that the filesystem was turned to RO mode, due to transaction N's abort, and jumps to the "cleanup_transaction" label. After that we end up at btrfs_cleanup_one_transaction() which calls btrfs_cleanup_dirty_bgs(). That helper finds block group B in the transaction's io_list but it never releases the pages array of the block group's io_ctl, resulting in a memory leak. In fact at the point when we are at btrfs_cleanup_dirty_bgs(), the pages array points to pages that were already released by us at __btrfs_write_out_cache() through the call to io_ctl_drop_pages(). We end up freeing the pages array only after waiting for the ordered extent to complete through btrfs_wait_cache_io(), which calls io_ctl_free() to do that. But in the transaction abort case we don't wait for the space cache's ordered extent to complete through a call to btrfs_wait_cache_io(), so that's why we end up with a memory leak - we wait for the ordered extent to complete indirectly by shutting down the work queues and waiting for any jobs in them to complete before returning from close_ctree(). We can solve the leak simply by freeing the pages array right after releasing the pages (with the call to io_ctl_drop_pages()) at __btrfs_write_out_cache(), since we will never use it anymore after that and the pages array points to already released pages at that point, which is currently not a problem since no one will use it after that, but not a good practice anyway since it can easily lead to use-after-free issues. So fix this by freeing the pages array right after releasing the pages at __btrfs_write_out_cache(). This issue can often be reproduced with test case generic/475 from fstests and kmemleak can detect it and reports it with the following trace: unreferenced object 0xffff9bbf009fa600 (size 512): comm "fsstress", pid 38807, jiffies 4298504428 (age 22.028s) hex dump (first 32 bytes): 00 a0 7c 4d 3d ed ff ff 40 a0 7c 4d 3d ed ff ff ..|M=...@.|M=... 80 a0 7c 4d 3d ed ff ff c0 a0 7c 4d 3d ed ff ff ..|M=.....|M=... backtrace: [<00000000f4b5cfe2>] __kmalloc+0x1a8/0x3e0 [<0000000028665e7f>] io_ctl_init+0xa7/0x120 [btrfs] [<00000000a1f95b2d>] __btrfs_write_out_cache+0x86/0x4a0 [btrfs] [<00000000207ea1b0>] btrfs_write_out_cache+0x7f/0xf0 [btrfs] [<00000000af21f534>] btrfs_start_dirty_block_groups+0x27b/0x580 [btrfs] [<00000000c3c23d44>] btrfs_commit_transaction+0xa6f/0xe70 [btrfs] [<000000009588930c>] create_subvol+0x581/0x9a0 [btrfs] [<000000009ef2fd7f>] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [<00000000474e5187>] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [<00000000708ee349>] btrfs_ioctl_snap_create_v2+0xb0/0xf0 [btrfs] [<00000000ea60106f>] btrfs_ioctl+0x12c/0x3130 [btrfs] [<000000005c923d6d>] __x64_sys_ioctl+0x83/0xb0 [<0000000043ace2c9>] do_syscall_64+0x33/0x80 [<00000000904efbce>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | 604997b4a3 |
btrfs: use the correct const function attribute for btrfs_get_num_csums
The build robot reports compiler: h8300-linux-gcc (GCC) 9.3.0 In file included from fs/btrfs/tests/extent-map-tests.c:8: >> fs/btrfs/tests/../ctree.h:2166:8: warning: type qualifiers ignored on function return type [-Wignored-qualifiers] 2166 | size_t __const btrfs_get_num_csums(void); | ^~~~~~~ The function attribute for const does not follow the expected scheme and in this case is confused with a const type qualifier. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Marcos Paulo de Souza | 282dd7d771 |
btrfs: reset compression level for lzo on remount
Currently a user can set mount "-o compress" which will set the compression algorithm to zlib, and use the default compress level for zlib (3): relatime,compress=zlib:3,space_cache If the user remounts the fs using "-o compress=lzo", then the old compress_level is used: relatime,compress=lzo:3,space_cache But lzo does not expose any tunable compression level. The same happens if we set any compress argument with different level, also with zstd. Fix this by resetting the compress_level when compress=lzo is specified. With the fix applied, lzo is shown without compress level: relatime,compress=lzo,space_cache CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Johannes Thumshirn | c965d6402f |
btrfs: handle errors from async submission
Btrfs' async submit mechanism is able to handle errors in the submission path and the meta-data async submit function correctly passes the error code to the caller. In btrfs_submit_bio_start() and btrfs_submit_bio_start_direct_io() we're not handling the errors returned by btrfs_csum_one_bio() correctly though and simply call BUG_ON(). This is unnecessary as the caller of these two functions - run_one_async_start - correctly checks for the return values and sets the status of the async_submit_bio. The actual bio submission will be handled later on by run_one_async_done only if async_submit_bio::status is 0, so the data won't be written if we encountered an error in the checksum process. Simply return the error from btrfs_csum_one_bio() to the async submitters, like it's done in btree_submit_bio_start(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Linus Torvalds | 23c2c8c6fa |
for-5.9-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl81Q0wACgkQxWXV+ddt WDtbqw/+NeFlvQzsCeQV9PX7RjYf9MFEQIThxo33xDl+ersgcOD8MuPa/hY1hoO0 gOn2eRPcVe/RIPBezRbxX9bnqlfW6N0VnBNLJHypMapB2hR6WFcFt7CAMoXKRmHV RDM37pA2TNULr8XYrJ0+J5Vy1NWp5HdKzEV6bXfsOSzMSdAVMheXNec93suLEB/g 9QGXX6kaaq0Hcpy7tQQBtm2lbVj8/M3LOUAmYOB/JNCPtsJEB/2EO2b63TB4s2cW 0lpiPehW2m/Pv5GjqQM+iN5fbt9yhKB6lqEEgoHZPgI2tLFyh5WlTWKET7uxqj7G YBzZjiq1WREEl9KWLYZuthcXPLX2XgJ4gLSlckygi1e4MpPlJ4pa30Bj9OyIEIjP FOeR0lelRYcjmZrQW4Kana0qq8K0JJzvo2dSqaJBGF9CaveN3BAGQ9ttNhgIIpS5 4kBKlv2SCJ9Anhn8la6bFwlfuR2ggMhDShxIGBQpA1OKf0oJyi2dtavSIbuXwFbd 6KA37cyp4cDK9ycmTN5YxZSndzZSqUEh5Wt4gLk32NeIxhyCX4aTvjQj5KqM1MNw N/WrTJQ27D6jfi+PBRBmT7U6qEujySXUimJRFTJzk+Px8Q/QMzGAFPCqz6iXv3u3 lX1Ywha9iQ0g2IZVoaq1ZjDDp4xOqIakAjaXez3dFhu3Mq3Kc70= =7b8U -----END PGP SIGNATURE----- Merge tag 'for-5.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull more btrfs updates from David Sterba: "One minor update, the rest are fixes that have arrived a bit late for the first batch. There are also some recent fixes for bugs that were discovered during the merge window and pop up during testing. User visible change: - show correct subvolume path in /proc/mounts for bind mounts Fixes: - fix compression messages when remounting with different level or compression algorithm - tree-log: fix some memory leaks on error handling paths - restore I_VERSION on remount - fix return values and error code mixups - fix umount crash with quotas enabled when removing sysfs files - fix trim range on a shrunk device" * tag 'for-5.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: trim: fix underflow in trim length to prevent access beyond device boundary btrfs: fix return value mixup in btrfs_get_extent btrfs: sysfs: fix NULL pointer dereference at btrfs_sysfs_del_qgroups() btrfs: check correct variable after allocation in btrfs_backref_iter_alloc btrfs: make sure SB_I_VERSION doesn't get unset by remount btrfs: fix memory leaks after failure to lookup checksums during inode logging btrfs: don't show full path of bind mounts in subvol= btrfs: fix messages after changing compression level by remount btrfs: only search for left_info if there is no right_info in try_merge_free_space btrfs: inode: fix NULL pointer dereference if inode doesn't need compression |
|
Qu Wenruo | c57dd1f2f6 |
btrfs: trim: fix underflow in trim length to prevent access beyond device boundary
[BUG] The following script can lead to tons of beyond device boundary access: mkfs.btrfs -f $dev -b 10G mount $dev $mnt trimfs $mnt btrfs filesystem resize 1:-1G $mnt trimfs $mnt [CAUSE] Since commit |
|
Pavel Machek | 881a3a11c2 |
btrfs: fix return value mixup in btrfs_get_extent
btrfs_get_extent() sets variable ret, but out: error path expect error
to be in variable err so the error code is lost.
Fixes:
|
|
Qu Wenruo | 62ab2cc04d |
btrfs: sysfs: fix NULL pointer dereference at btrfs_sysfs_del_qgroups()
[BUG]
Unmounting a btrfs filesystem with quota disabled will cause the
following NULL pointer dereference:
BTRFS info (device dm-5): has skinny extents
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 7 PID: 637 Comm: umount Not tainted 5.8.0-rc7-next-20200731-custom #76
RIP: 0010:kobject_del+0x6/0x20
Call Trace:
btrfs_sysfs_del_qgroups+0xac/0xf0 [btrfs]
btrfs_free_qgroup_config+0x63/0x70 [btrfs]
close_ctree+0x1f5/0x323 [btrfs]
btrfs_put_super+0x15/0x17 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x17/0x30 [btrfs]
deactivate_locked_super+0x3b/0xa0
deactivate_super+0x40/0x50
cleanup_mnt+0x135/0x190
__cleanup_mnt+0x12/0x20
task_work_run+0x64/0xb0
exit_to_user_mode_prepare+0x18a/0x190
syscall_exit_to_user_mode+0x4f/0x270
do_syscall_64+0x45/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 37b7adca5c1d5c5d ]---
[CAUSE]
Commit
|
|
Boleyn Su | c15c2ec07a |
btrfs: check correct variable after allocation in btrfs_backref_iter_alloc
The `if (!ret)` check will always be false and it may result in
ret->path being dereferenced while it is a NULL pointer.
Fixes:
|
|
Josef Bacik | faa008899a |
btrfs: make sure SB_I_VERSION doesn't get unset by remount
There's some inconsistency around SB_I_VERSION handling with mount and remount. Since we don't really want it to be off ever just work around this by making sure we don't get the flag cleared on remount. There's a tiny cpu cost of setting the bit, otherwise all changes to i_version also change some of the times (ctime/mtime) so the inode needs to be synced. We wouldn't save anything by disabling it. Reported-by: Eric Sandeen <sandeen@redhat.com> CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add perf impact analysis ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
Filipe Manana | 4f26433e9b |
btrfs: fix memory leaks after failure to lookup checksums during inode logging
While logging an inode, at copy_items(), if we fail to lookup the checksums
for an extent we release the destination path, free the ins_data array and
then return immediately. However a previous iteration of the for loop may
have added checksums to the ordered_sums list, in which case we leak the
memory used by them.
So fix this by making sure we iterate the ordered_sums list and free all
its checksums before returning.
Fixes:
|
|
Josef Bacik | 3ef3959b29 |
btrfs: don't show full path of bind mounts in subvol=
Chris Murphy reported a problem where rpm ostree will bind mount a bunch of things for whatever voodoo it's doing. But when it does this /proc/mounts shows something like /dev/sda /mnt/test btrfs rw,relatime,subvolid=256,subvol=/foo 0 0 /dev/sda /mnt/test/baz btrfs rw,relatime,subvolid=256,subvol=/foo/bar 0 0 Despite subvolid=256 being subvol=/foo. This is because we're just spitting out the dentry of the mount point, which in the case of bind mounts is the source path for the mountpoint. Instead we should spit out the path to the actual subvol. Fix this by looking up the name for the subvolid we have mounted. With this fix the same test looks like this /dev/sda /mnt/test btrfs rw,relatime,subvolid=256,subvol=/foo 0 0 /dev/sda /mnt/test/baz btrfs rw,relatime,subvolid=256,subvol=/foo 0 0 Reported-by: Chris Murphy <chris@colorremedies.com> CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | 27942c9971 |
btrfs: fix messages after changing compression level by remount
Reported by Forza on IRC that remounting with compression options does not reflect the change in level, or at least it does not appear to do so according to the messages: mount -o compress=zstd:1 /dev/sda /mnt mount -o remount,compress=zstd:15 /mnt does not print the change to the level to syslog: [ 41.366060] BTRFS info (device vda): use zstd compression, level 1 [ 41.368254] BTRFS info (device vda): disk space caching is enabled [ 41.390429] BTRFS info (device vda): disk space caching is enabled What really happens is that the message is lost but the level is actualy changed. There's another weird output, if compression is reset to 'no': [ 45.413776] BTRFS info (device vda): use no compression, level 4 To fix that, save the previous compression level and print the message in that case too and use separate message for 'no' compression. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | bf53d4687b |
btrfs: only search for left_info if there is no right_info in try_merge_free_space
In try_to_merge_free_space we attempt to find entries to the left and
right of the entry we are adding to see if they can be merged. We
search for an entry past our current info (saved into right_info), and
then if right_info exists and it has a rb_prev() we save the rb_prev()
into left_info.
However there's a slight problem in the case that we have a right_info,
but no entry previous to that entry. At that point we will search for
an entry just before the info we're attempting to insert. This will
simply find right_info again, and assign it to left_info, making them
both the same pointer.
Now if right_info _can_ be merged with the range we're inserting, we'll
add it to the info and free right_info. However further down we'll
access left_info, which was right_info, and thus get a use-after-free.
Fix this by only searching for the left entry if we don't find a right
entry at all.
The CVE referenced had a specially crafted file system that could
trigger this use-after-free. However with the tree checker improvements
we no longer trigger the conditions for the UAF. But the original
conditions still apply, hence this fix.
Reference: CVE-2019-19448
Fixes:
|
|
Qu Wenruo | 1e6e238c30 |
btrfs: inode: fix NULL pointer dereference if inode doesn't need compression
[BUG]
There is a bug report of NULL pointer dereference caused in
compress_file_extent():
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Workqueue: btrfs-delalloc btrfs_delalloc_helper [btrfs]
NIP [c008000006dd4d34] compress_file_range.constprop.41+0x75c/0x8a0 [btrfs]
LR [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs]
Call Trace:
[c000000c69093b00] [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs] (unreliable)
[c000000c69093bd0] [c008000006dd4ebc] async_cow_start+0x44/0xa0 [btrfs]
[c000000c69093c10] [c008000006e14824] normal_work_helper+0xdc/0x598 [btrfs]
[c000000c69093c80] [c0000000001608c0] process_one_work+0x2c0/0x5b0
[c000000c69093d10] [c000000000160c38] worker_thread+0x88/0x660
[c000000c69093db0] [c00000000016b55c] kthread+0x1ac/0x1c0
[c000000c69093e20] [c00000000000b660] ret_from_kernel_thread+0x5c/0x7c
---[ end trace f16954aa20d822f6 ]---
[CAUSE]
For the following execution route of compress_file_range(), it's
possible to hit NULL pointer dereference:
compress_file_extent()
|- pages = NULL;
|- start = async_chunk->start = 0;
|- end = async_chunk = 4095;
|- nr_pages = 1;
|- inode_need_compress() == false; <<< Possible, see later explanation
| Now, we have nr_pages = 1, pages = NULL
|- cont:
|- ret = cow_file_range_inline();
|- if (ret <= 0) {
|- for (i = 0; i < nr_pages; i++) {
|- WARN_ON(pages[i]->mapping); <<< Crash
To enter above call execution branch, we need the following race:
Thread 1 (chattr) | Thread 2 (writeback)
--------------------------+------------------------------
| btrfs_run_delalloc_range
| |- inode_need_compress = true
| |- cow_file_range_async()
btrfs_ioctl_set_flag() |
|- binode_flags |= |
BTRFS_INODE_NOCOMPRESS |
| compress_file_range()
| |- inode_need_compress = false
| |- nr_page = 1 while pages = NULL
| | Then hit the crash
[FIX]
This patch will fix it by checking @pages before doing accessing it.
This patch is only designed as a hot fix and easy to backport.
More elegant fix may make btrfs only check inode_need_compress() once to
avoid such race, but that would be another story.
Reported-by: Luciano Chavez <chavez@us.ibm.com>
Fixes:
|
|
Linus Torvalds | b79675e15a |
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull misc vfs updates from Al Viro: "No common topic whatsoever in those, sorry" * 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fs: define inode flags using bit numbers iov_iter: Move unnecessary inclusion of crypto/hash.h dlmfs: clean up dlmfs_file_{read,write}() a bit |
|
Linus Torvalds | 8f0cb6660a |
These are the latest RCU bits for v5.9:
- kfree_rcu updates - RCU tasks updates - Read-side scalability tests - SRCU updates - Torture-test updates - Documentation updates - Miscellaneous fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8n80ERHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1gauA/+NtuExW9V9cPDZ8AAp6x6QfoEIgqN4VEk pYuyP0+ZbmwH+h8z7qPqMrwxUHQnhef7gqtlWa7wj9MawbEbmqnA/3uivjX/3Aao bGMMXkqXppc6hgwktgLNk8vfq3LRVEH2P0i0I+Tymgxu3DCHSGRep4LWfdAS/q3z 4pe5JXqdMx+Qnfy/bsVxJTaJAncMq1LQNAtWY1TIwK8L8RmpXrj5dvuLKUr7q+zl P+BfXyrdX+x05TpmHHnI/bR3w9yASL32E0S3IaQYRRqH8TsUIGHWe13Ib6hKXXG5 j7W5KrsOgr0fQBxi+JW2fgGQkrua4o7yk4H2Ygj+Fi5RvP2uqNZdvXFAlP2cUMu/ 7Pg8+7kC6jKIrwpD03s9ZZzm0QN3jsCxFs2PEkkHMzjXbe1CI4tIkTH6ex1uvjR2 v3OhCIp6ypxpEIJbFQucia0iQ4NF+evKjqCvRkbepqQ096jg+CNFh0VG0Tp8XR+y Gk9B9oXvLLPMd6ah5CI9nLJKiMWVRV8mvvqspoblGo//+39ksh4mzxm865tFXYg4 C+DPJvKlY15Ib5eJ/xr8EZ/oS0K2sUF9sMYnK4P8QMhyTBMbpAZiljHYK+Wujt8I g/JCWxrEMv3LHPY9/guB5Nod/Qb4Jqqm9iE9qEX3MQxtt2O2nmmWd91pzFcUXlFU RDBWYJ63Okg= =rNhf -----END PGP SIGNATURE----- Merge tag 'core-rcu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU updates from Ingo Molnar: - kfree_rcu updates - RCU tasks updates - Read-side scalability tests - SRCU updates - Torture-test updates - Documentation updates - Miscellaneous fixes * tag 'core-rcu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (109 commits) torture: Remove obsolete "cd $KVM" torture: Avoid duplicate specification of qemu command torture: Dump ftrace at shutdown only if requested torture: Add kvm-tranform.sh script for qemu-cmd files torture: Add more tracing crib notes to kvm.sh torture: Improve diagnostic for KCSAN-incapable compilers torture: Correctly summarize build-only runs torture: Pass --kmake-arg to all make invocations rcutorture: Check for unwatched readers torture: Abstract out console-log error detection torture: Add a stop-run capability torture: Create qemu-cmd in --buildonly runs rcu/rcutorture: Replace 0 with false torture: Add --allcpus argument to the kvm.sh script torture: Remove whitespace from identify_qemu_vcpus output rcutorture: NULL rcu_torture_current earlier in cleanup code rcutorture: Handle non-statistic bang-string error messages torture: Set configfile variable to current scenario rcutorture: Add races with task-exit processing locktorture: Use true and false to assign to bool variables ... |
|
Linus Torvalds | cdc8fcb499 |
for-5.9/io_uring-20200802
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl8m7asQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgplrCD/0S17kio+k4cOJDGwl88WoJw+QiYmM5019k decZ1JymQvV1HXRmlcZiEAu0hHDD0FoovSRrw7II3gw3GouETmYQM62f6ZTpDeMD CED/fidnfULAkPaI6h+bj3jyI0cEuujG/R47rGSQEkIIr3RttqKZUzVkB9KN+KMw +OBuXZtMIoFFEVJ91qwC2dm2qHLqOn1/5MlT59knso/xbPOYOXsFQpGiACJqF97x 6qSSI8uGE+HZqvL2OLWPDBbLEJhrq+dzCgxln5VlvLele4UcRhOdonUb7nUwEKCe zwvtXzz16u1D1b8bJL4Kg5bGqyUAQUCSShsfBJJxh6vTTULiHyCX5sQaai1OEB16 4dpBL9E+nOUUix4wo9XBY0/KIYaPWg5L1CoEwkAXqkXPhFvNUucsC0u6KvmzZR3V 1OogVTjl6GhS8uEVQjTKNshkTIC9QHEMXDUOHtINDCb/sLU+ANXU5UpvsuzZ9+kt KGc4mdyCwaKBq4YW9sVwhhq/RHLD4AUtWZiUVfOE+0cltCLJUNMbQsJ+XrcYaQnm W4zz22Rep+SJuQNVcCW/w7N2zN3yB6gC1qeroSLvzw4b5el2TdFp+BcgVlLHK+uh xjsGNCq++fyzNk7vvMZ5hVq4JGXYjza7AiP5HlQ8nqdiPUKUPatWCBqUm9i9Cz/B n+0dlYbRwQ== =2vmy -----END PGP SIGNATURE----- Merge tag 'for-5.9/io_uring-20200802' of git://git.kernel.dk/linux-block Pull io_uring updates from Jens Axboe: "Lots of cleanups in here, hardening the code and/or making it easier to read and fixing bugs, but a core feature/change too adding support for real async buffered reads. With the latter in place, we just need buffered write async support and we're done relying on kthreads for the fast path. In detail: - Cleanup how memory accounting is done on ring setup/free (Bijan) - sq array offset calculation fixup (Dmitry) - Consistently handle blocking off O_DIRECT submission path (me) - Support proper async buffered reads, instead of relying on kthread offload for that. This uses the page waitqueue to drive retries from task_work, like we handle poll based retry. (me) - IO completion optimizations (me) - Fix race with accounting and ring fd install (me) - Support EPOLLEXCLUSIVE (Jiufei) - Get rid of the io_kiocb unionizing, made possible by shrinking other bits (Pavel) - Completion side cleanups (Pavel) - Cleanup REQ_F_ flags handling, and kill off many of them (Pavel) - Request environment grabbing cleanups (Pavel) - File and socket read/write cleanups (Pavel) - Improve kiocb_set_rw_flags() (Pavel) - Tons of fixes and cleanups (Pavel) - IORING_SQ_NEED_WAKEUP clear fix (Xiaoguang)" * tag 'for-5.9/io_uring-20200802' of git://git.kernel.dk/linux-block: (127 commits) io_uring: flip if handling after io_setup_async_rw fs: optimise kiocb_set_rw_flags() io_uring: don't touch 'ctx' after installing file descriptor io_uring: get rid of atomic FAA for cq_timeouts io_uring: consolidate *_check_overflow accounting io_uring: fix stalled deferred requests io_uring: fix racy overflow count reporting io_uring: deduplicate __io_complete_rw() io_uring: de-unionise io_kiocb io-wq: update hash bits io_uring: fix missing io_queue_linked_timeout() io_uring: mark ->work uninitialised after cleanup io_uring: deduplicate io_grab_files() calls io_uring: don't do opcode prep twice io_uring: clear IORING_SQ_NEED_WAKEUP after executing task works io_uring: batch put_task_struct() tasks: add put_task_struct_many() io_uring: return locked and pinned page accounting io_uring: don't miscount pinned memory io_uring: don't open-code recv kbuf managment ... |
|
Linus Torvalds | 382625d0d4 |
for-5.9/block-20200802
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl8m7YwQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpt+dEAC7a0HYuX2OrkyawBnsgd1QQR/soC7surec yDDa7SMM8cOq3935bfzcYHV9FWJszEGIknchiGb9R3/T+vmSohbvDsM5zgwya9u/ FHUIuTq324I6JWXKl30k4rwjiX9wQeMt+WZ5gC8KJYCWA296i2IpJwd0A45aaKuS x4bTjxqknE+fD4gQiMUSt+bmuOUAp81fEku3EPapCRYDPAj8f5uoY7R2arT/POwB b+s+AtXqzBymIqx1z0sZ/XcdZKmDuhdurGCWu7BfJFIzw5kQ2Qe3W8rUmrQ3pGut 8a21YfilhUFiBv+B4wptfrzJuzU6Ps0BXHCnBsQjzvXwq5uFcZH495mM/4E4OJvh SbjL2K4iFj+O1ngFkukG/F8tdEM1zKBYy2ZEkGoWKUpyQanbAaGI6QKKJA+DCdBi yPEb7yRAa5KfLqMiocm1qCEO1I56HRiNHaJVMqCPOZxLmpXj19Fs71yIRplP1Trv GGXdWZsccjuY6OljoXWdEfnxAr5zBsO3Yf2yFT95AD+egtGsU1oOzlqAaU1mtflw ABo452pvh6FFpxGXqz6oK4VqY4Et7WgXOiljA4yIGoPpG/08L1Yle4eVc2EE01Jb +BL49xNJVeUhGFrvUjPGl9kVMeLmubPFbmgrtipW+VRg9W8+Yirw7DPP6K+gbPAR RzAUdZFbWw== =abJG -----END PGP SIGNATURE----- Merge tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block Pull core block updates from Jens Axboe: "Good amount of cleanups and tech debt removals in here, and as a result, the diffstat shows a nice net reduction in code. - Softirq completion cleanups (Christoph) - Stop using ->queuedata (Christoph) - Cleanup bd claiming (Christoph) - Use check_events, moving away from the legacy media change (Christoph) - Use inode i_blkbits consistently (Christoph) - Remove old unused writeback congestion bits (Christoph) - Cleanup/unify submission path (Christoph) - Use bio_uninit consistently, instead of bio_disassociate_blkg (Christoph) - sbitmap cleared bits handling (John) - Request merging blktrace event addition (Jan) - sysfs add/remove race fixes (Luis) - blk-mq tag fixes/optimizations (Ming) - Duplicate words in comments (Randy) - Flush deferral cleanup (Yufen) - IO context locking/retry fixes (John) - struct_size() usage (Gustavo) - blk-iocost fixes (Chengming) - blk-cgroup IO stats fixes (Boris) - Various little fixes" * tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block: (135 commits) block: blk-timeout: delete duplicated word block: blk-mq-sched: delete duplicated word block: blk-mq: delete duplicated word block: genhd: delete duplicated words block: elevator: delete duplicated word and fix typos block: bio: delete duplicated words block: bfq-iosched: fix duplicated word iocost_monitor: start from the oldest usage index iocost: Fix check condition of iocg abs_vdebt block: Remove callback typedefs for blk_mq_ops block: Use non _rcu version of list functions for tag_set_list blk-cgroup: show global disk stats in root cgroup io.stat blk-cgroup: make iostat functions visible to stat printing block: improve discard bio alignment in __blkdev_issue_discard() block: change REQ_OP_ZONE_RESET and REQ_OP_ZONE_RESET_ALL to be odd numbers block: defer flush request no matter whether we have elevator block: make blk_timeout_init() static block: remove retry loop in ioc_release_fn() block: remove unnecessary ioc nested locking block: integrate bd_start_claiming into __blkdev_get ... |
|
Ingo Molnar | c1cc4784ce |
Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull the v5.9 RCU bits from Paul E. McKenney: - Documentation updates - Miscellaneous fixes - kfree_rcu updates - RCU tasks updates - Read-side scalability tests - SRCU updates - Torture-test updates Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Filipe Manana | 5e548b3201 |
btrfs: do not set the full sync flag on the inode during page release
When removing an extent map at try_release_extent_mapping(), called through the page release callback (btrfs_releasepage()), we always set the full sync flag on the inode, which forces the next fsync to use a slower code path. This hurts performance for workloads that dirty an amount of data that exceeds or is very close to the system's RAM memory and do frequent fsync operations (like database servers can for example). In particular if there are concurrent fsyncs against different files, by falling back to a full fsync we do a lot more checksum lookups in the checksums btree, as we do it for all the extents created in the current transaction, instead of only the new ones since the last fsync. These checksums lookups not only take some time but, more importantly, they also cause contention on the checksums btree locks due to the concurrency with checksum insertions in the btree by ordered extents from other inodes. We actually don't need to set the full sync flag on the inode, because we only remove extent maps that are in the list of modified extents if they were created in a past transaction, in which case an fsync skips them as it's pointless to log them. So stop setting the full fsync flag on the inode whenever we remove an extent map. This patch is part of a patchset that consists of 3 patches, which have the following subjects: 1/3 btrfs: fix race between page release and a fast fsync 2/3 btrfs: release old extent maps during page release 3/3 btrfs: do not set the full sync flag on the inode during page release Performance tests were ran against a branch (misc-next) containing the whole patchset. The test exercises a workload where there are multiple processes writing to files and fsyncing them (each writing and fsyncing its own file), and in total the amount of data dirtied ranges from 2x to 4x the system's RAM memory (16GiB), so that the page release callback is invoked frequently. The following script, using fio, was used to perform the tests: $ cat test-fsync.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-d single -m single" if [ $# -ne 3 ]; then echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ" exit 1 fi NUM_JOBS=$1 FILE_SIZE=$2 FSYNC_FREQ=$3 cat <<EOF > /tmp/fio-job.ini [writers] rw=write fsync=$FSYNC_FREQ fallocate=none group_reporting=1 direct=0 bs=64k ioengine=sync size=$FILE_SIZE directory=$MNT numjobs=$NUM_JOBS thread EOF echo "Using config:" echo cat /tmp/fio-job.ini echo mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The tests were performed for different numbers of jobs, file sizes and fsync frequency. A qemu VM using kvm was used, with 8 cores (the host has 12 cores, with cpu governance set to performance mode on all cores), 16GiB of ram (the host has 64GiB) and using a NVMe device directly (without an intermediary filesystem in the host). While running the tests, the host was not used for anything else, to avoid disturbing the tests. The obtained results were the following, and the last line printed by fio is pasted (includes aggregated throughput and test run time). ***************************************************** **** 1 job, 32GiB file, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=29.1MiB/s (30.5MB/s), 29.1MiB/s-29.1MiB/s (30.5MB/s-30.5MB/s), io=32.0GiB (34.4GB), run=1127557-1127557msec After patchset: WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=32.0GiB (34.4GB), run=1119042-1119042msec (+0.7% throughput, -0.8% run time) ***************************************************** **** 2 jobs, 16GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=33.5MiB/s (35.1MB/s), 33.5MiB/s-33.5MiB/s (35.1MB/s-35.1MB/s), io=32.0GiB (34.4GB), run=979000-979000msec After patchset: WRITE: bw=39.9MiB/s (41.8MB/s), 39.9MiB/s-39.9MiB/s (41.8MB/s-41.8MB/s), io=32.0GiB (34.4GB), run=821283-821283msec (+19.1% throughput, -16.1% runtime) ***************************************************** **** 4 jobs, 8GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=52.1MiB/s (54.6MB/s), 52.1MiB/s-52.1MiB/s (54.6MB/s-54.6MB/s), io=32.0GiB (34.4GB), run=629130-629130msec After patchset: WRITE: bw=71.8MiB/s (75.3MB/s), 71.8MiB/s-71.8MiB/s (75.3MB/s-75.3MB/s), io=32.0GiB (34.4GB), run=456357-456357msec (+37.8% throughput, -27.5% runtime) ***************************************************** **** 8 jobs, 4GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=76.1MiB/s (79.8MB/s), 76.1MiB/s-76.1MiB/s (79.8MB/s-79.8MB/s), io=32.0GiB (34.4GB), run=430708-430708msec After patchset: WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=245458-245458msec (+74.7% throughput, -43.0% run time) ***************************************************** **** 16 jobs, 2GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=74.7MiB/s (78.3MB/s), 74.7MiB/s-74.7MiB/s (78.3MB/s-78.3MB/s), io=32.0GiB (34.4GB), run=438625-438625msec After patchset: WRITE: bw=184MiB/s (193MB/s), 184MiB/s-184MiB/s (193MB/s-193MB/s), io=32.0GiB (34.4GB), run=177864-177864msec (+146.3% throughput, -59.5% run time) ***************************************************** **** 32 jobs, 2GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=72.6MiB/s (76.1MB/s), 72.6MiB/s-72.6MiB/s (76.1MB/s-76.1MB/s), io=64.0GiB (68.7GB), run=902615-902615msec After patchset: WRITE: bw=227MiB/s (238MB/s), 227MiB/s-227MiB/s (238MB/s-238MB/s), io=64.0GiB (68.7GB), run=288936-288936msec (+212.7% throughput, -68.0% run time) ***************************************************** **** 64 jobs, 1GiB files, fsync frequency 1 **** ***************************************************** Before patchset: WRITE: bw=98.8MiB/s (104MB/s), 98.8MiB/s-98.8MiB/s (104MB/s-104MB/s), io=64.0GiB (68.7GB), run=663126-663126msec After patchset: WRITE: bw=294MiB/s (308MB/s), 294MiB/s-294MiB/s (308MB/s-308MB/s), io=64.0GiB (68.7GB), run=222940-222940msec (+197.6% throughput, -66.4% run time) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Filipe Manana | fbc2bd7e7a |
btrfs: release old extent maps during page release
When removing an extent map at try_release_extent_mapping(), called through the page release callback (btrfs_releasepage()), we never release an extent map that is in the list of modified extents. This is to prevent races with a concurrent fsync using the fast path, which could lead to not logging an extent created in the current transaction. However we can safely remove an extent map created in a past transaction that is still in the list of modified extents (because no one fsynced yet the inode after that transaction got commited), because such extents are skipped during an fsync as it is pointless to log them. This change does that. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Filipe Manana | 3d6448e631 |
btrfs: fix race between page release and a fast fsync
When releasing an extent map, done through the page release callback, we
can race with an ongoing fast fsync and cause the fsync to miss a new
extent and not log it. The steps for this to happen are the following:
1) A page is dirtied for some inode I;
2) Writeback for that page is triggered by a path other than fsync, for
example by the system due to memory pressure;
3) When the ordered extent for the extent (a single 4K page) finishes,
we unpin the corresponding extent map and set its generation to N,
the current transaction's generation;
4) The btrfs_releasepage() callback is invoked by the system due to
memory pressure for that no longer dirty page of inode I;
5) At the same time, some task calls fsync on inode I, joins transaction
N, and at btrfs_log_inode() it sees that the inode does not have the
full sync flag set, so we proceed with a fast fsync. But before we get
into btrfs_log_changed_extents() and lock the inode's extent map tree:
6) Through btrfs_releasepage() we end up at try_release_extent_mapping()
and we remove the extent map for the new 4Kb extent, because it is
neither pinned anymore nor locked. By calling remove_extent_mapping(),
we remove the extent map from the list of modified extents, since the
extent map does not have the logging flag set. We unlock the inode's
extent map tree;
7) The task doing the fast fsync now enters btrfs_log_changed_extents(),
locks the inode's extent map tree and iterates its list of modified
extents, which no longer has the 4Kb extent in it, so it does not log
the extent;
8) The fsync finishes;
9) Before transaction N is committed, a power failure happens. After
replaying the log, the 4K extent of inode I will be missing, since
it was not logged due to the race with try_release_extent_mapping().
So fix this by teaching try_release_extent_mapping() to not remove an
extent map if it's still in the list of modified extents.
Fixes:
|
|
Johannes Thumshirn | 88c4703f00 |
btrfs: open-code remount flag setting in btrfs_remount
When we're (re)mounting a btrfs filesystem we set the BTRFS_FS_STATE_REMOUNTING state in fs_info to serialize against async reclaim or defrags. This flag is set in btrfs_remount_prepare() called by btrfs_remount(). As btrfs_remount_prepare() does nothing but setting this flag and doesn't have a second caller, we can just open-code the flag setting in btrfs_remount(). Similarly do for so clearing of the flag by moving it out of btrfs_remount_cleanup() into btrfs_remount() to be symmetrical. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 162e0a16b7 |
btrfs: if we're restriping, use the target restripe profile
Previously we depended on some weird behavior in our chunk allocator to force the allocation of new stripes, so by the time we got to doing the reduce we would usually already have a chunk with the proper target. However that behavior causes other problems and needs to be removed. First however we need to remove this check to only restripe if we already have those available profiles, because if we're allocating our first chunk it obviously will not be available. Simply use the target as specified, and if that fails it'll be because we're out of space. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 349e120ece |
btrfs: don't adjust bg flags and use default allocation profiles
btrfs/061 has been failing consistently for me recently with a transaction abort. We run out of space in the system chunk array, which means we've allocated way too many system chunks than we need. Chris added this a long time ago for balance as a poor mans restriping. If you had a single disk and then added another disk and then did a balance, update_block_group_flags would then figure out which RAID level you needed. Fast forward to today and we have restriping behavior, so we can explicitly tell the fs that we're trying to change the raid level. This is accomplished through the normal get_alloc_profile path. Furthermore this code actually causes btrfs/061 to fail, because we do things like mkfs -m dup -d single with multiple devices. This trips this check alloc_flags = update_block_group_flags(fs_info, cache->flags); if (alloc_flags != cache->flags) { ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); in btrfs_inc_block_group_ro. Because we're balancing and scrubbing, but not actually restriping, we keep forcing chunk allocation of RAID1 chunks. This eventually causes us to run out of system space and the file system aborts and flips read only. We don't need this poor mans restriping any more, simply use the normal get_alloc_profile helper, which will get the correct alloc_flags and thus make the right decision for chunk allocation. This keeps us from allocating a billion system chunks and falling over. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | ab0db043c3 |
btrfs: fix lockdep splat from btrfs_dump_space_info
When running with -o enospc_debug you can get the following splat if one of the dump_space_info's trip ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc5+ #20 Tainted: G OE ------------------------------------------------------ dd/563090 is trying to acquire lock: ffff9e7dbf4f1e18 (&ctl->tree_lock){+.+.}-{2:2}, at: btrfs_dump_free_space+0x2b/0xa0 [btrfs] but task is already holding lock: ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&cache->lock){+.+.}-{2:2}: _raw_spin_lock+0x25/0x30 btrfs_add_reserved_bytes+0x3c/0x3c0 [btrfs] find_free_extent+0x7ef/0x13b0 [btrfs] btrfs_reserve_extent+0x9b/0x180 [btrfs] btrfs_alloc_tree_block+0xc1/0x340 [btrfs] alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs] __btrfs_cow_block+0x122/0x530 [btrfs] btrfs_cow_block+0x106/0x210 [btrfs] commit_cowonly_roots+0x55/0x300 [btrfs] btrfs_commit_transaction+0x4ed/0xac0 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x36/0x70 cleanup_mnt+0x104/0x160 task_work_run+0x5f/0x90 __prepare_exit_to_usermode+0x1bd/0x1c0 do_syscall_64+0x5e/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&space_info->lock){+.+.}-{2:2}: _raw_spin_lock+0x25/0x30 btrfs_block_rsv_release+0x1a6/0x3f0 [btrfs] btrfs_inode_rsv_release+0x4f/0x170 [btrfs] btrfs_clear_delalloc_extent+0x155/0x480 [btrfs] clear_state_bit+0x81/0x1a0 [btrfs] __clear_extent_bit+0x25c/0x5d0 [btrfs] clear_extent_bit+0x15/0x20 [btrfs] btrfs_invalidatepage+0x2b7/0x3c0 [btrfs] truncate_cleanup_page+0x47/0xe0 truncate_inode_pages_range+0x238/0x840 truncate_pagecache+0x44/0x60 btrfs_setattr+0x202/0x5e0 [btrfs] notify_change+0x33b/0x490 do_truncate+0x76/0xd0 path_openat+0x687/0xa10 do_filp_open+0x91/0x100 do_sys_openat2+0x215/0x2d0 do_sys_open+0x44/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&tree->lock#2){+.+.}-{2:2}: _raw_spin_lock+0x25/0x30 find_first_extent_bit+0x32/0x150 [btrfs] write_pinned_extent_entries.isra.0+0xc5/0x100 [btrfs] __btrfs_write_out_cache+0x172/0x480 [btrfs] btrfs_write_out_cache+0x7a/0xf0 [btrfs] btrfs_write_dirty_block_groups+0x286/0x3b0 [btrfs] commit_cowonly_roots+0x245/0x300 [btrfs] btrfs_commit_transaction+0x4ed/0xac0 [btrfs] close_ctree+0xf9/0x2f5 [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x36/0x70 cleanup_mnt+0x104/0x160 task_work_run+0x5f/0x90 __prepare_exit_to_usermode+0x1bd/0x1c0 do_syscall_64+0x5e/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&ctl->tree_lock){+.+.}-{2:2}: __lock_acquire+0x1240/0x2460 lock_acquire+0xab/0x360 _raw_spin_lock+0x25/0x30 btrfs_dump_free_space+0x2b/0xa0 [btrfs] btrfs_dump_space_info+0xf4/0x120 [btrfs] btrfs_reserve_extent+0x176/0x180 [btrfs] __btrfs_prealloc_file_range+0x145/0x550 [btrfs] cache_save_setup+0x28d/0x3b0 [btrfs] btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs] btrfs_commit_transaction+0xcc/0xac0 [btrfs] btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs] btrfs_check_data_free_space+0x4c/0xa0 [btrfs] btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs] btrfs_file_write_iter+0x3cf/0x610 [btrfs] new_sync_write+0x11e/0x1b0 vfs_write+0x1c9/0x200 ksys_write+0x68/0xe0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &ctl->tree_lock --> &space_info->lock --> &cache->lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&cache->lock); lock(&space_info->lock); lock(&cache->lock); lock(&ctl->tree_lock); *** DEADLOCK *** 6 locks held by dd/563090: #0: ffff9e7e21d18448 (sb_writers#14){.+.+}-{0:0}, at: vfs_write+0x195/0x200 #1: ffff9e7dd0410ed8 (&sb->s_type->i_mutex_key#19){++++}-{3:3}, at: btrfs_file_write_iter+0x86/0x610 [btrfs] #2: ffff9e7e21d18638 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40b/0x5b0 [btrfs] #3: ffff9e7e1f05d688 (&cur_trans->cache_write_mutex){+.+.}-{3:3}, at: btrfs_start_dirty_block_groups+0x158/0x4f0 [btrfs] #4: ffff9e7e2284ddb8 (&space_info->groups_sem){++++}-{3:3}, at: btrfs_dump_space_info+0x69/0x120 [btrfs] #5: ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs] stack backtrace: CPU: 3 PID: 563090 Comm: dd Tainted: G OE 5.8.0-rc5+ #20 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011 Call Trace: dump_stack+0x96/0xd0 check_noncircular+0x162/0x180 __lock_acquire+0x1240/0x2460 ? wake_up_klogd.part.0+0x30/0x40 lock_acquire+0xab/0x360 ? btrfs_dump_free_space+0x2b/0xa0 [btrfs] _raw_spin_lock+0x25/0x30 ? btrfs_dump_free_space+0x2b/0xa0 [btrfs] btrfs_dump_free_space+0x2b/0xa0 [btrfs] btrfs_dump_space_info+0xf4/0x120 [btrfs] btrfs_reserve_extent+0x176/0x180 [btrfs] __btrfs_prealloc_file_range+0x145/0x550 [btrfs] ? btrfs_qgroup_reserve_data+0x1d/0x60 [btrfs] cache_save_setup+0x28d/0x3b0 [btrfs] btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs] btrfs_commit_transaction+0xcc/0xac0 [btrfs] ? start_transaction+0xe0/0x5b0 [btrfs] btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs] btrfs_check_data_free_space+0x4c/0xa0 [btrfs] btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs] ? ktime_get_coarse_real_ts64+0xa8/0xd0 ? trace_hardirqs_on+0x1c/0xe0 btrfs_file_write_iter+0x3cf/0x610 [btrfs] new_sync_write+0x11e/0x1b0 vfs_write+0x1c9/0x200 ksys_write+0x68/0xe0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is because we're holding the block_group->lock while trying to dump the free space cache. However we don't need this lock, we just need it to read the values for the printk, so move the free space cache dumping outside of the block group lock. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 01d01caf19 |
btrfs: move the chunk_mutex in btrfs_read_chunk_tree
We are currently getting this lockdep splat in btrfs/161: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc5+ #20 Tainted: G E ------------------------------------------------------ mount/678048 is trying to acquire lock: ffff9b769f15b6e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: clone_fs_devices+0x4d/0x170 [btrfs] but task is already holding lock: ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x8b/0x8f0 btrfs_init_new_device+0x2d2/0x1240 [btrfs] btrfs_ioctl+0x1de/0x2d20 [btrfs] ksys_ioctl+0x87/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __lock_acquire+0x1240/0x2460 lock_acquire+0xab/0x360 __mutex_lock+0x8b/0x8f0 clone_fs_devices+0x4d/0x170 [btrfs] btrfs_read_chunk_tree+0x330/0x800 [btrfs] open_ctree+0xb7c/0x18ce [btrfs] btrfs_mount_root.cold+0x13/0xfa [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x7de/0xb30 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->chunk_mutex); lock(&fs_devs->device_list_mutex); lock(&fs_info->chunk_mutex); lock(&fs_devs->device_list_mutex); *** DEADLOCK *** 3 locks held by mount/678048: #0: ffff9b75ff5fb0e0 (&type->s_umount_key#63/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380 #1: ffffffffc0c2fbc8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x54/0x800 [btrfs] #2: ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs] stack backtrace: CPU: 2 PID: 678048 Comm: mount Tainted: G E 5.8.0-rc5+ #20 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011 Call Trace: dump_stack+0x96/0xd0 check_noncircular+0x162/0x180 __lock_acquire+0x1240/0x2460 ? asm_sysvec_apic_timer_interrupt+0x12/0x20 lock_acquire+0xab/0x360 ? clone_fs_devices+0x4d/0x170 [btrfs] __mutex_lock+0x8b/0x8f0 ? clone_fs_devices+0x4d/0x170 [btrfs] ? rcu_read_lock_sched_held+0x52/0x60 ? cpumask_next+0x16/0x20 ? module_assert_mutex_or_preempt+0x14/0x40 ? __module_address+0x28/0xf0 ? clone_fs_devices+0x4d/0x170 [btrfs] ? static_obj+0x4f/0x60 ? lockdep_init_map_waits+0x43/0x200 ? clone_fs_devices+0x4d/0x170 [btrfs] clone_fs_devices+0x4d/0x170 [btrfs] btrfs_read_chunk_tree+0x330/0x800 [btrfs] open_ctree+0xb7c/0x18ce [btrfs] ? super_setup_bdi_name+0x79/0xd0 btrfs_mount_root.cold+0x13/0xfa [btrfs] ? vfs_parse_fs_string+0x84/0xb0 ? rcu_read_lock_sched_held+0x52/0x60 ? kfree+0x2b5/0x310 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] ? cred_has_capability+0x7c/0x120 ? rcu_read_lock_sched_held+0x52/0x60 ? legacy_get_tree+0x30/0x50 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x7de/0xb30 ? memdup_user+0x4e/0x90 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is because btrfs_read_chunk_tree() can come upon DEV_EXTENT's and then read the device, which takes the device_list_mutex. The device_list_mutex needs to be taken before the chunk_mutex, so this is a problem. We only really need the chunk mutex around adding the chunk, so move the mutex around read_one_chunk. An argument could be made that we don't even need the chunk_mutex here as it's during mount, and we are protected by various other locks. However we already have special rules for ->device_list_mutex, and I'd rather not have another special case for ->chunk_mutex. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 18c850fdc5 |
btrfs: open device without device_list_mutex
There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | a47bd78d0c |
btrfs: sysfs: use NOFS for device creation
Dave hit this splat during testing btrfs/078: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc6-default+ #1191 Not tainted ------------------------------------------------------ kswapd0/75 is trying to acquire lock: ffffa040e9d04ff8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] but task is already holding lock: ffffffff8b0c8040 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: __lock_acquire+0x56f/0xaa0 lock_acquire+0xa3/0x440 fs_reclaim_acquire.part.0+0x25/0x30 __kmalloc_track_caller+0x49/0x330 kstrdup+0x2e/0x60 __kernfs_new_node.constprop.0+0x44/0x250 kernfs_new_node+0x25/0x50 kernfs_create_link+0x34/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x65/0x100 [btrfs] btrfs_init_new_device+0x44c/0x12b0 [btrfs] btrfs_ioctl+0xc3c/0x25c0 [btrfs] ksys_ioctl+0x68/0xa0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0xe0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __lock_acquire+0x56f/0xaa0 lock_acquire+0xa3/0x440 __mutex_lock+0xa0/0xaf0 btrfs_chunk_alloc+0x137/0x3e0 [btrfs] find_free_extent+0xb44/0xfb0 [btrfs] btrfs_reserve_extent+0x9b/0x180 [btrfs] btrfs_alloc_tree_block+0xc1/0x350 [btrfs] alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs] __btrfs_cow_block+0x143/0x7a0 [btrfs] btrfs_cow_block+0x15f/0x310 [btrfs] push_leaf_right+0x150/0x240 [btrfs] split_leaf+0x3cd/0x6d0 [btrfs] btrfs_search_slot+0xd14/0xf70 [btrfs] btrfs_insert_empty_items+0x64/0xc0 [btrfs] __btrfs_commit_inode_delayed_items+0xb2/0x840 [btrfs] btrfs_async_run_delayed_root+0x10e/0x1d0 [btrfs] btrfs_work_helper+0x2f9/0x650 [btrfs] process_one_work+0x22c/0x600 worker_thread+0x50/0x3b0 kthread+0x137/0x150 ret_from_fork+0x1f/0x30 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: check_prev_add+0x98/0xa20 validate_chain+0xa8c/0x2a00 __lock_acquire+0x56f/0xaa0 lock_acquire+0xa3/0x440 __mutex_lock+0xa0/0xaf0 __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] btrfs_evict_inode+0x3bf/0x560 [btrfs] evict+0xd6/0x1c0 dispose_list+0x48/0x70 prune_icache_sb+0x54/0x80 super_cache_scan+0x121/0x1a0 do_shrink_slab+0x175/0x420 shrink_slab+0xb1/0x2e0 shrink_node+0x192/0x600 balance_pgdat+0x31f/0x750 kswapd+0x206/0x510 kthread+0x137/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/75: #0: ffffffff8b0c8040 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff8b0b50b8 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x54/0x2e0 #2: ffffa040e057c0e8 (&type->s_umount_key#26){++++}-{3:3}, at: trylock_super+0x16/0x50 stack backtrace: CPU: 2 PID: 75 Comm: kswapd0 Not tainted 5.8.0-rc6-default+ #1191 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x16f/0x190 check_prev_add+0x98/0xa20 validate_chain+0xa8c/0x2a00 __lock_acquire+0x56f/0xaa0 lock_acquire+0xa3/0x440 ? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] __mutex_lock+0xa0/0xaf0 ? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] ? __lock_acquire+0x56f/0xaa0 ? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] ? lock_acquire+0xa3/0x440 ? btrfs_evict_inode+0x138/0x560 [btrfs] ? btrfs_evict_inode+0x2fe/0x560 [btrfs] ? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs] btrfs_evict_inode+0x3bf/0x560 [btrfs] evict+0xd6/0x1c0 dispose_list+0x48/0x70 prune_icache_sb+0x54/0x80 super_cache_scan+0x121/0x1a0 do_shrink_slab+0x175/0x420 shrink_slab+0xb1/0x2e0 shrink_node+0x192/0x600 balance_pgdat+0x31f/0x750 kswapd+0x206/0x510 ? _raw_spin_unlock_irqrestore+0x3e/0x50 ? finish_wait+0x90/0x90 ? balance_pgdat+0x750/0x750 kthread+0x137/0x150 ? kthread_stop+0x2a0/0x2a0 ret_from_fork+0x1f/0x30 This is because we're holding the chunk_mutex while adding this device and adding its sysfs entries. We actually hold different locks in different places when calling this function, the dev_replace semaphore for instance in dev replace, so instead of moving this call around simply wrap it's operations in NOFS. CC: stable@vger.kernel.org # 4.14+ Reported-by: David Sterba <dsterba@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | fbabd4a36f |
btrfs: return EROFS for BTRFS_FS_STATE_ERROR cases
Eric reported seeing this message while running generic/475 BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted Full stack trace: BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction) BTRFS info (device dm-0): forced readonly BTRFS warning (device dm-0): Skipping commit of aborted transaction. ------------[ cut here ]------------ BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure BTRFS: Transaction aborted (error -117) BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10 WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs] BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10 CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs] RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001 RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7 RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000 R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70 FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0 Call Trace: ? finish_wait+0x90/0x90 ? __mutex_unlock_slowpath+0x45/0x2a0 ? lock_acquire+0xa3/0x440 ? lockref_put_or_lock+0x9/0x30 ? dput+0x20/0x4a0 ? dput+0x20/0x4a0 ? do_raw_spin_unlock+0x4b/0xc0 ? _raw_spin_unlock+0x1f/0x30 btrfs_sync_file+0x335/0x490 [btrfs] do_fsync+0x38/0x70 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x50/0xe0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f6a6ef1b6e3 Code: Bad RIP value. RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3 RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003 RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00 softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace af146e0e38433456 ]--- BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted This ret came from btrfs_write_marked_extents(). If we get an aborted transaction via EIO before, we'll see it in btree_write_cache_pages() and return EUCLEAN, which gets printed as "Filesystem corrupted". Except we shouldn't be returning EUCLEAN here, we need to be returning EROFS because EUCLEAN is reserved for actual corruption, not IO errors. We are inconsistent about our handling of BTRFS_FS_STATE_ERROR elsewhere, but we want to use EROFS for this particular case. The original transaction abort has the real error code for why we ended up with an aborted transaction, all subsequent actions just need to return EROFS because they may not have a trans handle and have no idea about the original cause of the abort. After patch "btrfs: don't WARN if we abort a transaction with EROFS" the stacktrace will not be dumped either. Reported-by: Eric Sandeen <esandeen@redhat.com> CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add full test stacktrace ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | 5913139343 |
btrfs: document special case error codes for fs errors
We've had some discussions about what to do in certain scenarios for error codes, specifically EUCLEAN and EROFS. Document these near the error handling code so its clear what their intentions are. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Josef Bacik | f95ebdbed4 |
btrfs: don't WARN if we abort a transaction with EROFS
If we got some sort of corruption via a read and call btrfs_handle_fs_error() we'll set BTRFS_FS_STATE_ERROR on the fs and complain. If a subsequent trans handle trips over this it'll get EROFS and then abort. However at that point we're not aborting for the original reason, we're aborting because we've been flipped read only. We do not need to WARN_ON() here. CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Filipe Manana | 3ebac17ce5 |
btrfs: reduce contention on log trees when logging checksums
The possibility of extents being shared (through clone and deduplication operations) requires special care when logging data checksums, to avoid having a log tree with different checksum items that cover ranges which overlap (which resulted in missing checksums after replaying a log tree). Such problems were fixed in the past by the following commits: commit |
|
Nikolay Borisov | b69d1ee923 |
btrfs: remove done label in writepage_delalloc
Since there is not common cleanup run after the label it makes it somewhat redundant. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | fd7fb634d6 |
btrfs: add comments for btrfs_reserve_flush_enum
This enum is the interface exposed to developers. Although we have a detailed comment explaining the whole idea of space flushing at the beginning of space-info.c, the exposed enum interface doesn't have any comment. Some corner cases, like BTRFS_RESERVE_FLUSH_ALL and BTRFS_RESERVE_FLUSH_ALL_STEAL can be interrupted by fatal signals, are not explained at all. So add some simple comments for these enums as a quick reference. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 44d354abf3 |
btrfs: relocation: review the call sites which can be interrupted by signal
Since most metadata reservation calls can return -EINTR when get interrupted by fatal signal, we need to review the all the metadata reservation call sites. In relocation code, the metadata reservation happens in the following sites: - btrfs_block_rsv_refill() in merge_reloc_root() merge_reloc_root() is a pretty critical section, we don't want to be interrupted by signal, so change the flush status to BTRFS_RESERVE_FLUSH_LIMIT, so it won't get interrupted by signal. Since such change can be ENPSPC-prone, also shrink the amount of metadata to reserve least amount avoid deadly ENOSPC there. - btrfs_block_rsv_refill() in reserve_metadata_space() It calls with BTRFS_RESERVE_FLUSH_LIMIT, which won't get interrupted by signal. - btrfs_block_rsv_refill() in prepare_to_relocate() - btrfs_block_rsv_add() in prepare_to_relocate() - btrfs_block_rsv_refill() in relocate_block_group() - btrfs_delalloc_reserve_metadata() in relocate_file_extent_cluster() - btrfs_start_transaction() in relocate_block_group() - btrfs_start_transaction() in create_reloc_inode() Can be interrupted by fatal signal and we can handle it easily. For these call sites, just catch the -EINTR value in btrfs_balance() and count them as canceled. CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | f3e3d9cc35 |
btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree
[BUG] There is a bug report about bad signal timing could lead to read-only fs during balance: BTRFS info (device xvdb): balance: start -d -m -s BTRFS info (device xvdb): relocating block group 73001861120 flags metadata BTRFS info (device xvdb): found 12236 extents, stage: move data extents BTRFS info (device xvdb): relocating block group 71928119296 flags data BTRFS info (device xvdb): found 3 extents, stage: move data extents BTRFS info (device xvdb): found 3 extents, stage: update data pointers BTRFS info (device xvdb): relocating block group 60922265600 flags metadata BTRFS: error (device xvdb) in btrfs_drop_snapshot:5505: errno=-4 unknown BTRFS info (device xvdb): forced readonly BTRFS info (device xvdb): balance: ended with status: -4 [CAUSE] The direct cause is the -EINTR from the following call chain when a fatal signal is pending: relocate_block_group() |- clean_dirty_subvols() |- btrfs_drop_snapshot() |- btrfs_start_transaction() |- btrfs_delayed_refs_rsv_refill() |- btrfs_reserve_metadata_bytes() |- __reserve_metadata_bytes() |- wait_reserve_ticket() |- prepare_to_wait_event(); |- ticket->error = -EINTR; Normally this behavior is fine for most btrfs_start_transaction() callers, as they need to catch any other error, same for the signal, and exit ASAP. However for balance, especially for the clean_dirty_subvols() case, we're already doing cleanup works, getting -EINTR from btrfs_drop_snapshot() could cause a lot of unexpected problems. From the mentioned forced read-only report, to later balance error due to half dropped reloc trees. [FIX] Fix this problem by using btrfs_join_transaction() if btrfs_drop_snapshot() is called from relocation context. Since btrfs_join_transaction() won't get interrupted by signal, we can continue the cleanup. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com>3 Signed-off-by: David Sterba <dsterba@suse.com> |
|
Qu Wenruo | 5cb502f4ab |
btrfs: relocation: allow signal to cancel balance
Although btrfs balance can be canceled with "btrfs balance cancel" command, it's still almost muscle memory to press Ctrl-C to cancel a long running btrfs balance. So allow btrfs balance to check signal to determine if it should exit. The cancellation points are in known location and we're only adding one more reason, so this should be safe. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Nikolay Borisov | 813f8a0e26 |
btrfs: raid56: remove out label in __raid56_parity_recover
There's no cleanup that occurs so we can simply return 0 directly. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
David Sterba | f37c563bab |
btrfs: add missing check for nocow and compression inode flags
User Forza reported on IRC that some invalid combinations of file attributes are accepted by chattr. The NODATACOW and compression file flags/attributes are mutually exclusive, but they could be set by 'chattr +c +C' on an empty file. The nodatacow will be in effect because it's checked first in btrfs_run_delalloc_range. Extend the flag validation to catch the following cases: - input flags are conflicting - old and new flags are conflicting - initialize the local variable with inode flags after inode ls locked Inode attributes take precedence over mount options and are an independent setting. Nocompress would be a no-op with nodatacow, but we don't want to mix any compression-related options with nodatacow. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: David Sterba <dsterba@suse.com> |
|
Anand Jain | 4faf55b038 |
btrfs: don't traverse into the seed devices in show_devname
->show_devname currently shows the lowest devid in the list. As the seed
devices have the lowest devid in the sprouted filesystem, the userland
tool such as findmnt end up seeing seed device instead of the device from
the read-writable sprouted filesystem. As shown below.
mount /dev/sda /btrfs
mount: /btrfs: WARNING: device write-protected, mounted read-only.
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sda /btrfs 899f7027-3e46-4626-93e7-7d4c9ad19111
btrfs dev add -f /dev/sdb /btrfs
umount /btrfs
mount /dev/sdb /btrfs
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sda /btrfs 899f7027-3e46-4626-93e7-7d4c9ad19111
All sprouts from a single seed will show the same seed device and the
same fsid. That's confusing.
This is causing problems in our prototype as there isn't any reference
to the sprout file-system(s) which is being used for actual read and
write.
This was added in the patch which implemented the show_devname in btrfs
commit
|
|
Qu Wenruo | a3cf0e4342 |
btrfs: qgroup: free per-trans reserved space when a subvolume gets dropped
[BUG] Sometime fsstress could lead to qgroup warning for case like generic/013: BTRFS warning (device dm-3): qgroup 0/259 has unreleased space, type 1 rsv 81920 ------------[ cut here ]------------ WARNING: CPU: 9 PID: 24535 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:close_ctree+0x1dc/0x323 [btrfs] Call Trace: btrfs_put_super+0x15/0x17 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x17/0x30 [btrfs] deactivate_locked_super+0x3b/0xa0 deactivate_super+0x40/0x50 cleanup_mnt+0x135/0x190 __cleanup_mnt+0x12/0x20 task_work_run+0x64/0xb0 __prepare_exit_to_usermode+0x1bc/0x1c0 __syscall_return_slowpath+0x47/0x230 do_syscall_64+0x64/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 6c341cdf9b6cc3c1 ]--- BTRFS error (device dm-3): qgroup reserved space leaked While that subvolume 259 is no longer in that filesystem. [CAUSE] Normally per-trans qgroup reserved space is freed when a transaction is committed, in commit_fs_roots(). However for completely dropped subvolume, that subvolume is completely gone, thus is no longer in the fs_roots_radix, and its per-trans reserved qgroup will never be freed. Since the subvolume is already gone, leaked per-trans space won't cause any trouble for end users. [FIX] Just call btrfs_qgroup_free_meta_all_pertrans() before a subvolume is completely dropped. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Tom Rix | d60ba8de11 |
btrfs: ref-verify: fix memory leak in add_block_entry
clang static analysis flags this error
fs/btrfs/ref-verify.c:290:3: warning: Potential leak of memory pointed to by 're' [unix.Malloc]
kfree(be);
^~~~~
The problem is in this block of code:
if (root_objectid) {
struct root_entry *exist_re;
exist_re = insert_root_entry(&exist->roots, re);
if (exist_re)
kfree(re);
}
There is no 'else' block freeing when root_objectid is 0. Add the
missing kfree to the else branch.
Fixes:
|
|
David Sterba | d85327b1d8 |
btrfs: prefetch chunk tree leaves at mount
The whole chunk tree is read at mount time so we can utilize readahead to get the tree blocks to memory before we read the items. The idea is from Robbie, but instead of updating search slot readahead, this patch implements the chunk tree readahead manually from nodes on level 1. We've decided to do specific readahead optimizations and then unify them under a common API so we don't break everything by changing the search slot readahead logic. Higher chunk trees grow on large filesystems (many terabytes), and prefetching just level 1 seems to be sufficient. Provided example was from a 200TiB filesystem with chunk tree level 2. CC: Robbie Ko <robbieko@synology.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Johannes Thumshirn | 49bac89768 |
btrfs: add metadata_uuid to FS_INFO ioctl
Add retrieval of the filesystem's metadata UUID to the fsinfo ioctl. This is driven by setting the BTRFS_FS_INFO_FLAG_METADATA_UUID flag in btrfs_ioctl_fs_info_args::flags. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Johannes Thumshirn | 0fb408a558 |
btrfs: add filesystem generation to FS_INFO ioctl
Add retrieval of the filesystem's generation to the fsinfo ioctl. This is driven by setting the BTRFS_FS_INFO_FLAG_GENERATION flag in btrfs_ioctl_fs_info_args::flags. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
Johannes Thumshirn | 137c541821 |
btrfs: pass checksum type via BTRFS_IOC_FS_INFO ioctl
With the recent addition of filesystem checksum types other than CRC32c, it is not anymore hard-coded which checksum type a btrfs filesystem uses. Up to now there is no good way to read the filesystem checksum, apart from reading the filesystem UUID and then query sysfs for the checksum type. Add a new csum_type and csum_size fields to the BTRFS_IOC_FS_INFO ioctl command which usually is used to query filesystem features. Also add a flags member indicating that the kernel responded with a set csum_type and csum_size field. For compatibility reasons, only return the csum_type and csum_size if the BTRFS_FS_INFO_FLAG_CSUM_INFO flag was passed to the kernel. Also clear any unknown flags so we don't pass false positives to user-space newer than the kernel. To simplify further additions to the ioctl, also switch the padding to a u8 array. Pahole was used to verify the result of this switch: The csum members are added before flags, which might look odd, but this is to keep the alignment requirements and not to introduce holes in the structure. $ pahole -C btrfs_ioctl_fs_info_args fs/btrfs/btrfs.ko struct btrfs_ioctl_fs_info_args { __u64 max_id; /* 0 8 */ __u64 num_devices; /* 8 8 */ __u8 fsid[16]; /* 16 16 */ __u32 nodesize; /* 32 4 */ __u32 sectorsize; /* 36 4 */ __u32 clone_alignment; /* 40 4 */ __u16 csum_type; /* 44 2 */ __u16 csum_size; /* 46 2 */ __u64 flags; /* 48 8 */ __u8 reserved[968]; /* 56 968 */ /* size: 1024, cachelines: 16, members: 10 */ }; Fixes: |
|
Qu Wenruo | adca4d945c |
btrfs: qgroup: remove ASYNC_COMMIT mechanism in favor of reserve retry-after-EDQUOT
commit
|
|
Qu Wenruo | c53e965360 |
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT
[PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit |
|
Qu Wenruo | 263da812e8 |
btrfs: qgroup: allow to unreserve range without releasing other ranges
[PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |