Rename cxl_afu_reset() to __cxl_afu_reset() to we can reuse this function name
in the API.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Export the "AFU Error Buffer" via sysfs attribute (afu_err_buf). AFU
error buffer is used by the AFU to report application specific
errors. The contents of this buffer are AFU specific and are intended to
be interpreted by the application interacting with the afu.
Suggested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
An AFU may optionally contain one or more PCIe like configuration
records, which can be used to identify the AFU.
This patch adds support for exposing the raw config space and the
vendor, device and class code under sysfs. These will appear in a
subdirectory of the AFU device corresponding with the configuration
record number, e.g.
cat /sys/class/cxl/afu0.0/cr0/vendor
0x1014
cat /sys/class/cxl/afu0.0/cr0/device
0x4350
cat /sys/class/cxl/afu0.0/cr0/class
0x120000
hexdump -C /sys/class/cxl/afu0.0/cr0/config
00000000 14 10 50 43 00 00 00 00 06 00 00 12 00 00 00 00 |..PC............|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000100
These files behave in much the same way as the equivalent files for PCI
devices, with one exception being that the config file is currently
read-only and restricted to the root user. It is not necessarily
required to be this strict, but we currently do not have a compelling
use-case to make it writable and/or world-readable, so I erred on the
side of being restrictive.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Adds reset to sysfs which will PERST the card. If load_image_on_perst is set
to "user" or "factory", the PERST will cause that image to be loaded.
load_image_on_perst is set to "user" for production.
"none" could be used for debugging. The PSL trace arrays are preserved which
then can be read through debugfs.
PERST also triggers CAPP recovery. An HMI comes in, which is handled by EEH.
EEH unbinds the driver, calls into Sapphire to reinitialize the PHB, then
rebinds the driver.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
load_image_on_perst identifies whether a PERST will cause the image to be
flashed to the card. And if so, which image.
Valid entries are: "none", "user" and "factory".
A value of "none" means PERST will not cause the image to be flashed. A
power cycle to the pcie slot is required to load the image.
"user" loads the user provided image and "factory" loads the factory image upon
PERST.
sysfs updates the cxl struct in the driver then calls cxl_update_image_control
to write the vals in the VSEC.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We had a known sleep while atomic bug if a CXL device was forcefully
unbound while it was in use. This could occur as a result of EEH, or
manually induced with something like this while the device was in use:
echo 0000:01:00.0 > /sys/bus/pci/drivers/cxl-pci/unbind
The issue was that in this code path we iterated over each context and
forcefully detached it with the contexts_lock spin lock held, however
the detach also needed to take the spu_mutex, and call schedule.
This patch changes the contexts_lock to a mutex so that we are not in
atomic context while doing the detach, thereby avoiding the sleep while
atomic.
Also delete the related TODO comment, which suggested an alternate
solution which turned out to not be workable.
Cc: stable@vger.kernel.org
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This is the core of the cxl driver.
It adds support for using cxl cards in the powernv environment only (ie POWER8
bare metal). It allows access to cxl accelerators by userspace using the
/dev/cxl/afuM.N char devices.
The kernel driver has no knowledge of the function implemented by the
accelerator. It provides services to userspace via the /dev/cxl/afuM.N
devices. When a program opens this device and runs the start work IOCTL, the
accelerator will have coherent access to that processes memory using the same
virtual addresses. That process may mmap the device to access any MMIO space
the accelerator provides. Also, reads on the device will allow interrupts to
be received. These services are further documented in a later patch in
Documentation/powerpc/cxl.txt.
Documentation of the cxl hardware architecture and userspace API is provided in
subsequent patches.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>