Currently z_extract_offset is calculated in boot/compressed/mkpiggy.c.
This doesn't work well because mkpiggy.c doesn't know the details of the
decompressor in use. As a result, it can only make an estimation, which
has risks:
- output + output_len (VO) could be much bigger than input + input_len
(ZO). In this case, the decompressed kernel plus relocs could overwrite
the decompression code while it is running.
- The head code of ZO could be bigger than z_extract_offset. In this case
an overwrite could happen when the head code is running to move ZO to
the end of buffer. Though currently the size of the head code is very
small it's still a potential risk. Since there is no rule to limit the
size of the head code of ZO, it runs the risk of suddenly becoming a
(hard to find) bug.
Instead, this moves the z_extract_offset calculation into header.S, and
makes adjustments to be sure that the above two cases can never happen,
and further corrects the comments describing the calculations.
Since we have (in the previous patch) made ZO always be located against
the end of decompression buffer, z_extract_offset is only used here to
calculate an appropriate buffer size (INIT_SIZE), and is not longer used
elsewhere. As such, it can be removed from voffset.h.
Additionally clean up #if/#else #define to improve readability.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog and comments. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This change makes later calculations about where the kernel is located
easier to reason about. To better understand this change, we must first
clarify what 'VO' and 'ZO' are. These values were introduced in commits
by hpa:
77d1a49995 ("x86, boot: make symbols from the main vmlinux available")
37ba7ab5e3 ("x86, boot: make kernel_alignment adjustable; new bzImage fields")
Specifically:
All names prefixed with 'VO_':
- relate to the uncompressed kernel image
- the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define)
All names prefixed with 'ZO_':
- relate to the bootable compressed kernel image (boot/compressed/vmlinux),
which is composed of the following memory areas:
- head text
- compressed kernel (VO image and relocs table)
- decompressor code
- the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below)
The 'INIT_SIZE' value is used to find the larger of the two image sizes:
#define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset)
#define VO_INIT_SIZE (VO__end - VO__text)
#if ZO_INIT_SIZE > VO_INIT_SIZE
# define INIT_SIZE ZO_INIT_SIZE
#else
# define INIT_SIZE VO_INIT_SIZE
#endif
The current code uses extract_offset to decide where to position the
copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE
currently includes the extract_offset.)
Why does z_extract_offset exist? It's needed because we are trying to minimize
the amount of RAM used for the whole act of creating an uncompressed, executable,
properly relocation-linked kernel image in system memory. We do this so that
kernels can be booted on even very small systems.
To achieve the goal of minimal memory consumption we have implemented an in-place
decompression strategy: instead of cleanly separating the VO and ZO images and
also allocating some memory for the decompression code's runtime needs, we instead
create this elaborate layout of memory buffers where the output (decompressed)
stream, as it progresses, overlaps with and destroys the input (compressed)
stream. This can only be done safely if the ZO image is placed to the end of the
VO range, plus a certain amount of safety distance to make sure that when the last
bytes of the VO range are decompressed, the compressed stream pointer is safely
beyond the end of the VO range.
z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during
the build process, at a point when we know the exact compressed and
uncompressed size of the kernel images and can calculate this safe minimum
offset value. (Note that the mkpiggy.c calculation is not perfect, because
we don't know the decompressor used at that stage, so the z_extract_offset
calculation is necessarily imprecise and is mostly based on gzip internals -
we'll improve that in the next patch.)
When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible),
the copied ZO occupies the memory from extract_offset to the end of
decompression buffer. It overlaps with the soon-to-be-uncompressed kernel
like this:
|-----compressed kernel image------|
V V
0 extract_offset +INIT_SIZE
|-----------|---------------|-------------------------|--------|
| | | |
VO__text startup_32 of ZO VO__end ZO__end
^ ^
|-------uncompressed kernel image---------|
When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space
left from end of ZO to the end of decompressing buffer, like below.
|-compressed kernel image-|
V V
0 extract_offset +INIT_SIZE
|-----------|---------------|-------------------------|--------|
| | | |
VO__text startup_32 of ZO ZO__end VO__end
^ ^
|------------uncompressed kernel image-------------|
To simplify calculations and avoid special cases, it is cleaner to
always place the compressed kernel image in memory so that ZO__end
is at the end of the decompression buffer, instead of placing t at
the start of extract_offset as is currently done.
This patch adds BP_init_size (which is the INIT_SIZE as passed in from
the boot_params) into asm-offsets.c to make it visible to the assembly
code.
Then when moving the ZO, it calculates the starting position of
the copied ZO (via BP_init_size and the ZO run size) so that the VO__end
will be at the end of the decompression buffer. To make the position
calculation safe, the end of ZO is page aligned (and a comment is added
to the existing VO alignment for good measure).
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote changelog and comments. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org
[ Rewrote the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When processing the relocation table, the offset used to calculate the
relocation is an 'int'. This is sufficient for calculating the physical
address of the relocs entry on 32-bit systems and on 64-bit systems when
the relocation is under 2G.
To handle relocations above 2G (seen in situations like kexec, netboot, etc),
this offset needs to be calculated using a 'long' to avoid wrapping and
miscalculating the relocation.
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Graphics Output Protocol code executes in the stub, so create a generic
version based on the x86 version in libstub so that we can move other archs
to it in subsequent patches. The new source file gop.c is added to the
libstub build for all architectures, but only wired up for x86.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-18-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation of moving this code to drivers/firmware/efi and reusing
it on ARM and arm64, apply any changes that will be required to make this
code build for other architectures. This should make it easier to track
down problems that this move may cause to its operation on x86.
Note that the generic version uses slightly different ways of casting the
protocol methods and some other variables to the correct types, since such
method calls are not loosely typed on ARM and arm64 as they are on x86.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-17-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of having non-standard memcpy() behavior, explicitly call the new
function memmove(), make it available to the decompressors, and switch
the two overlap cases (screen scrolling and ELF parsing) to use memmove().
Additionally documents the purpose of compressed/string.c.
Suggested-by: Lasse Collin <lasse.collin@tukaani.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20160426214606.GA5758@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If KASLR is built in but not available at run-time (either due to the
current conflict with hibernation, command-line request, or e820 parsing
failures), announce the state explicitly. To support this, a new "warn"
function is created, based on the existing "error" function.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two uses of memcpy() (screen scrolling and ELF parsing) were handling
overlapping memory areas. While there were no explicitly noticed bugs
here (yet), it is best to fix this so that the copying will always be
safe.
Instead of making a new memmove() function that might collide with other
memmove() definitions in the decompressors, this just makes the compressed
boot code's copy of memcpy() overlap-safe.
Suggested-by: Lasse Collin <lasse.collin@tukaani.org>
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461185746-8017-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This rearranges the pieces needed to include the decompressor code
in misc.c. It wasn't obvious why things were there, so a comment was
added and definitions consolidated.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently CONFIG_RANDOMIZE_BASE_MAX_OFFSET is used to limit the maximum
offset for kernel randomization. This limit doesn't need to be a CONFIG
since it is tied completely to KERNEL_IMAGE_SIZE, and will make no sense
once physical and virtual offsets are randomized separately. This patch
removes CONFIG_RANDOMIZE_BASE_MAX_OFFSET and consolidates the Kconfig
help text.
[kees: rewrote changelog, dropped KERNEL_IMAGE_SIZE_DEFAULT, rewrote help]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-3-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment that describes the analysis for the size of the decompressor
code only took gzip into account (there are currently 6 other decompressors
that could be used). The actual z_extract_offset calculation in code was
already handling the correct maximum size, but this documentation hadn't
been updated. This updates the documentation, fixes several typos, moves
the comment to header.S, updates references, and adds a note at the end
of the decompressor include list to remind us about updating the comment
in the future.
(Instead of moving the comment to mkpiggy.c, where the calculation
is currently happening, it is being moved to header.S because
the calculations in mkpiggy.c will be removed in favor of header.S
calculations in a following patch, and it seemed like overkill to move
the giant comment twice, especially when there's already reference to
z_extract_offset in header.S.)
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote changelog, cleaned up comment style, moved comments around. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1461185746-8017-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit 2aedcd098a ('kbuild: suppress annoying "... is up to
date." message'), $(call if_changed,...) is evaluated to "@:"
when there is nothing to do.
We no longer need to add "@:" after $(call if_changed,...) to
suppress "... is up to date." message.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Michal Marek <mmarek@suse.com>
The variable "random" is also the name of a libc function. It's better
coding style to avoid overloading such things, so rename it to the more
accurate "random_addr".
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-7-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The name "choose_kernel_location" isn't specific enough, and doesn't
describe the primary thing it does: choosing a random location. This
patch renames it to "choose_random_location", and clarifies the what
routines are contained in the kaslr.c source file.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The function "decompress_kernel" now performs many more duties, so this
patch renames it to "extract_kernel" and updates callers and comments.
Additionally the file header comment for misc.c is improved to actually
describe what is contained.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The non-compressed boot code uses the (much more obvious) name
"boot_params" for the global pointer to the x86 boot parameters. The
compressed kernel loader code, though, was using the legacy name
"real_mode". There is no need to have a different name, and changing it
improves readability.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the boot_params can be found using the real_mode global variable,
there is no need to pass around a pointer to it. This slightly simplifies
the choose_kernel_location function and its callers.
[kees: rewrote changelog, tracked file rename]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460997735-24785-3-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to avoid confusion over what this file provides, rename it to
kaslr.c since it is used exclusively for the kernel ASLR, not userspace
ASLR.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X
relocation to get the symbol address in PIC. When the compressed x86
kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations
to their fixed symbol addresses. However, when the compressed x86
kernel is loaded at a different address, it leads to the following
load failure:
Failed to allocate space for phdrs
during the decompression stage.
If the compressed x86 kernel is relocatable at run-time, it should be
compiled with -fPIE, instead of -fPIC, if possible and should be built as
Position Independent Executable (PIE) so that linker won't optimize
R_386_GOT32X relocation to its fixed symbol address.
Older linkers generate R_386_32 relocations against locally defined
symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less
optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle
R_386_32 relocations when relocating the kernel. To generate
R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as
hidden in both 32-bit and 64-bit x86 kernels.
To build a 64-bit compressed x86 kernel as PIE, we need to disable the
relocation overflow check to avoid relocation overflow errors. We do
this with a new linker command-line option, -z noreloc-overflow, which
got added recently:
commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Tue Mar 15 11:07:06 2016 -0700
Add -z noreloc-overflow option to x86-64 ld
Add -z noreloc-overflow command-line option to the x86-64 ELF linker to
disable relocation overflow check. This can be used to avoid relocation
overflow check if there will be no dynamic relocation overflow at
run-time.
The 64-bit compressed x86 kernel is built as PIE only if the linker supports
-z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel
boots fine even when it is built as a normal executable.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
[ Edited the changelog and comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
Pull x86 boot updates from Ingo Molnar:
"Early command line options parsing enhancements from Dave Hansen, plus
minor cleanups and enhancements"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Remove unused 'is_big_kernel' variable
x86/boot: Use proper array element type in memset() size calculation
x86/boot: Pass in size to early cmdline parsing
x86/boot: Simplify early command line parsing
x86/boot: Fix early command-line parsing when partial word matches
x86/boot: Fix early command-line parsing when matching at end
x86/boot: Simplify kernel load address alignment check
x86/boot: Micro-optimize reset_early_page_tables()
Code which runs outside the kernel's normal mode of operation often does
unusual things which can cause a static analysis tool like objtool to
emit false positive warnings:
- boot image
- vdso image
- relocation
- realmode
- efi
- head
- purgatory
- modpost
Set OBJECT_FILES_NON_STANDARD for their related files and directories,
which will tell objtool to skip checking them. It's ok to skip them
because they don't affect runtime stack traces.
Also skip the following code which does the right thing with respect to
frame pointers, but is too "special" to be validated by a tool:
- entry
- mcount
Also skip the test_nx module because it modifies its exception handling
table at runtime, which objtool can't understand. Fortunately it's
just a test module so it doesn't matter much.
Currently objtool is the only user of OBJECT_FILES_NON_STANDARD, but it
might eventually be useful for other tools.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/366c080e3844e8a5b6a0327dc7e8c2b90ca3baeb.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Variable is_big_kernel is defined in arch/x86/boot/tools/build.c but
never used anywhere.
Boris noted that its usage went away 7 years ago, as of:
5e47c478b0 ("x86: remove zImage support")
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455453358-4088-1-git-send-email-nicolas.iooss_linux@m4x.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move them to a separate header and have the following
dependency:
x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h
This makes it easier to use the header in asm code and not
include the whole cpufeature.h and add guards for asm.
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
UBSAN uses compile-time instrumentation to catch undefined behavior
(UB). Compiler inserts code that perform certain kinds of checks before
operations that could cause UB. If check fails (i.e. UB detected)
__ubsan_handle_* function called to print error message.
So the most of the work is done by compiler. This patch just implements
ubsan handlers printing errors.
GCC has this capability since 4.9.x [1] (see -fsanitize=undefined
option and its suboptions).
However GCC 5.x has more checkers implemented [2].
Article [3] has a bit more details about UBSAN in the GCC.
[1] - https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html
[2] - https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
[3] - http://developerblog.redhat.com/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/
Issues which UBSAN has found thus far are:
Found bugs:
* out-of-bounds access - 97840cb67f ("netfilter: nfnetlink: fix
insufficient validation in nfnetlink_bind")
undefined shifts:
* d48458d4a7 ("jbd2: use a better hash function for the revoke
table")
* 10632008b9 ("clockevents: Prevent shift out of bounds")
* 'x << -1' shift in ext4 -
http://lkml.kernel.org/r/<5444EF21.8020501@samsung.com>
* undefined rol32(0) -
http://lkml.kernel.org/r/<1449198241-20654-1-git-send-email-sasha.levin@oracle.com>
* undefined dirty_ratelimit calculation -
http://lkml.kernel.org/r/<566594E2.3050306@odin.com>
* undefined roundown_pow_of_two(0) -
http://lkml.kernel.org/r/<1449156616-11474-1-git-send-email-sasha.levin@oracle.com>
* [WONTFIX] undefined shift in __bpf_prog_run -
http://lkml.kernel.org/r/<CACT4Y+ZxoR3UjLgcNdUm4fECLMx2VdtfrENMtRRCdgHB2n0bJA@mail.gmail.com>
WONTFIX here because it should be fixed in bpf program, not in kernel.
signed overflows:
* 32a8df4e0b ("sched: Fix odd values in effective_load()
calculations")
* mul overflow in ntp -
http://lkml.kernel.org/r/<1449175608-1146-1-git-send-email-sasha.levin@oracle.com>
* incorrect conversion into rtc_time in rtc_time64_to_tm() -
http://lkml.kernel.org/r/<1449187944-11730-1-git-send-email-sasha.levin@oracle.com>
* unvalidated timespec in io_getevents() -
http://lkml.kernel.org/r/<CACT4Y+bBxVYLQ6LtOKrKtnLthqLHcw-BMp3aqP3mjdAvr9FULQ@mail.gmail.com>
* [NOTABUG] signed overflow in ktime_add_safe() -
http://lkml.kernel.org/r/<CACT4Y+aJ4muRnWxsUe1CMnA6P8nooO33kwG-c8YZg=0Xc8rJqw@mail.gmail.com>
[akpm@linux-foundation.org: fix unused local warning]
[akpm@linux-foundation.org: fix __int128 build woes]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yury Gribov <y.gribov@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recent PAT patchset has caused issue on 32-bit PAE machines:
page:eea45000 count:0 mapcount:-128 mapping: (null) index:0x0 flags: 0x40000000()
page dumped because: VM_BUG_ON_PAGE(page_mapcount(page) < 0)
------------[ cut here ]------------
kernel BUG at /home/build/linux-boris/mm/huge_memory.c:1485!
invalid opcode: 0000 [#1] SMP
[...]
Call Trace:
unmap_single_vma
? __wake_up
unmap_vmas
unmap_region
do_munmap
vm_munmap
SyS_munmap
do_fast_syscall_32
? __do_page_fault
sysenter_past_esp
Code: ...
EIP: [<c11bde80>] zap_huge_pmd+0x240/0x260 SS:ESP 0068:f6459d98
The problem is in pmd_pfn_mask() and pmd_flags_mask(). These
helpers use PMD_PAGE_MASK to calculate resulting mask.
PMD_PAGE_MASK is 'unsigned long', not 'unsigned long long' as
phys_addr_t is on 32-bit PAE (ARCH_PHYS_ADDR_T_64BIT). As a
result, the upper bits of resulting mask get truncated.
pud_pfn_mask() and pud_flags_mask() aren't problematic since we
don't have PUD page table level on 32-bit systems, but it's
reasonable to keep them consistent with PMD counterpart.
Introduce PHYSICAL_PMD_PAGE_MASK and PHYSICAL_PUD_PAGE_MASK in
addition to existing PHYSICAL_PAGE_MASK and reworks helpers to
use them.
Reported-and-Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
[ Fix -Woverflow warnings from the realmode code. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jürgen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: elliott@hpe.com
Cc: konrad.wilk@oracle.com
Cc: linux-mm <linux-mm@kvack.org>
Fixes: f70abb0fc3 ("x86/asm: Fix pud/pmd interfaces to handle large PAT bit")
Link: http://lkml.kernel.org/r/1448878233-11390-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move KASAN_SANITIZE in arch/x86/boot/Makefile above the comment
related to SVGA_MODE, since the comment refers to 'the next line'.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway - Paul Gortmaker
* Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64 - Leif Lindholm
* Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses - Matt Fleming
* Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
* Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module - Ben Hutchings
* Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support - Taku Izumi
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWG7OwAAoJEC84WcCNIz1VEEEP/0SsdrwJ66B4MfP5YNjqHYWm
+OTHR6Ovv2i10kc+NjOV/GN8sWPndnkLfIfJ4EqJ9BoQ9PDEYZilV2aleSQ4DrPm
H7uGwBXQkfd76tZKX9pMToK76mkhg6M7M2LR3Suv3OGfOEzuozAOt3Ez37lpksTN
2ByhHr/oGbhu99jC2ki5+k0ySH8PMqDBRxqrPbBzTD+FfB7bM11vAJbSNbSMQ21R
ZwX0acZBLqb9J2Vf7tDsW+fCfz0TFo8JHW8jdLRFm/y2dpquzxswkkBpODgA8+VM
0F5UbiUdkaIRug75I6N/OJ8+yLwdzuxm7ul+tbS3JrXGLAlK3850+dP2Pr5zQ2Ce
zaYGRUy+tD5xMXqOKgzpu+Ia8XnDRLhOlHabiRd5fG6ZC9nR8E9uK52g79voSN07
pADAJnVB03CGV/HdduDOI4C4UykUKubuArbQVkqWJcecV1Jic/tYI0gjeACmU1VF
v8FzXpBUe3U3A0jauOz8PBz8M+k5qky/GbIrnEvXreBtKdt999LN9fykTN7rBOpo
dk/6vTR1Jyv3aYc9EXHmRluktI6KmfWCqmRBOIgQveX1VhdRM+1w2LKC0+8co3dF
v/DBh19KDyfPI8eOvxKykhn164UeAt03EXqDa46wFGr2nVOm/JiShL/d+QuyYU4G
8xb/rET4JrhCG4gFMUZ7
=1Oee
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into core/efi
Pull v4.4 EFI updates from Matt Fleming:
- Make the EFI System Resource Table (ESRT) driver explicitly
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway. (Paul Gortmaker)
- Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64. (Leif Lindholm)
- Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses. (Matt Fleming)
- Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
- Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module. (Ben Hutchings)
- Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support. (Taku Izumi)
Note: there is a semantic conflict between the following two commits:
8a53554e12 ("x86/efi: Fix multiple GOP device support")
ae2ee627dc ("efifb: Add support for 64-bit frame buffer addresses")
I fixed up the interaction in the merge commit, changing the type of
current_fb_base from u32 to u64.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When multiple GOP devices exists, but none of them implements
ConOut, the code should just choose the first GOP (according to
the comments). But currently 'fb_base' will refer to the last GOP,
while other parameters to the first GOP, which will likely
result in a garbled display.
I can reliably reproduce this bug using my ASRock Z87M Extreme4
motherboard with CSM and integrated GPU disabled, and two PCIe
video cards (NVidia GT640 and GTX980), booting from efi-stub
(booting from grub works fine). On the primary display the
ASRock logo remains and on the secondary screen it is garbled
up completely.
Signed-off-by: Kővágó, Zoltán <DirtY.iCE.hu@gmail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1444659236-24837-2-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EFI Graphics Output Protocol uses 64-bit frame buffer addresses
but these get truncated to 32-bit by the EFI boot stub when storing
the address in the 'lfb_base' field of 'struct screen_info'.
Add a 'ext_lfb_base' field for the upper 32-bits of the frame buffer
address and set VIDEO_TYPE_CAPABILITY_64BIT_BASE when the field is
useable.
It turns out that the reason no one has required this support so far
is that there's actually code in tianocore to "downgrade" PCI
resources that have option ROMs and 64-bit BARS from 64-bit to 32-bit
to cope with legacy option ROMs that can't handle 64-bit addresses.
The upshot is that basically all GOP devices in the wild use a 32-bit
frame buffer address.
Still, it is possible to build firmware that uses a full 64-bit GOP
frame buffer address. Chad did, which led to him reporting this issue.
Add support in anticipation of GOP devices using 64-bit addresses more
widely, and so that efifb works out of the box when that happens.
Reported-by: Chad Page <chad.page@znyx.com>
Cc: Pete Hawkins <pete.hawkins@znyx.com>
Acked-by: Peter Jones <pjones@redhat.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
When loading x86 64bit kernel above 4GiB with patched grub2, got kernel
gunzip error.
| early console in decompress_kernel
| decompress_kernel:
| input: [0x807f2143b4-0x807ff61aee]
| output: [0x807cc00000-0x807f3ea29b] 0x027ea29c: output_len
| boot via startup_64
| KASLR using RDTSC...
| new output: [0x46fe000000-0x470138cfff] 0x0338d000: output_run_size
| decompress: [0x46fe000000-0x47007ea29b] <=== [0x807f2143b4-0x807ff61aee]
|
| Decompressing Linux... gz...
|
| uncompression error
|
| -- System halted
the new buffer is at 0x46fe000000ULL, decompressor_gzip is using
0xffffffb901ffffff as out_len. gunzip in lib/zlib_inflate/inflate.c cap
that len to 0x01ffffff and decompress fails later.
We could hit this problem with crashkernel booting that uses kexec loading
kernel above 4GiB.
We have decompress_* support:
1. inbuf[]/outbuf[] for kernel preboot.
2. inbuf[]/flush() for initramfs
3. fill()/flush() for initrd.
This bug only affect kernel preboot path that use outbuf[].
Add __decompress and take real out_buf_len for gunzip instead of guessing
wrong buf size.
Fixes: 1431574a1c (lib/decompressors: fix "no limit" output buffer length)
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jon Medhurst <tixy@linaro.org>
Cc: Stephen Warren <swarren@wwwdotorg.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 boot updates from Ingo Molnar:
"The main x86 bootup related changes in this cycle were:
- more boot time optimizations. (Len Brown)
- implement hex output to allow the debugging of early bootup
parameters. (Kees Cook)
- remove obsolete MCA leftovers. (Paolo Pisati)"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smpboot: Remove APIC.wait_for_init_deassert and atomic init_deasserted
x86/smpboot: Remove SIPI delays from cpu_up()
x86/smpboot: Remove udelay(100) when polling cpu_callin_map
x86/smpboot: Remove udelay(100) when polling cpu_initialized_map
x86/boot: Obsolete the MCA sys_desc_table
x86/boot: Add hex output for debugging
This reverts commit:
aeffc4928e ("x86/efi: Request desired alignment via the PE/COFF headers")
Linn reports that Signtool complains that kernels built with
CONFIG_EFI_STUB=y are violating the PE/COFF specification because
the 'SizeOfImage' field is not a multiple of 'SectionAlignment'.
This violation was introduced as an optimisation to skip having
the kernel relocate itself during boot and instead have the
firmware place it at a correctly aligned address.
No one else has complained and I'm not aware of any firmware
implementations that refuse to boot with commit aeffc4928e,
but it's a real bug, so revert the offending commit.
Reported-by: Linn Crosetto <linn@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Brown <mbrown@fensystems.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-3-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The efi_info structure stores low 32 bits of memory map
in efi_memmap and high 32 bits in efi_memmap_hi.
While constructing pointer in the setup_e820(), need
to take into account all 64 bit of the pointer.
It is because on 64bit machine the function
efi_get_memory_map() may return full 64bit pointer and before
the patch that pointer was truncated.
The issue is triggered on Parallles virtual machine and
fixed with this patch.
Signed-off-by: Dmitry Skorodumov <sdmitry@parallels.com>
Cc: Denis V. Lunev <den@openvz.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The kernel does not support the MCA bus anymroe, so mark sys_desc_table
as obsolete: remove any reference from the code together with the remaining
of MCA logic.
bloat-o-meter output:
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-55 (-55)
function old new delta
i386_start_kernel 128 119 -9
setup_arch 1421 1375 -46
Signed-off-by: Paolo Pisati <p.pisati@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437409430-8491-1-git-send-email-p.pisati@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is useful for reporting various addresses or other values
while debugging early boot, for example, the recent kernel image
size vs kernel run size. For example, when
CONFIG_X86_VERBOSE_BOOTUP is set, this is now visible at boot
time:
early console in setup code
early console in decompress_kernel
input_data: 0x0000000001e1526e
input_len: 0x0000000000732236
output: 0x0000000001000000
output_len: 0x0000000001535640
run_size: 0x00000000021fb000
KASLR using RDTSC...
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20150706230620.GA17501@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the ->read_tsc() paravirt hook is gone, rdtscll() is
just a wrapper around native_read_tsc(). Unwrap it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/d2449ae62c1b1fb90195bcfb19ef4a35883a04dc.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
Linus reported the following new warning on x86 allmodconfig with GCC 5.1:
> ./arch/x86/include/asm/spinlock.h: In function ‘arch_spin_lock’:
> ./arch/x86/include/asm/spinlock.h:119:3: warning: implicit declaration
> of function ‘__ticket_lock_spinning’ [-Wimplicit-function-declaration]
> __ticket_lock_spinning(lock, inc.tail);
> ^
This warning triggers because of these hacks in misc.h:
/*
* we have to be careful, because no indirections are allowed here, and
* paravirt_ops is a kind of one. As it will only run in baremetal anyway,
* we just keep it from happening
*/
#undef CONFIG_PARAVIRT
#undef CONFIG_KASAN
But these hacks were not updated when CONFIG_PARAVIRT_SPINLOCKS was added,
and eventually (with the introduction of queued paravirt spinlocks in
recent kernels) this created an invalid Kconfig combination and broke
the build.
So add a CONFIG_PARAVIRT_SPINLOCKS #undef line as well.
Also remove the _ASM_X86_DESC_H quirk: that undocumented quirk
was originally added ages ago, in:
099e137726 ("x86: use ELF format in compressed images.")
and I went back to that kernel (and fixed up the main Makefile
which didn't build anymore) and checked what failure it
avoided: it avoided an include file dependencies related
build failure related to our old x86-platforms code.
That old code is long gone, the header dependencies got cleaned
up, and the build does not fail anymore with the totality of
asm/desc.h included - so remove the quirk.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACPI 6.0 formalizes e820-type-7 and efi-type-14 as persistent memory.
Mark it "reserved" and allow it to be claimed by a persistent memory
device driver.
This definition is in addition to the Linux kernel's existing type-12
definition that was recently added in support of shipping platforms with
NVDIMM support that predate ACPI 6.0 (which now classifies type-12 as
OEM reserved).
Note, /proc/iomem can be consulted for differentiating legacy
"Persistent Memory (legacy)" E820_PRAM vs standard "Persistent Memory"
E820_PMEM.
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
EFI variable name - Ross Lagerwall
* Stop erroneously dropping upper 32-bits of boot command line pointer
in EFI boot stub and stash them in ext_cmd_line_ptr - Roy Franz
* Fix double-free bug in error handling code path of EFI runtime map
code - Dan Carpenter
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVSOSjAAoJEC84WcCNIz1VXk4P/R4GwmmzZBdYAseiwv6u/NRm
bTXnK7SN1ZyY8WibEm8ptXJuTIyXZxmQYr4lY97canJy8P7umtoCP7P3tS0Ier8U
N1AMFGes7xlwBhjIRz2Cr9e5plr5H3qk65JNMuUDp0/MVuPEiNEzi6efbL82dh9S
RCLxQ94paX+wV6ltQMKWGD3v0WnHkzouuCdETCGaozqQmJx6PGzDmJ51kXYRWDyP
esTCZpRHlIzKN0u3XEFgswlIev2wab0BtjXYOzUqb0AH1Q13OgQfiswX3WIG6k+c
3xuMH4JByBIDwOLudgu0D6Sst2QwVJZnw6JavoEgGCFao0n6IPzUGolAWLFMdDhL
Kparzc6ObHpiqYtqBjJXW+awOENVS4qIrn9MHc9wwsJxXOy++0YnyYCgge0iia47
F2/pOHvkd52QiQ0gC442W0EdX1VlPCUR04G0s4d3UX3O875yl80QTyLQ4n7ZK074
3wfi/9+Fuv8wWMJ4HI8FJgaTl57KzAP4ZPh2cy8oPs6bkiiwlnMWH24bEhlxKBK4
mEIze045kyswz3rV7j1WX3MSXrPA2cM95L5WlvVTxckMn40QwLPBWSDCOJIj3K5K
yhXNHHfHzG/GRm3SfD2i1EcK4gUW82awl72jJn0F69YMI5a+T1BIppEMP2pzsWE4
FcwvWDxzWwKxYKJosfkk
=f7a2
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
* Avoid garbage names in efivarfs due to buggy firmware by zeroing
EFI variable name. (Ross Lagerwall)
* Stop erroneously dropping upper 32 bits of boot command line pointer
in EFI boot stub and stash them in ext_cmd_line_ptr. (Roy Franz)
* Fix double-free bug in error handling code path of EFI runtime map
code. (Dan Carpenter)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Until now, the EFI stub was only setting the 32 bit cmd_line_ptr in
the setup_header structure, so on 64 bit platforms this could be truncated.
This patch adds setting the upper bits of the buffer address in
ext_cmd_line_ptr. This case was likely never hit, as the allocation
for this buffer is done at the lowest available address. Only
x86_64 kernels have this problem, as the 1-1 mapping mandated
by EFI ensures that all memory is 32 bit addressable on 32 bit
platforms. The EFI stub does not support mixed mode, so the
32 bit kernel on 64 bit firmware case does not need to be handled.
Signed-off-by: Roy Franz <roy.franz@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull x86 boot changes from Ingo Molnar:
"A number of cleanups"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Standardize strcmp()
x86/boot/64: Remove pointless early_printk() message
x86/boot/video: Move the 'video_segment' variable to video.c
Commit:
e2b32e6785 ("x86, kaslr: randomize module base load address")
made module base address randomization unconditional and didn't regard
disabled KKASLR due to CONFIG_HIBERNATION and command line option
"nokaslr". For more info see (now reverted) commit:
f47233c2d3 ("x86/mm/ASLR: Propagate base load address calculation")
In order to propagate KASLR status to kernel proper, we need a single bit
in boot_params.hdr.loadflags and we've chosen bit 1 thus leaving the
top-down allocated bits for bits supposed to be used by the bootloader.
Originally-From: Jiri Kosina <jkosina@suse.cz>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
strcmp() is always expected to return 0 when arguments are equal,
negative when its first argument @str1 is less than its second argument
@str2 and a positive value otherwise. Previously strcmp("a", "b")
returned 1. Now it gives -1, as it is supposed to.
Until now this bug never triggered, because all uses for strcmp() in the
boot code tested for nonzero:
triton:~/tip> git grep strcmp arch/x86/boot/
arch/x86/boot/boot.h:int strcmp(const char *str1, const char *str2);
arch/x86/boot/edd.c: if (!strcmp(eddarg, "skipmbr") || !strcmp(eddarg, "skip")) {
arch/x86/boot/edd.c: else if (!strcmp(eddarg, "off"))
arch/x86/boot/edd.c: else if (!strcmp(eddarg, "on"))
should in the future strcmp() be used in a comparative way in the boot
code, it might have led to (not so subtle) bugs.
Signed-off-by: Arjun Sreedharan <arjun024@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1426520267-1803-1-git-send-email-arjun024@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit:
f47233c2d3 ("x86/mm/ASLR: Propagate base load address calculation")
The main reason for the revert is that the new boot flag does not work
at all currently, and in order to make this work, we need non-trivial
changes to the x86 boot code which we didn't manage to get done in
time for merging.
And even if we did, they would've been too risky so instead of
rushing things and break booting 4.1 on boxes left and right, we
will be very strict and conservative and will take our time with
this to fix and test it properly.
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: H. Peter Anvin <hpa@linux.intel.com
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/20150316100628.GD22995@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
Pull ASLR and kASLR fixes from Borislav Petkov:
- Add a global flag announcing KASLR state so that relevant code can do
informed decisions based on its setting. (Jiri Kosina)
- Fix a stack randomization entropy decrease bug. (Hector Marco-Gisbert)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
e2b32e6785 ("x86, kaslr: randomize module base load address")
makes the base address for module to be unconditionally randomized in
case when CONFIG_RANDOMIZE_BASE is defined and "nokaslr" option isn't
present on the commandline.
This is not consistent with how choose_kernel_location() decides whether
it will randomize kernel load base.
Namely, CONFIG_HIBERNATION disables kASLR (unless "kaslr" option is
explicitly specified on kernel commandline), which makes the state space
larger than what module loader is looking at. IOW CONFIG_HIBERNATION &&
CONFIG_RANDOMIZE_BASE is a valid config option, kASLR wouldn't be applied
by default in that case, but module loader is not aware of that.
Instead of fixing the logic in module.c, this patch takes more generic
aproach. It introduces a new bootparam setup data_type SETUP_KASLR and
uses that to pass the information whether kaslr has been applied during
kernel decompression, and sets a global 'kaslr_enabled' variable
accordingly, so that any kernel code (module loading, livepatching, ...)
can make decisions based on its value.
x86 module loader is converted to make use of this flag.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Link: https://lkml.kernel.org/r/alpine.LNX.2.00.1502101411280.10719@pobox.suse.cz
[ Always dump correct kaslr status when panicking ]
Signed-off-by: Borislav Petkov <bp@suse.de>
There is already defined macro KEEP_SEGMENTS in
<asm/bootparam.h>, let's use it instead of hardcoded
constants.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1424331298-7456-1-git-send-email-kuleshovmail@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
video.c is the only real user of the 'video_segment' variable,
so move it to video.c and make it static.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Martin Mares <mj@ucw.cz>
Link: http://lkml.kernel.org/r/1422123092-28750-1-git-send-email-kuleshovmail@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
calls to avoid triple faults if an NMI/MCE is received.
* Revert Ard's change to the libstub get_memory_map() that went into
the v3.20 merge window because it causes boot regressions on Qemu and
Xen.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU5HnBAAoJEC84WcCNIz1Vln4P/08oA3V/GziY2cJGn1TBtBkA
M7GzElF3ceojRVlfp7tVQpmT9oXqXsUB9ccqlOMKF8EO1s7EKnguVV/nkIah/5wu
HIPYFgDC2s57cf7MGA53xOjTJNSu6PzTkUsJF7KhtZmb0c/GyWMN38Ggsdi7zuA3
5WD3O1CSLn77IqRXYtCr8aimQI3QJeTnN8IXQxyoDmQ8XK2uV1qRwFI96+2AjFJM
EG+xw+p6DCpoJXbci1kZxPT/iV5P8fLwzvcRT2G/qMa5RqWALLN5VeP3yBe+VqPU
s9PQK8jLablQcsglIemPHRnfLcOWz13yEx5Z6S1lyzOJrQsk7rp9dLO7GKiK22ex
1CPu+Cudk1ETn+pDyjADl6wcvZJfh1krnD4Gzm6VsSUWC924/sovYvH67sPSWc5a
RxylE4pSuHYADnQZh1YqH719KMWpMKb+9UeYstq3PfebeyKJkAqXqPBTWRldI1N7
YWLweED35dg3mN8g8mYEmiIOXe/dYNoaWJw0m2FrEMxJ5x4Z1ukDSccFN5+pAkn/
Nn1wXxGzt0sU40+t5bYA6CnJAEsU1pP/kPcZeqNzB3AGYIiA+rtH45jQMVO4xorM
BA2COqRrC+UdUHbiy5IgF6EGxIKy4Yb+aE/EvEd8e4GborI4in6mK8xKAllvr4+M
hD5nwJviAXQkviZZeOq5
=I/nB
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
" - Leave a valid 64-bit IDT installed during runtime EFI mixed mode
calls to avoid triple faults if an NMI/MCE is received.
- Revert Ard's change to the libstub get_memory_map() that went into
the v3.20 merge window because it causes boot regressions on Qemu and
Xen. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recently instrumentation of builtin functions calls was removed from GCC
5.0. To check the memory accessed by such functions, userspace asan
always uses interceptors for them.
So now we should do this as well. This patch declares
memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our
own implementation of those functions which checks memory before accessing
it.
Default memset/memmove/memcpy now now always have aliases with '__'
prefix. For files that built without kasan instrumentation (e.g.
mm/slub.c) original mem* replaced (via #define) with prefixed variants,
cause we don't want to check memory accesses there.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds arch specific code for kernel address sanitizer.
16TB of virtual addressed used for shadow memory. It's located in range
[ffffec0000000000 - fffffc0000000000] between vmemmap and %esp fixup
stacks.
At early stage we map whole shadow region with zero page. Latter, after
pages mapped to direct mapping address range we unmap zero pages from
corresponding shadow (see kasan_map_shadow()) and allocate and map a real
shadow memory reusing vmemmap_populate() function.
Also replace __pa with __pa_nodebug before shadow initialized. __pa with
CONFIG_DEBUG_VIRTUAL=y make external function call (__phys_addr)
__phys_addr is instrumented, so __asan_load could be called before shadow
area initialized.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jim Davis <jim.epost@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andy pointed out that if an NMI or MCE is received while we're in the
middle of an EFI mixed mode call a triple fault will occur. This can
happen, for example, when issuing an EFI mixed mode call while running
perf.
The reason for the triple fault is that we execute the mixed mode call
in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers
installed throughout the call.
At Andy's suggestion, stop playing the games we currently do at runtime,
such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We
can simply switch to the __KERNEL32_CS descriptor before invoking
firmware services, and run in compatibility mode. This way, if an
NMI/MCE does occur the kernel IDT handler will execute correctly, since
it'll jump to __KERNEL_CS automatically.
However, this change is only possible post-ExitBootServices(). Before
then the firmware "owns" the machine and expects for its 32-bit IDT
handlers to be left intact to service interrupts, etc.
So, we now need to distinguish between early boot and runtime
invocations of EFI services. During early boot, we need to restore the
GDT that the firmware expects to be present. We can only jump to the
__KERNEL32_CS code segment for mixed mode calls after ExitBootServices()
has been invoked.
A liberal sprinkling of comments in the thunking code should make the
differences in early and late environments more apparent.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Commit e6023367d7 ("x86, kaslr: Prevent .bss from overlaping initrd")
added Perl to the required build environment. This reimplements in
shell the Perl script used to find the size of the kernel with bss and
brk added.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Rob Landley <rob@landley.net>
Acked-by: Rob Landley <rob@landley.net>
Cc: Anca Emanuel <anca.emanuel@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On 64-bit, relocation is not required unless the load address gets
changed. Without this, relocations do unexpected things when the kernel
is above 4G.
Reported-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Thomas D. <whissi@whissi.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20150116005146.GA4212@www.outflux.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 9def39be4e ("x86: Support compiling out human-friendly
processor feature names") made two source file targets
conditional. Such conditional targets will not be cleaned
automatically by make mrproper.
Fix by adding explicit clean-files targets for the two files.
Fixes: 9def39be4e ("x86: Support compiling out human-friendly processor feature names")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Cc: Josh Triplett <josh@joshtriplett.org>
Link: http://lkml.kernel.org/r/1419335863-10608-1-git-send-email-bjorn@mork.no
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull EFI updates from Ingo Molnar:
"Changes in this cycle are:
- support module unload for efivarfs (Mathias Krause)
- another attempt at moving x86 to libstub taking advantage of the
__pure attribute (Ard Biesheuvel)
- add EFI runtime services section to ptdump (Mathias Krause)"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, ptdump: Add section for EFI runtime services
efi/x86: Move x86 back to libstub
efivarfs: Allow unloading when build as module
Pull x86 boot and percpu updates from Ingo Molnar:
"This tree contains a bootable images documentation update plus three
slightly misplaced x86/asm percpu changes/optimizations"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64: Use RIP-relative addressing for most per-CPU accesses
x86-64: Handle PC-relative relocations on per-CPU data
x86: Convert a few more per-CPU items to read-mostly ones
x86, boot: Document intermediates more clearly
commit e6023367d7 'x86, kaslr: Prevent .bss from overlaping initrd'
broke the cross compile of x86. It added a objdump invocation, which
invokes the host native objdump and ignores an active cross tool
chain.
Use $(OBJDUMP) instead which takes the CROSS_COMPILE prefix into
account.
[ tglx: Massage changelog and use $(OBJDUMP) ]
Fixes: e6023367d7 'x86, kaslr: Prevent .bss from overlaping initrd'
Signed-off-by: Chris Clayton <chris2553@googlemail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/54705C8E.1080400@googlemail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reverts commit 84be880560, which itself reverted my original
attempt to move x86 from #include'ing .c files from across the tree
to using the EFI stub built as a static library.
The issue that affected the original approach was that splitting
the implementation into several .o files resulted in the variable
'efi_early' becoming a global with external linkage, which under
-fPIC implies that references to it must go through the GOT. However,
dealing with this additional GOT entry turned out to be troublesome
on some EFI implementations. (GCC's visibility=hidden attribute is
supposed to lift this requirement, but it turned out not to work on
the 32-bit build.)
Instead, use a pure getter function to get a reference to efi_early.
This approach results in no additional GOT entries being generated,
so there is no need for any changes in the early GOT handling.
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This adds a comment detailing the various intermediate files used to build
the bootable decompression image for the x86 kernel.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Link: http://lkml.kernel.org/r/20141031162204.GA26268@www.outflux.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When choosing a random address, the current implementation does not take into
account the reversed space for .bss and .brk sections. Thus the relocated kernel
may overlap other components in memory. Here is an example of the overlap from a
x86_64 kernel in qemu (the ranges of physical addresses are presented):
Physical Address
0x0fe00000 --+--------------------+ <-- randomized base
/ | relocated kernel |
vmlinux.bin | (from vmlinux.bin) |
0x1336d000 (an ELF file) +--------------------+--
\ | | \
0x1376d870 --+--------------------+ |
| relocs table | |
0x13c1c2a8 +--------------------+ .bss and .brk
| | |
0x13ce6000 +--------------------+ |
| | /
0x13f77000 | initrd |--
| |
0x13fef374 +--------------------+
The initrd image will then be overwritten by the memset during early
initialization:
[ 1.655204] Unpacking initramfs...
[ 1.662831] Initramfs unpacking failed: junk in compressed archive
This patch prevents the above situation by requiring a larger space when looking
for a random kernel base, so that existing logic can effectively avoids the
overlap.
[kees: switched to perl to avoid hex translation pain in mawk vs gawk]
[kees: calculated overlap without relocs table]
Fixes: 82fa9637a2 ("x86, kaslr: Select random position from e820 maps")
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Junjie Mao <eternal.n08@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1414762838-13067-1-git-send-email-eternal.n08@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 EFI updates from Peter Anvin:
"This patchset falls under the "maintainers that grovel" clause in the
v3.18-rc1 announcement. We had intended to push it late in the merge
window since we got it into the -tip tree relatively late.
Many of these are relatively simple things, but there are a couple of
key bits, especially Ard's and Matt's patches"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
rtc: Disable EFI rtc for x86
efi: rtc-efi: Export platform:rtc-efi as module alias
efi: Delete the in_nmi() conditional runtime locking
efi: Provide a non-blocking SetVariable() operation
x86/efi: Adding efi_printks on memory allocationa and pci.reads
x86/efi: Mark initialization code as such
x86/efi: Update comment regarding required phys mapped EFI services
x86/efi: Unexport add_efi_memmap variable
x86/efi: Remove unused efi_call* macros
efi: Resolve some shadow warnings
arm64: efi: Format EFI memory type & attrs with efi_md_typeattr_format()
ia64: efi: Format EFI memory type & attrs with efi_md_typeattr_format()
x86: efi: Format EFI memory type & attrs with efi_md_typeattr_format()
efi: Introduce efi_md_typeattr_format()
efi: Add macro for EFI_MEMORY_UCE memory attribute
x86/efi: Clear EFI_RUNTIME_SERVICES if failing to enter virtual mode
arm64/efi: Do not enter virtual mode if booting with efi=noruntime or noefi
arm64/efi: uefi_init error handling fix
efi: Add kernel param efi=noruntime
lib: Add a generic cmdline parse function parse_option_str
...
Pull x86 fixes from Ingo Molnar:
"Misc smaller fixes that missed the v3.17 cycle"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build: Add arch/x86/purgatory/ make generated files to gitignore
x86: Fix section conflict for numachip
x86: Reject x32 executables if x32 ABI not supported
x86_64, entry: Filter RFLAGS.NT on entry from userspace
x86, boot, kaslr: Fix nuisance warning on 32-bit builds
Pull x86 cpufeature updates from Ingo Molnar:
"This tree includes the following changes:
- Introduce DISABLED_MASK to list disabled CPU features, to simplify
CPU feature handling and avoid excessive #ifdefs
- Remove the lightly used cpu_has_pae() primitive"
* 'x86-cpufeature-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Add more disabled features
x86: Introduce disabled-features
x86: Axe the lightly-used cpu_has_pae
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJUL0J0AAoJEA7Zo9+K/4c9w40P/iMFPfCethdBtPz5rI88CVr2
7yU99TdbEPoRJm+rU4ohvHdB73p2KWINIKvpSThvegvjXbEcKxQkdpVWHsFJZeHS
bZiYmhjxdCBvJGLrYo5IwqH0PrSjokTPzMUekUCk7BkUKNJRaDjfUBHvUmKsinUR
dQL+3KE3edy6W3DL+FOd0QZwSOgmOfEibTWpfmg+n16kFNa75Kg/QLwjYRvtQplP
eElywDZN07IhAeBFqKhKvlKmDSAeqMd8RfoPPo9Ts+reeIrWYjVNbl9ISOqXqy2x
JoLeZQmwSXj/C9Ehr5e+aId2eO8In5xueQfXP8SS8dCC7VLwRbnNgyAQQZEslEBk
QH0GhT6GqTamBdiNI3I+usfs65cEaialXh2afcoLwGS/iGD8MhZ8Dt+m4iyXNxEZ
kT9VA4974mPjJ1g0mDDnYIxNjxF43m+SD5K1sR/XGpMcA8NdqMUmvKNcbePCobVa
WTutIemQqGipNeWE94XwZEbc0B+aWwH7eiZOBMVGhWsHInd7QeTBTbfZlctyBkzf
AswgsFjC5FW05CWK6J1Lf/UI1FD9PmHMKpmQUPED1+7okDTfqGjKjdREWgZSixUt
LIRfWqWEaNpRRBFbDyt0C+F4pBRPLiRDaOyNhwEdtXuVGKRXb1G3qX7nFOJAZo6G
GDTZo9iIRNSfm/M4tJ+n
=2VyW
-----END PGP SIGNATURE-----
Merge tag 'tiny/for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux
Pull "tinification" patches from Josh Triplett.
Work on making smaller kernels.
* tag 'tiny/for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux:
bloat-o-meter: Ignore syscall aliases SyS_ and compat_SyS_
mm: Support compiling out madvise and fadvise
x86: Support compiling out human-friendly processor feature names
x86: Drop support for /proc files when !CONFIG_PROC_FS
x86, boot: Don't compile early_serial_console.c when !CONFIG_EARLY_PRINTK
x86, boot: Don't compile aslr.c when !CONFIG_RANDOMIZE_BASE
x86, boot: Use the usual -y -n mechanism for objects in vmlinux
x86: Add "make tinyconfig" to configure the tiniest possible kernel
x86, platform, kconfig: move kvmconfig functionality to a helper
All other calls to allocate memory seem to make some noise already, with the
exception of two calls (for gop, uga) in the setup_graphics path.
The purpose is to be noisy on worrysome errors immediately.
commit fb86b2440d ("x86/efi: Add better error logging to EFI boot
stub") introduces printing false alarms for lots of hardware. Rather
than playing Whack a Mole with non-fatal exit conditions, try the other
way round.
This is per Matt Fleming's suggestion:
> Where I think we could improve things
> is by adding efi_printk() message in certain error paths. Clearly, not
> all error paths need such messages, e.g. the EFI_INVALID_PARAMETER path
> you highlighted above, but it makes sense for memory allocation and PCI
> read failures.
Link: http://article.gmane.org/gmane.linux.kernel.efi/4628
Signed-off-by: Andre Müller <andre.muller@web.de>
Cc: Ulf Winkelvos <ulf@winkelvos.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f50 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Building 32-bit threw a warning on kASLR enabled builds:
arch/x86/boot/compressed/aslr.c: In function ‘mem_avoid_overlap’:
arch/x86/boot/compressed/aslr.c:198:17: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
avoid.start = (u64)ptr;
^
This fixes the warning; unsigned long should have been used here.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20141001183632.GA11431@www.outflux.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86 fixes from Ingo Molnar:
"This has:
- EFI revert to fix a boot regression
- early_ioremap() fix for boot failure
- KASLR fix for possible boot failures
- EFI fix for corrupted string printing
- remove a misleading EFI bootup 'failed!' error message
Unfortunately it's all rather close to the merge window"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Truncate 64-bit values when calling 32-bit OutputString()
x86/efi: Delete misleading efi_printk() error message
Revert "efi/x86: efistub: Move shared dependencies to <asm/efi.h>"
x86/kaslr: Avoid the setup_data area when picking location
x86 early_ioremap: Increase FIX_BTMAPS_SLOTS to 8
causing issues for Macbooks and Fedora + Grub2 - Matt Fleming
* Delete the misleading "setup_efi_pci() failed!" message which some
people are seeing when booting EFI - Matt Fleming
* Fix printing strings from the 32-bit EFI boot stub by only passing
32-bit addresses to the firmware - Matt Fleming
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUIzOFAAoJEC84WcCNIz1VpSwQAJhp9Yu60dWXyqRpV+ER1yau
MWHXunkeaccbBXNABkzuDUqb2a6DRIJow+/n+dYjIGY6Nf9zzLQFQ+s/EsS+IiyY
s4rRvAqzfGYk1d6xzgvEccrdD4fRP32kFKnSlZpfTRuJZHZieD+f2y6TP7D33Ja3
HV/ivPQHZNjxgsExpcE8Rz/QyOZpqRacTr9Gr7IusBRL6IMCyycfCTmt6d5pf1iD
kQGSGwIBvgN4xMqPUdxTNo31bQZA5ZeywNOh9WhdSCL7FAIDfG9TmXt/J7ckq5ax
0f6X92qgCs3peLY+/szgSZ2LsZI6I/FM1udc2SFiIOPvCwwytcJ94Wro5pLYzZ4i
SnqB2xLLEmsR2J3MXIeY0aVy2VtHT4bYRnXYNd9G0eaVfrlJ+4lgwqJavAJmtDZx
88ey1R8LKRQr+ueSv/BnOvE6T2+38HrjrMooFQsPvolRR0S6MITBr8I2hoRASkUt
YsA+7s6+tO2QBmQYrKCYSAi9A7onMA9Fh93dmv7XLqFw/SsfVm3RnrNhOVsO9kPC
zIsWZoS+PGwb4RRvM2i7JAEqUCbuLpIAHYEU6gqprWm1ERHsX9mfFYfsJQHzHuOY
rg6+wtWQ9MGxek8POac4d2mC+PwC4DA0AkaTTZQBcdAJu+h/gZNt4w7mpk5v4Th1
QYr/otShMvc84Zd+RMeV
=5mVJ
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
* Revert the static library changes from the merge window since they're
causing issues for Macbooks and Fedora + Grub2 (Matt Fleming)
* Delete the misleading "setup_efi_pci() failed!" message which some
people are seeing when booting EFI (Matt Fleming)
* Fix printing strings from the 32-bit EFI boot stub by only passing
32-bit addresses to the firmware (Matt Fleming)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we're executing the 32-bit efi_char16_printk() code path (i.e.
running on top of 32-bit firmware) we know that efi_early->text_output
will be a 32-bit value, even though ->text_output has type u64.
Unfortunately, we currently pass ->text_output directly to
efi_early->call() so for CONFIG_X86_32 the compiler will push a 64-bit
value onto the stack, causing the other parameters to be misaligned.
The way we handle this in the rest of the EFI boot stub is to pass
pointers as arguments to efi_early->call(), which automatically do the
right thing (pointers are 32-bit on CONFIG_X86_32, and we simply ignore
the upper 32-bits of the argument register if running in 64-bit mode
with 32-bit firmware).
This fixes a corruption bug when printing strings from the 32-bit EFI
boot stub.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=84241
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
A number of people are reporting seeing the "setup_efi_pci() failed!"
error message in what used to be a quiet boot,
https://bugzilla.kernel.org/show_bug.cgi?id=81891
The message isn't all that helpful because setup_efi_pci() can return a
non-success error code for a variety of reasons, not all of them fatal.
Let's drop the return code from setup_efi_pci*() altogether, since
there's no way to process it in any meaningful way outside of the inner
__setup_efi_pci*() functions.
Reported-by: Darren Hart <dvhart@linux.intel.com>
Reported-by: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Ulf Winkelvos <ulf@winkelvos.de>
Cc: Andre Müller <andre.muller@web.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This reverts commit f23cf8bd5c ("efi/x86: efistub: Move shared
dependencies to <asm/efi.h>") as well as the x86 parts of commit
f4f75ad574 ("efi: efistub: Convert into static library").
The road leading to these two reverts is long and winding.
The above two commits were merged during the v3.17 merge window and
turned the common EFI boot stub code into a static library. This
necessitated making some symbols global in the x86 boot stub which
introduced new entries into the early boot GOT.
The problem was that we weren't fixing up the newly created GOT entries
before invoking the EFI boot stub, which sometimes resulted in hangs or
resets. This failure was reported by Maarten on his Macbook pro.
The proposed fix was commit 9cb0e39423 ("x86/efi: Fixup GOT in all
boot code paths"). However, that caused issues for Linus when booting
his Sony Vaio Pro 11. It was subsequently reverted in commit
f3670394c2.
So that leaves us back with Maarten's Macbook pro not booting.
At this stage in the release cycle the least risky option is to revert
the x86 EFI boot stub to the pre-merge window code structure where we
explicitly #include efi-stub-helper.c instead of linking with the static
library. The arm64 code remains unaffected.
We can take another swing at the x86 parts for v3.18.
Conflicts:
arch/x86/include/asm/efi.h
Tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org> [arm64]
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>,
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This reverts commit 9cb0e39423.
It causes my Sony Vaio Pro 11 to immediately reboot at startup.
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KASLR location-choosing logic needs to avoid the setup_data
list memory areas as well. Without this, it would be possible to
have the ASLR position stomp on the memory, ultimately causing
the boot to fail.
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Baoquan He <bhe@redhat.com>
Cc: stable@vger.kernel.org
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140911161931.GA12001@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I believe the REQUIRED_MASK aproach was taken so that it was
easier to consult in assembly (arch/x86/kernel/verify_cpu.S).
DISABLED_MASK does not have the same restriction, but I
implemented it the same way for consistency.
We have a REQUIRED_MASK... which does two things:
1. Keeps a list of cpuid bits to check in very early boot and
refuse to boot if those are not present.
2. Consulted during cpu_has() checks, which allows us to
optimize out things at compile-time. In other words, if we
*KNOW* we will not boot with the feature off, then we can
safely assume that it will be present forever.
But, we don't have a similar mechanism for CPU features which
may be present but that we know we will not use. We simply
use our existing mechanisms to repeatedly check the status of
the bit at runtime (well, the alternatives patching helps here
but it does not provide compile-time optimization).
Adding a feature to disabled-features.h allows the bit to be
checked via a new macro: cpu_feature_enabled(). Note that
for features in DISABLED_MASK, checks with this macro have
all of the benefits of an #ifdef. Before, we would have done
this in a header:
#ifdef CONFIG_X86_INTEL_MPX
#define cpu_has_mpx cpu_has(X86_FEATURE_MPX)
#else
#define cpu_has_mpx 0
#endif
and this in the code:
if (cpu_has_mpx)
do_some_mpx_thing();
Now, just add your feature to DISABLED_MASK and you can do this
everywhere, and get the same benefits you would have from
#ifdefs:
if (cpu_feature_enabled(X86_FEATURE_MPX))
do_some_mpx_thing();
We need a new function and *not* a modification to cpu_has()
because there are cases where we actually need to check the CPU
itself, despite what features the kernel supports. The best
example of this is a hypervisor which has no control over what
features its guests are using and where the guest does not depend
on the host for support.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140911211513.9E35E931@viggo.jf.intel.com
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Maarten reported that his Macbook pro 8.2 stopped booting after commit
f23cf8bd5c ("efi/x86: efistub: Move shared dependencies to
<asm/efi.h>"), the main feature of which is changing the visibility of
symbol 'efi_early' from local to global.
By making 'efi_early' global we end up requiring an entry in the Global
Offset Table. Unfortunately, while we do include code to fixup GOT
entries in the early boot code, it's only called after we've executed
the EFI boot stub.
What this amounts to is that references to 'efi_early' in the EFI boot
stub don't point to the correct place.
Since we've got multiple boot entry points we need to be prepared to
fixup the GOT in multiple places, while ensuring that we never do it
more than once, otherwise the GOT entries will still point to the wrong
place.
Reported-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Mantas found that after commit 4bf7111f50 ("x86/efi: Support initrd
loaded above 4G"), the kernel freezes at the earliest possible moment
when trying to boot via UEFI on Asus laptop.
Revert to old way to load initrd under 4G on first try, second try will
use above 4G buffer when initrd is too big and does not fit under 4G.
[ The cause of the freeze appears to be a firmware bug when reading
file data into buffers above 4GB, though the exact reason is unknown.
Mantas reports that the hang can be avoid if the file size is a
multiple of 512 bytes, but I've seen some ASUS firmware simply
corrupting the file data rather than freezing.
Laszlo fixed an issue in the upstream EDK2 DiskIO code in Aug 2013
which may possibly be related, commit 4e39b75e ("MdeModulePkg/DiskIoDxe:
fix source/destination pointer of overrun transfer").
Whatever the cause, it's unlikely that a fix will be forthcoming
from the vendor, hence the workaround - Matt ]
Cc: Laszlo Ersek <lersek@redhat.com>
Reported-by: Mantas Mikulėnas <grawity@gmail.com>
Reported-by: Harald Hoyer <harald@redhat.com>
Tested-by: Anders Darander <anders@chargestorm.se>
Tested-by: Calvin Walton <calvin.walton@kepstin.ca>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The table mapping CPUID bits to human-readable strings takes up a
non-trivial amount of space, and only exists to support /proc/cpuinfo
and a couple of kernel messages. Since programs depend on the format of
/proc/cpuinfo, force inclusion of the table when building with /proc
support; otherwise, support omitting that table to save space, in which
case the kernel messages will print features numerically instead.
In addition to saving 1408 bytes out of vmlinux, this also saves 1373
bytes out of the uncompressed setup code, which contributes directly to
the size of bzImage.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
All the code in early_serial_console.c gets compiled out if
!CONFIG_EARLY_PRINTK, but early_serial_console.o itself still gets
compiled in. Eliminate it from the compile entirely in that case.
This does not change the generated code at all, in either case.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
All the code in aslr.c gets compiled out if !CONFIG_RANDOMIZE_BASE, but
aslr.o itself still gets compiled in. Eliminate it from the compile
entirely in that case.
This does not change the generated code at all, in either case.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Switch VMLINUX_OBJS to vmlinux-objs-y, to eliminate Makefile
conditionals in favor of vmlinux-objs-$(CONFIG_*) constructs.
This does not change the generated code at all.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Pull EFI changes from Ingo Molnar:
"Main changes in this cycle are:
- arm64 efi stub fixes, preservation of FP/SIMD registers across
firmware calls, and conversion of the EFI stub code into a static
library - Ard Biesheuvel
- Xen EFI support - Daniel Kiper
- Support for autoloading the efivars driver - Lee, Chun-Yi
- Use the PE/COFF headers in the x86 EFI boot stub to request that
the stub be loaded with CONFIG_PHYSICAL_ALIGN alignment - Michael
Brown
- Consolidate all the x86 EFI quirks into one file - Saurabh Tangri
- Additional error logging in x86 EFI boot stub - Ulf Winkelvos
- Support loading initrd above 4G in EFI boot stub - Yinghai Lu
- EFI reboot patches for ACPI hardware reduced platforms"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
efi/arm64: Handle missing virtual mapping for UEFI System Table
arch/x86/xen: Silence compiler warnings
xen: Silence compiler warnings
x86/efi: Request desired alignment via the PE/COFF headers
x86/efi: Add better error logging to EFI boot stub
efi: Autoload efivars
efi: Update stale locking comment for struct efivars
arch/x86: Remove efi_set_rtc_mmss()
arch/x86: Replace plain strings with constants
xen: Put EFI machinery in place
xen: Define EFI related stuff
arch/x86: Remove redundant set_bit(EFI_MEMMAP) call
arch/x86: Remove redundant set_bit(EFI_SYSTEM_TABLES) call
efi: Introduce EFI_PARAVIRT flag
arch/x86: Do not access EFI memory map if it is not available
efi: Use early_mem*() instead of early_io*()
arch/ia64: Define early_memunmap()
x86/reboot: Add EFI reboot quirk for ACPI Hardware Reduced flag
efi/reboot: Allow powering off machines using EFI
efi/reboot: Add generic wrapper around EfiResetSystem()
...
Pull x86 build/cleanup/debug updates from Ingo Molnar:
"Robustify the build process with a quirk to avoid GCC reordering
related bugs.
Two code cleanups.
Simplify entry_64.S CFI annotations, by Jan Beulich"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, build: Change code16gcc.h from a C header to an assembly header
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Simplify __HAVE_ARCH_CMPXCHG tests
x86/tsc: Get rid of custom DIV_ROUND() macro
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/debug: Drop several unnecessary CFI annotations
The EFI boot stub goes to great pains to relocate the kernel image to
an appropriately aligned address, as indicated by the ->kernel_alignment
field in the bzImage header. However, for the PE stub entry case, we
can request that the EFI PE/COFF loader do the work for us.
Fix by exposing the desired alignment via the SectionAlignment field
in the PE/COFF headers. Despite its name, this field provides an
overall alignment requirement for the loaded file. (Naturally, the
FileAlignment field describes the alignment for individual sections.)
There is no way in the PE/COFF headers to express the concept of
min_alignment; we therefore do not expose the minimum (as opposed to
preferred) alignment.
Signed-off-by: Michael Brown <mbrown@fensystems.co.uk>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Hopefully this will enable us to better debug:
https://bugzilla.kernel.org/show_bug.cgi?id=68761
Signed-off-by: Ulf Winkelvos <ulf@winkelvos.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This patch changes both x86 and arm64 efistub implementations
from #including shared .c files under drivers/firmware/efi to
building shared code as a static library.
The x86 code uses a stub built into the boot executable which
uncompresses the kernel at boot time. In this case, the library is
linked into the decompressor.
In the arm64 case, the stub is part of the kernel proper so the library
is linked into the kernel proper as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
which, apart from reducing code duplication also stops the arm64 stub
being rebuilt every time make is invoked - Ard Biesheuvel
* Fix the EFI fdt code to not report a boot error if UEFI is
unavailable since booting without UEFI parameters is a valid use case
for non-UEFI platforms - Catalin Marinas
* Include a .bss section in the EFI boot stub PE/COFF headers to fix a
memory corruption bug - Michael Brown
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJTw9I4AAoJEC84WcCNIz1VJcwQAKBZXaIjsxWqtMsqvB7RmCtw
5wi44hf2sdrwKCBUdxRBHBoiISps3f+5VJZN25eJ5QG+eqcqoQkGoQsAVlMbGrOJ
iyYF79REUj/ujovtodKQPOci4ueYhiRemBc8o6abOjSwdAe3fj5vpQgKQuS9RwtG
SIy4MBucE58Zle6vGHXLxHKdJVCB0/ALESwjg9fXWluopHdWkmmN0kKhYlysElHx
7zn2C2RoVDNQQwknueUznktKUH9pxLBEW74qE98CBZ9Spt8QpjvT22UkxoOU8grU
RnogYgJhwiy1+GNQ5524rZwcM2XP1qFhCcWoKxP3I0UhTOe2Za7Ogi8ggUAXbvEh
+hCsCIM3DqzAROOQMsmUZHkMJ0Gi2HSL12tt1KHNZ2zh74hiMPqDAmzkjBuf2KE0
5Lxdnc47UmHE9qVduj8fg2A+cMLV/K4NBlitOXq6lJp9+n8Wa93MLF0WENd9akE+
c9u7sAoTwG/5DUDy3rB1H5P65/WKyXNe9Db8JdZp2+62dxmsNyF++zkApDJT3Op7
MyFTpVkeZrWZbZVwZJXZuKNdh19Jv/adZrvC7OKvcDBfjow8AGzbDDnr4ez42QT8
OkM3uGyBuVTgtUdmPYNREXP5zjr1NfZV/w1fbslaJl/UbFZrNUILTP5YyqTphv2M
W9eO6CyrmX10gd5v47A7
=Cvne
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' into x86/urgent
* Remove a duplicate copy of linux_banner from the arm64 EFI stub
which, apart from reducing code duplication also stops the arm64 stub
being rebuilt every time make is invoked - Ard Biesheuvel
* Fix the EFI fdt code to not report a boot error if UEFI is
unavailable since booting without UEFI parameters is a valid use case
for non-UEFI platforms - Catalin Marinas
* Include a .bss section in the EFI boot stub PE/COFF headers to fix a
memory corruption bug - Michael Brown
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The PE/COFF headers currently describe only the initialised-data
portions of the image, and result in no space being allocated for the
uninitialised-data portions. Consequently, the EFI boot stub will end
up overwriting unexpected areas of memory, with unpredictable results.
Fix by including a .bss section in the PE/COFF headers (functionally
equivalent to the init_size field in the bzImage header).
Signed-off-by: Michael Brown <mbrown@fensystems.co.uk>
Cc: Thomas Bächler <thomas@archlinux.org>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order to move from the #include "../../../xxxxx.c" anti-pattern used
by both the x86 and arm64 versions of the stub to a static library
linked into either the kernel proper (arm64) or a separate boot
executable (x86), there is some prepatory work required.
This patch does the following:
- move forward declarations of functions shared between the arch
specific and the generic parts of the stub to include/linux/efi.h
- move forward declarations of functions shared between various .c files
of the generic stub code to a new local header file called "efistub.h"
- add #includes to all .c files which were formerly relying on the
#includor to include the correct header files
- remove all static modifiers from functions which will need to be
externally visible once we move to a static library
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This moves definitions depended upon both by code under arch/x86/boot
and under drivers/firmware/efi to <asm/efi.h>. This is in preparation of
turning the stub code under drivers/firmware/efi into a static library.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
For boot efi kernel directly without bootloader.
If the kernel support XLF_CAN_BE_LOADED_ABOVE_4G, we should
not limit initrd under hdr->initrd_add_max.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Changes kASLR from being compile-time selectable (blocked by
CONFIG_HIBERNATION), to being boot-time selectable (with hibernation
available by default) via the "kaslr" kernel command line.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
commit 7d453eee36 ("x86/efi: Wire up CONFIG_EFI_MIXED") introduced a
regression for the functionality to load kernels above 4G. The relevant
(incorrect) reasoning behind this change can be seen in the commit
message,
"The xloadflags field in the bzImage header is also updated to reflect
that the kernel supports both entry points by setting both of
XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y.
XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is
guaranteed to be addressable with 32-bits."
This is obviously bogus since 32-bit EFI loaders will never place the
kernel above the 4G mark. So this restriction is entirely unnecessary.
But things are worse than that - since we want to encourage people to
always compile with CONFIG_EFI_MIXED=y so that their kernels work out of
the box for both 32-bit and 64-bit firmware, commit 7d453eee36
effectively disables XLF_CAN_BE_LOADED_ABOVE_4G completely.
Remove the overzealous and superfluous restriction and restore the
XLF_CAN_BE_LOADED_ABOVE_4G functionality.
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1402140380-15377-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Pull x86 EFI updates from Peter Anvin:
"A collection of EFI changes. The perhaps most important one is to
fully save and restore the FPU state around each invocation of EFI
runtime, and to not choke on non-ASCII characters in the boot stub"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efivars: Add compatibility code for compat tasks
efivars: Refactor sanity checking code into separate function
efivars: Stop passing a struct argument to efivar_validate()
efivars: Check size of user object
efivars: Use local variables instead of a pointer dereference
x86/efi: Save and restore FPU context around efi_calls (i386)
x86/efi: Save and restore FPU context around efi_calls (x86_64)
x86/efi: Implement a __efi_call_virt macro
x86, fpu: Extend the use of static_cpu_has_safe
x86/efi: Delete most of the efi_call* macros
efi: x86: Handle arbitrary Unicode characters
efi: Add get_dram_base() helper function
efi: Add shared printk wrapper for consistent prefixing
efi: create memory map iteration helper
efi: efi-stub-helper cleanup
By changing code16gcc.h from a C header to an assembly header and use
the -Wa,... option to gcc to force it to be added to the assembly
input, we can avoid the problems with gcc reordering code bits on us.
If we have -m16, we still use it, of course.
Suggested-by: Kevin O'Connor <kevin@koconnor.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-xw8ibgdemucl9fz3i1bymu6w@git.kernel.org
Pull x86 boot changes from Ingo Molnar:
"Two small cleanups"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, boot: Remove misc.h inclusion from compressed/string.c
x86, boot: Do not include boot.h in string.c
Given the fact that we removed inclusion of boot.h from boot/string.c
does not look like we need misc.h inclusion in compressed/string.c. So
remove it.
misc.h was also pulling in string_32.h which in turn had macros for
memcmp and memcpy. So we don't need to #undef memcmp and memcpy anymore.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1398447972-27896-3-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
string.c does not require whole of boot.h. Just inclusion of linux/types.h
and ctypes.h seems to be sufficient.
Keep list of stuff being included in string.c to bare minimal so that
string.c can be included in other places easily.
For example, Currently boot/compressed/string.c includes boot/string.c
but looks like it does not want boot/boot.h. Hence there is a define
in boot/compressed/misc.h "define BOOT_BOOT_H" which prevents inclusion
of boot.h in compressed/string.c. And compressed/string.c is forced to
include misc.h just for that reason.
So by removing inclusion of boot.h, we can also get rid of inclusion of
misch.h in compressed/misc.c.
This also enables including of boot/string.c in purgatory/ code relatively
easily.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1398447972-27896-2-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
As requested by Linus add explicit __visible to the asmlinkage users.
This marks all functions visible to assembler.
Tree sweep for arch/x86/*
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1398984278-29319-3-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
arch/x86/crypto/sha1_avx2_x86_64_asm.S introduced _end as a local
symbol, which broke the build under certain circumstances. Although
the wisdom of _end as a local symbol can definitely be questioned, the
build should not break for that reason.
Thus, filter the output of nm to only get global symbols of
appropriate type.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Cc: Chandramouli Narayanan <mouli@linux.intel.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-uxm3j3w3odglcwhafwq5tjqu@git.kernel.org
We really only need one phys and one virt function call, and then only
one assembly function to make firmware calls.
Since we are not using the C type system anyway, we're not really losing
much by deleting the macros apart from no longer having a check that
we are passing the correct number of parameters. The lack of duplicated
code seems like a worthwhile trade-off.
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Instead of truncating UTF-16 assuming all characters is ASCII,
properly convert it to UTF-8.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
[ Bug and style fixes. ]
Signed-off-by: Roy Franz <roy.franz@linaro.org>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull x86 fixes from Peter Anvin:
"This is a collection of minor fixes for x86, plus the IRET information
leak fix (forbid the use of 16-bit segments in 64-bit mode)"
NOTE! We may have to relax the "forbid the use of 16-bit segments in
64-bit mode" part, since there may be people who still run and depend on
16-bit Windows binaries under Wine.
But I'm taking this in the current unconditional form for now to see who
(if anybody) screams bloody murder. Maybe nobody cares. And maybe
we'll have to update it with some kind of runtime enablement (like our
vm.mmap_min_addr tunable that people who run dosemu/qemu/wine already
need to tweak).
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels
efi: Pass correct file handle to efi_file_{read,close}
x86/efi: Correct EFI boot stub use of code32_start
x86/efi: Fix boot failure with EFI stub
x86/platform/hyperv: Handle VMBUS driver being a module
x86/apic: Reinstate error IRQ Pentium erratum 3AP workaround
x86, CMCI: Add proper detection of end of CMCI storms
firmware was reading random values from the stack because we were
passing a pointer to the wrong object type.
* Kernel corruption has been reported when booting with the EFI boot
stub which was tracked down to setting a bogus value for
bp->hdr.code32_start, resulting in corruption during relocation.
* Olivier Martin reported that the wrong file handles were being passed
to efi_file_(read|close), which works for x86 by luck due to the way
that the FAT driver is implemented, but doesn't work on ARM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJTR5QIAAoJEC84WcCNIz1VMn0P/01GF8A2frSK+NuCJCkmZoAa
fcOvcHmQajNwG3WAVsVWlS/i2QsYwK1jAgameEusn+FFrnWIwaZ9qb1TjEMbJylu
4odaRc1YYiLOJi9UD2jRB644374jJwgwteKGs0Vt99g4pa8HsgSbXTR6oF8PUDWr
1HZUV9tq8O1eAzpQdMADEgWYieylnldfvHk+ArPTJyR5fTNx8xCYALlCthc6Tv+A
cpi0rQj/YzNh+vqZF1YYZ8xqktvV1di2Hvmy3UVt05y1kwkaTquNY9478ZRF5UHm
oUk3nAYyA9M/1gxVnvUfyLgUtrWtyF02N+iDTxLoz05KxeK5wVdKaIPZfSAUrglt
hOvnL+5EOss6w9gG19zpPD4FVHCd696W+iCIBoqooWJqX8AqOVRr81GTYb3q3YDr
EIH0wLipuV4XI4sdN8JMH9fIbfkRdAvaGUR2lPSYFq2Cm7nn2hs820UdKFYeH0wT
fdgtGpWAdXhEq/SUW4KRZMCXLDz4XuNF3d/JREcC28CyiRgdjKFD/PMbZEShpisF
fYE16+IiAq8UMgfgUDqlrSP2UMqkyZ2kp5itvJBrLbTD6rWzEcpK+CMXqykWTOwV
ONzPAfZEbUmFuU3JhKOTFO5uf7dM9EG5BDKduWR6Wjl8VIVTQlD8R1OB5o1lbZPN
ecFWo1eIQGZjeoMm36EM
=rovT
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
"* Fix EFI boot regression introduced during the merge window where the
firmware was reading random values from the stack because we were
passing a pointer to the wrong object type.
* Kernel corruption has been reported when booting with the EFI boot
stub which was tracked down to setting a bogus value for
bp->hdr.code32_start, resulting in corruption during relocation.
* Olivier Martin reported that the wrong file handles were being passed
to efi_file_(read|close), which works for x86 by luck due to the way
that the FAT driver is implemented, but doesn't work on ARM."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We're currently passing the file handle for the root file system to
efi_file_read() and efi_file_close(), instead of the file handle for the
file we wish to read/close.
While this has worked up until now, it seems that it has only been by
pure luck. Olivier explains,
"The issue is the UEFI Fat driver might return the same function for
'fh->read()' and 'h->read()'. While in our case it does not work with
a different implementation of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL. In our
case, we return a different pointer when reading a directory and
reading a file."
Fixing this actually clears up the two functions because we can drop one
of the arguments, and instead only pass a file 'handle' argument.
Reported-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Olivier Martin <olivier.martin@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
code32_start should point at the start of the protected mode code, and
*not* at the beginning of the bzImage. This is much easier to do in
assembly so document that callers of make_boot_params() need to fill out
code32_start.
The fallout from this bug is that we would end up relocating the image
but copying the image at some offset, resulting in what appeared to be
memory corruption.
Reported-by: Thomas Bächler <thomas@archlinux.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
commit 54b52d8726 ("x86/efi: Build our own EFI services pointer
table") introduced a regression because the 64-bit file_size()
implementation passed a pointer to a 32-bit data object, instead of a
pointer to a 64-bit object.
Because the firmware treats the object as 64-bits regardless it was
reading random values from the stack for the upper 32-bits.
This resulted in people being unable to boot their machines, after
seeing the following error messages,
Failed to get file info size
Failed to alloc highmem for files
Reported-by: Dzmitry Sledneu <dzmitry.sledneu@gmail.com>
Reported-by: Koen Kooi <koen@dominion.thruhere.net>
Tested-by: Koen Kooi <koen@dominion.thruhere.net>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull x86 boot changes from Peter Anvin:
"This patchset is a set of cleanups aiming at librarize some of the
common code from the boot environments. We currently have three
different "little environments" (boot, boot/compressed, and
realmode/rm) in x86, and we are likely to soon get a fourth one
(kexec/purgatory, which will have to be integrated in the kernel to
support secure kexec). This is primarily a cleanup in the
anticipation of the latter.
While Vivek implemented this, he ran into some bugs, in particular the
memcmp implementation for when gcc punts from using the builtin would
have a misnamed symbol, causing compilation errors if we were ever
unlucky enough that gcc didn't want to inline the test"
* 'x86/boot' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, boot: Move memset() definition in compressed/string.c
x86, boot: Move memcmp() into string.h and string.c
x86, boot: Move optimized memcpy() 32/64 bit versions to compressed/string.c
x86, boot: Create a separate string.h file to provide standard string functions
x86, boot: Undef memcmp before providing a new definition
Pull x86 EFI changes from Ingo Molnar:
"The main changes:
- Add debug code to the dump EFI pagetable - Borislav Petkov
- Make 1:1 runtime mapping robust when booting on machines with lots
of memory - Borislav Petkov
- Move the EFI facilities bits out of 'x86_efi_facility' and into
efi.flags which is the standard architecture independent place to
keep EFI state, by Matt Fleming.
- Add 'EFI mixed mode' support: this allows 64-bit kernels to be
booted from 32-bit firmware. This needs a bootloader that supports
the 'EFI handover protocol'. By Matt Fleming"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86, efi: Abstract x86 efi_early calls
x86/efi: Restore 'attr' argument to query_variable_info()
x86/efi: Rip out phys_efi_get_time()
x86/efi: Preserve segment registers in mixed mode
x86/boot: Fix non-EFI build
x86, tools: Fix up compiler warnings
x86/efi: Re-disable interrupts after calling firmware services
x86/boot: Don't overwrite cr4 when enabling PAE
x86/efi: Wire up CONFIG_EFI_MIXED
x86/efi: Add mixed runtime services support
x86/efi: Firmware agnostic handover entry points
x86/efi: Split the boot stub into 32/64 code paths
x86/efi: Add early thunk code to go from 64-bit to 32-bit
x86/efi: Build our own EFI services pointer table
efi: Add separate 32-bit/64-bit definitions
x86/efi: Delete dead code when checking for non-native
x86/mm/pageattr: Always dump the right page table in an oops
x86, tools: Consolidate #ifdef code
x86/boot: Cleanup header.S by removing some #ifdefs
efi: Use NULL instead of 0 for pointer
...
Pull x86 cpu handling changes from Ingo Molnar:
"Bigger changes:
- Intel CPU hardware-enablement: new vector instructions support
(AVX-512), by Fenghua Yu.
- Support the clflushopt instruction and use it in appropriate
places. clflushopt is similar to clflush but with more relaxed
ordering, by Ross Zwisler.
- MSR accessor cleanups, by Borislav Petkov.
- 'forcepae' boot flag for those who have way too much time to spend
on way too old Pentium-M systems and want to live way too
dangerously, by Chris Bainbridge"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, cpu: Add forcepae parameter for booting PAE kernels on PAE-disabled Pentium M
Rename TAINT_UNSAFE_SMP to TAINT_CPU_OUT_OF_SPEC
x86, intel: Make MSR_IA32_MISC_ENABLE bit constants systematic
x86, Intel: Convert to the new bit access MSR accessors
x86, AMD: Convert to the new bit access MSR accessors
x86: Add another set of MSR accessor functions
x86: Use clflushopt in drm_clflush_virt_range
x86: Use clflushopt in drm_clflush_page
x86: Use clflushopt in clflush_cache_range
x86: Add support for the clflushopt instruction
x86, AVX-512: Enable AVX-512 States Context Switch
x86, AVX-512: AVX-512 Feature Detection
The ARM EFI boot stub doesn't need to care about the efi_early
infrastructure that x86 requires in order to do mixed mode thunking. So
wrap everything up in an efi_call_early() macro.
This allows x86 to do the necessary indirection jumps to call whatever
firmware interface is necessary (native or mixed mode), but also allows
the ARM folks to mask the fact that they don't support relocation in the
boot stub and need to pass 'sys_table_arg' to every function.
[ hpa: there are no object code changes from this patch ]
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/20140326091011.GB2958@console-pimps.org
Cc: Roy Franz <roy.franz@linaro.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Many Pentium M systems disable PAE but may have a functionally usable PAE
implementation. This adds the "forcepae" parameter which bypasses the boot
check for PAE, and sets the CPU as being PAE capable. Using this parameter
will taint the kernel with TAINT_CPU_OUT_OF_SPEC.
Signed-off-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Link: http://lkml.kernel.org/r/20140307114040.GA4997@localhost
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Currently compressed/misc.c needs to link against memset(). I think one of
the reasons of this need is inclusion of various header files which define
static inline functions and use memset() inside these. For example,
include/linux/bitmap.h
I think trying to include "../string.h" and using builtin version of memset
does not work because by the time "#define memset" shows up, it is too
late. Some other header file has already used memset() and expects to
find a definition during link phase.
Currently we have a C definitoin of memset() in misc.c. Move it to
compressed/string.c so that others can use it if need be.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1395170800-11059-6-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Try to treat memcmp() in same way as memcpy() and memset(). Provide a
declaration in boot/string.h and by default user gets a memcmp() which
maps to builtin function.
Move optimized definition of memcmp() in boot/string.c. Now a user can
do #undef memcmp and link against string.c to use optimzied memcmp().
It also simplifies boot/compressed/string.c where we had to redefine
memcmp(). That extra definition is gone now.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1395170800-11059-5-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Move optimized versions of memcpy to compressed/string.c This will allow
any other code to use these functions too if need be in future. Again
trying to put definition in a common place instead of hiding it in misc.c
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1395170800-11059-4-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Create a separate arch/x86/boot/string.h file to provide declaration of
some of the common string functions.
By default memcpy, memset and memcmp functions will default to gcc
builtin functions. If code wants to use an optimized version of any
of these functions, they need to #undef the respective macro and link
against a local file providing definition of undefed function.
For example, arch/x86/boot/* code links against copy.S to get memcpy()
and memcmp() definitions. arch/86/boot/compressed/* links against
compressed/string.c.
There are quite a few places in arch/x86/ where these functions are
used. Idea is to try to consilidate their declaration and possibly
definitions so that it can be reused.
I am planning to reuse boot/string.h in arch/x86/purgatory/ and use
gcc builtin functions for memcpy, memset and memcmp.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1395170800-11059-3-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With CONFIG_X86_32=y, string_32.h gets pulled in compressed/string.c by
"misch.h". string_32.h defines a macro to map memcmp to __builtin_memcmp().
And that macro in turn changes the name of memcmp() defined here and
converts it to __builtin_memcmp().
I thought that's not the intention though. We probably want to provide
our own optimized definition of memcmp(). If yes, then undef the memcmp
before we define a new memcmp.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1395170800-11059-2-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The kbuild test robot reported the following errors, introduced with
commit 54b52d8726 ("x86/efi: Build our own EFI services pointer
table"),
arch/x86/boot/compressed/head_32.o: In function `efi32_config':
>> (.data+0x58): undefined reference to `efi_call_phys'
arch/x86/boot/compressed/head_64.o: In function `efi64_config':
>> (.data+0x90): undefined reference to `efi_call6'
Wrap the efi*_config structures in #ifdef CONFIG_EFI_STUB so that we
don't make references to EFI functions if they're not compiled in.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The kbuild test robot reported the following errors that were introduced
with commit 993c30a04e ("x86, tools: Consolidate #ifdef code"),
arch/x86/boot/tools/build.c: In function 'update_pecoff_setup_and_reloc':
>> arch/x86/boot/tools/build.c:252:1: error: parameter name omitted
static inline void update_pecoff_setup_and_reloc(unsigned int) {}
^
arch/x86/boot/tools/build.c: In function 'update_pecoff_text':
>> arch/x86/boot/tools/build.c:253:1: error: parameter name omitted
static inline void update_pecoff_text(unsigned int, unsigned int) {}
^
>> arch/x86/boot/tools/build.c:253:1: error: parameter name omitted
arch/x86/boot/tools/build.c: In function 'main':
>> arch/x86/boot/tools/build.c:372:2: warning: implicit declaration of function 'efi_stub_entry_update' [-Wimplicit-function-declaration]
efi_stub_entry_update();
^
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Some EFI firmware makes use of the FPU during boottime services and
clearing X86_CR4_OSFXSR by overwriting %cr4 causes the firmware to
crash.
Add the PAE bit explicitly instead of trashing the existing contents,
leaving the rest of the bits as the firmware set them.
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Add the Kconfig option and bump the kernel header version so that boot
loaders can check whether the handover code is available if they want.
The xloadflags field in the bzImage header is also updated to reflect
that the kernel supports both entry points by setting both of
XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y.
XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is
guaranteed to be addressable with 32-bits.
Note that no boot loaders should be using the bits set in xloadflags to
decide which entry point to jump to. The entire scheme is based on the
concept that 32-bit bootloaders always jump to ->handover_offset and
64-bit loaders always jump to ->handover_offset + 512. We set both bits
merely to inform the boot loader that it's safe to use the native
handover offset even if the machine type in the PE/COFF header claims
otherwise.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The EFI handover code only works if the "bitness" of the firmware and
the kernel match, i.e. 64-bit firmware and 64-bit kernel - it is not
possible to mix the two. This goes against the tradition that a 32-bit
kernel can be loaded on a 64-bit BIOS platform without having to do
anything special in the boot loader. Linux distributions, for one thing,
regularly run only 32-bit kernels on their live media.
Despite having only one 'handover_offset' field in the kernel header,
EFI boot loaders use two separate entry points to enter the kernel based
on the architecture the boot loader was compiled for,
(1) 32-bit loader: handover_offset
(2) 64-bit loader: handover_offset + 512
Since we already have two entry points, we can leverage them to infer
the bitness of the firmware we're running on, without requiring any boot
loader modifications, by making (1) and (2) valid entry points for both
CONFIG_X86_32 and CONFIG_X86_64 kernels.
To be clear, a 32-bit boot loader will always use (1) and a 64-bit boot
loader will always use (2). It's just that, if a single kernel image
supports (1) and (2) that image can be used with both 32-bit and 64-bit
boot loaders, and hence both 32-bit and 64-bit EFI.
(1) and (2) must be 512 bytes apart at all times, but that is already
part of the boot ABI and we could never change that delta without
breaking existing boot loaders anyhow.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Implement the transition code to go from IA32e mode to protected mode in
the EFI boot stub. This is required to use 32-bit EFI services from a
64-bit kernel.
Since EFI boot stub is executed in an identity-mapped region, there's
not much we need to do before invoking the 32-bit EFI boot services.
However, we do reload the firmware's global descriptor table
(efi32_boot_gdt) in case things like timer events are still running in
the firmware.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It's not possible to dereference the EFI System table directly when
booting a 64-bit kernel on a 32-bit EFI firmware because the size of
pointers don't match.
In preparation for supporting the above use case, build a list of
function pointers on boot so that callers don't have to worry about
converting pointer sizes through multiple levels of indirection.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>