mirror of https://gitee.com/openkylin/linux.git
4 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Lorenzo Pieralisi | af3cfdbf56 |
arm64: kernel: remove ARM64_CPU_SUSPEND config option
ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Lorenzo Pieralisi | 714f599255 |
arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Lorenzo Pieralisi | 95322526ef |
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> |
|
Lorenzo Pieralisi | 6732bc65c2 |
arm64: kernel: suspend/resume registers save/restore
Power management software requires the kernel to save and restore CPU registers while going through suspend and resume operations triggered by kernel subsystems like CPU idle and suspend to RAM. This patch implements code that provides save and restore mechanism for the arm v8 implementation. Memory for the context is passed as parameter to both cpu_do_suspend and cpu_do_resume functions, and allows the callers to implement context allocation as they deem fit. The registers that are saved and restored correspond to the registers set actually required by the kernel to be up and running which represents a subset of v8 ISA. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> |