mirror of https://gitee.com/openkylin/linux.git
15 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Linus Torvalds | 179a7ba680 |
This release has a few updates:
o STM can hook into the function tracer o Function filtering now supports more advance glob matching o Ftrace selftests updates and added tests o Softirq tag in traces now show only softirqs o ARM nop added to non traced locations at compile time o New trace_marker_raw file that allows for binary input o Optimizations to the ring buffer o Removal of kmap in trace_marker o Wakeup and irqsoff tracers now adhere to the set_graph_notrace file o Other various fixes and clean ups Note, there are two patches marked for stable. These were discovered near the end of the 4.9 rc release cycle. By the time I had them tested it was just a matter of days before 4.9 would be released, and I figured I would just submit them in the merge window. They are old bugs and not critical. Nothing non-root could abuse. -----BEGIN PGP SIGNATURE----- iQExBAABCAAbBQJYUrFHFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L 2+AIAIr20kSQV/nA5htGAeCTobVk3WUxY6bvjd9mIJDKPP19akNLyREW0G3KnfCr yhx4aFRZG98fRu/6F8qieRosyN36lADDVYHelMFHMpcTOpE2aZGjaaOuNGxOEA9v FmMPTX+K3+dzKyFP4l68R3+5JuQ1/AqLTioTWeLW8IDQ2OOVsjD8+0BuXrNKMJDY o6U4Hk5U/vn+zHc6BmgBzloAXemBd7iJ1t5V3FRRGvm8yv3HU85Twc5ofGeYTWvB J8PboEywRlIzxg0Kd8mxnMI5PgaKZSEc2ub8E7cY/CZ5PYpDE2xDA2hJmJgfYp00 1VW+DHRpRZfElsCcya6S6P4bs5Y= =MGZ/ -----END PGP SIGNATURE----- Merge tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "This release has a few updates: - STM can hook into the function tracer - Function filtering now supports more advance glob matching - Ftrace selftests updates and added tests - Softirq tag in traces now show only softirqs - ARM nop added to non traced locations at compile time - New trace_marker_raw file that allows for binary input - Optimizations to the ring buffer - Removal of kmap in trace_marker - Wakeup and irqsoff tracers now adhere to the set_graph_notrace file - Other various fixes and clean ups" * tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (42 commits) selftests: ftrace: Shift down default message verbosity kprobes/trace: Fix kprobe selftest for newer gcc tracing/kprobes: Add a helper method to return number of probe hits tracing/rb: Init the CPU mask on allocation tracing: Use SOFTIRQ_OFFSET for softirq dectection for more accurate results tracing/fgraph: Have wakeup and irqsoff tracers ignore graph functions too fgraph: Handle a case where a tracer ignores set_graph_notrace tracing: Replace kmap with copy_from_user() in trace_marker writing ftrace/x86_32: Set ftrace_stub to weak to prevent gcc from using short jumps to it tracing: Allow benchmark to be enabled at early_initcall() tracing: Have system enable return error if one of the events fail tracing: Do not start benchmark on boot up tracing: Have the reg function allow to fail ring-buffer: Force rb_end_commit() and rb_set_commit_to_write() inline ring-buffer: Froce rb_update_write_stamp() to be inlined ring-buffer: Force inline of hotpath helper functions tracing: Make __buffer_unlock_commit() always_inline tracing: Make tracepoint_printk a static_key ring-buffer: Always inline rb_event_data() ring-buffer: Make rb_reserve_next_event() always inlined ... |
|
Steven Rostedt (Red Hat) | 8cf868affd |
tracing: Have the reg function allow to fail
Some tracepoints have a registration function that gets enabled when the tracepoint is enabled. There may be cases that the registraction function must fail (for example, can't allocate enough memory). In this case, the tracepoint should also fail to register, otherwise the user would not know why the tracepoint is not working. Cc: David Howells <dhowells@redhat.com> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Anton Blanchard <anton@samba.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> |
|
Rik van Riel | 3913cc3507 |
x86/fpu: Remove struct fpu::counter
With the lazy FPU code gone, we no longer use the counter field in struct fpu for anything. Get rid it. Signed-off-by: Rik van Riel <riel@redhat.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: pbonzini@redhat.com Link: http://lkml.kernel.org/r/1475627678-20788-6-git-send-email-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Hansen | d1898b7336 |
x86/fpu: Add tracepoints to dump FPU state at key points
I've been carrying this patch around for a bit and it's helped me solve at least a couple FPU-related bugs. In addition to using it for debugging, I also drug it out because using AVX (and AVX2/AVX-512) can have serious power consequences for a modern core. It's very important to be able to figure out who is using it. It's also insanely useful to go out and see who is using a given feature, like MPX or Memory Protection Keys. If you, for instance, want to find all processes using protection keys, you can do: echo 'xfeatures & 0x200' > filter Since 0x200 is the protection keys feature bit. Note that this touches the KVM code. KVM did a CREATE_TRACE_POINTS and then included a bunch of random headers. If anyone one of those included other tracepoints, it would have defined the *OTHER* tracepoints. That's bogus, so move it to the right place. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160601174220.3CDFB90E@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Hansen | 1126cb4535 |
x86/fpu/mpx: Rework MPX 'xstate' types
MPX includes two separate "extended state components". There is no real need to have an 'mpx_struct' because we never really manage the states together. We also separate out the actual data in 'mpx_bndcsr_state' from the padding. We will shortly be checking the state sizes against our structures and need them to match. For consistency, we also ensure to prefix these types with 'mpx_'. Lastly, we add some comments to mirror some of the descriptions in the Intel documents (SDM) of the various state components. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233129.384B73EB@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Linus Torvalds | d70b3ef54c |
Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar: "There were so many changes in the x86/asm, x86/apic and x86/mm topics in this cycle that the topical separation of -tip broke down somewhat - so the result is a more traditional architecture pull request, collected into the 'x86/core' topic. The topics were still maintained separately as far as possible, so bisectability and conceptual separation should still be pretty good - but there were a handful of merge points to avoid excessive dependencies (and conflicts) that would have been poorly tested in the end. The next cycle will hopefully be much more quiet (or at least will have fewer dependencies). The main changes in this cycle were: * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas Gleixner) - This is the second and most intrusive part of changes to the x86 interrupt handling - full conversion to hierarchical interrupt domains: [IOAPIC domain] ----- | [MSI domain] --------[Remapping domain] ----- [ Vector domain ] | (optional) | [HPET MSI domain] ----- | | [DMAR domain] ----------------------------- | [Legacy domain] ----------------------------- This now reflects the actual hardware and allowed us to distangle the domain specific code from the underlying parent domain, which can be optional in the case of interrupt remapping. It's a clear separation of functionality and removes quite some duct tape constructs which plugged the remap code between ioapic/msi/hpet and the vector management. - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt injection into guests (Feng Wu) * x86/asm changes: - Tons of cleanups and small speedups, micro-optimizations. This is in preparation to move a good chunk of the low level entry code from assembly to C code (Denys Vlasenko, Andy Lutomirski, Brian Gerst) - Moved all system entry related code to a new home under arch/x86/entry/ (Ingo Molnar) - Removal of the fragile and ugly CFI dwarf debuginfo annotations. Conversion to C will reintroduce many of them - but meanwhile they are only getting in the way, and the upstream kernel does not rely on them (Ingo Molnar) - NOP handling refinements. (Borislav Petkov) * x86/mm changes: - Big PAT and MTRR rework: making the code more robust and preparing to phase out exposing direct MTRR interfaces to drivers - in favor of using PAT driven interfaces (Toshi Kani, Luis R Rodriguez, Borislav Petkov) - New ioremap_wt()/set_memory_wt() interfaces to support Write-Through cached memory mappings. This is especially important for good performance on NVDIMM hardware (Toshi Kani) * x86/ras changes: - Add support for deferred errors on AMD (Aravind Gopalakrishnan) This is an important RAS feature which adds hardware support for poisoned data. That means roughly that the hardware marks data which it has detected as corrupted but wasn't able to correct, as poisoned data and raises an APIC interrupt to signal that in the form of a deferred error. It is the OS's responsibility then to take proper recovery action and thus prolonge system lifetime as far as possible. - Add support for Intel "Local MCE"s: upcoming CPUs will support CPU-local MCE interrupts, as opposed to the traditional system- wide broadcasted MCE interrupts (Ashok Raj) - Misc cleanups (Borislav Petkov) * x86/platform changes: - Intel Atom SoC updates ... and lots of other cleanups, fixlets and other changes - see the shortlog and the Git log for details" * 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits) x86/hpet: Use proper hpet device number for MSI allocation x86/hpet: Check for irq==0 when allocating hpet MSI interrupts x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail genirq: Prevent crash in irq_move_irq() genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain iommu, x86: Properly handle posted interrupts for IOMMU hotplug iommu, x86: Provide irq_remapping_cap() interface iommu, x86: Setup Posted-Interrupts capability for Intel iommu iommu, x86: Add cap_pi_support() to detect VT-d PI capability iommu, x86: Avoid migrating VT-d posted interrupts iommu, x86: Save the mode (posted or remapped) of an IRTE iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip iommu: dmar: Provide helper to copy shared irte fields iommu: dmar: Extend struct irte for VT-d Posted-Interrupts iommu: Add new member capability to struct irq_remap_ops x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry() ... |
|
Dave Hansen | cd4996dce1 |
x86/mpx: Trace allocation of new bounds tables
Bounds tables are a significant consumer of memory. It is important to know when they are being allocated. Add a trace point to trace whenever an allocation occurs and also its virtual address. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183704.EC23A93E@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Hansen | 2a1dcb1f79 |
x86/mpx: Trace the attempts to find bounds tables
There are two different events being traced here. They are doing similar things so share a trace "EVENT_CLASS" and are presented together. 1. Trace when MPX is zapping pages "mpx_unmap_zap": When MPX can not free an entire bounds table, it will instead try to zap unused parts of a bounds table to free the backing memory. This decreases RSS (resident set size) without decreasing the virtual space allocated for bounds tables. 2. Trace attempts to find bounds tables "mpx_unmap_search": This event traces any time we go looking to unmap a bounds table for a given virtual address range. This is useful to ensure that the kernel actually "tried" to free a bounds table versus times it succeeded in finding one. It might try and fail if it realized that a table was shared with an adjacent VMA which is not being unmapped. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183703.B9D2468B@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Hansen | 97efebf1bc |
x86/mpx: Trace entry to bounds exception paths
There are two basic things that can happen as the result of a bounds exception (#BR): 1. We allocate a new bounds table 2. We pass up a bounds exception to userspace. This patch adds a trace point for the case where we are passing the exception up to userspace with a signal. We are also explicit that we're printing out the inverse of the 'upper' that we encounter. If you want to filter, for instance, you need to ~ the value first. The reason we do this is because of how 'upper' is stored in the bounds table. If a pointer's range is: 0x1000 -> 0x2000 it is stored in the bounds table as (32-bits here for brevity): lower: 0x00001000 upper: 0xffffdfff That is so that an all 0's entry: lower: 0x00000000 upper: 0x00000000 corresponds to the "init" bounds which store a *range* of: 0x00000000 -> 0xffffffff That is, by far, the common case, and that lets us use the zero page, or deduplicate the memory, etc... The 'upper' stored in the table is gibberish to print by itself, so we print ~upper to get the *actual*, logical, human-readable value printed out. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183703.027BB9B0@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Hansen | e7126cf5f1 |
x86/mpx: Trace #BR exceptions
This is the first in a series of MPX tracing patches. I've found these extremely useful in the process of debugging applications and the kernel code itself. This exception hooks in to the bounds (#BR) exception very early and allows capturing the key registers which would influence how the exception is handled. Note that bndcfgu/bndstatus are technically still 64-bit registers even in 32-bit mode. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183703.5FE2619A@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Aravind Gopalakrishnan | 24fd78a81f |
x86/mce/amd: Introduce deferred error interrupt handler
Deferred errors indicate error conditions that were not corrected, but require no action from S/W (or action is optional).These errors provide info about a latent UC MCE that can occur when a poisoned data is consumed by the processor. Processors that report these errors can be configured to generate APIC interrupts to notify OS about the error. Provide an interrupt handler in this patch so that OS can catch these errors as and when they happen. Currently, we simply log the errors and exit the handler as S/W action is not mandated. Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/1430913538-1415-5-git-send-email-Aravind.Gopalakrishnan@amd.com Signed-off-by: Borislav Petkov <bp@suse.de> |
|
Peter Zijlstra | d5b5f391d4 |
ftrace, perf: Avoid infinite event generation loop
Vince's perf-trinity fuzzer found yet another 'interesting' problem. When we sample the irq_work_exit tracepoint with period==1 (or PERF_SAMPLE_PERIOD) and we add an fasync SIGNAL handler we create an infinite event generation loop: ,-> <IPI> | irq_work_exit() -> | trace_irq_work_exit() -> | ... | __perf_event_overflow() -> (due to fasync) | irq_work_queue() -> (irq_work_list must be empty) '--------- arch_irq_work_raise() Similar things can happen due to regular poll() wakeups if we exceed the ring-buffer wakeup watermark, or have an event_limit. To avoid this, dis-allow sampling this particular tracepoint. In order to achieve this, create a special perf_perm function pointer for each event and call this (when set) on trying to create a tracepoint perf event. [ roasted: use expr... to allow for ',' in your expression ] Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Dave Jones <davej@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/20131114152304.GC5364@laptop.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
H. Peter Anvin | a4f61dec55 |
x86, trace: Change user|kernel_page_fault to page_fault_user|kernel
Tracepoints are named hierachially, and it makes more sense to keep a general flow of information level from general to specific from left to right, i.e. x86_exceptions.page_fault_user|kernel rather than x86_exceptions.user|kernel_page_fault Suggested-by: Ingo Molnar <mingo@kernel.org> Acked-by: Seiji Aguchi <seiji.aguchi@hds.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Link: http://lkml.kernel.org/r/20131111082955.GB12405@gmail.com |
|
Seiji Aguchi | d34603b07c |
x86, trace: Add page fault tracepoints
This patch introduces page fault tracepoints to x86 architecture by switching IDT. Two events, for user and kernel spaces, are introduced at the beginning of page fault handler for tracing. - User space event There is a request of page fault event for user space as below. https://lkml.kernel.org/r/1368079520-11015-2-git-send-email-fdeslaur+()+gmail+!+com https://lkml.kernel.org/r/1368079520-11015-1-git-send-email-fdeslaur+()+gmail+!+com - Kernel space event: When we measure an overhead in kernel space for investigating performance issues, we can check if it comes from the page fault events. Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/52716E67.6090705@hds.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> |
|
Seiji Aguchi | cf910e83ae |
x86, trace: Add irq vector tracepoints
[Purpose of this patch] As Vaibhav explained in the thread below, tracepoints for irq vectors are useful. http://www.spinics.net/lists/mm-commits/msg85707.html <snip> The current interrupt traces from irq_handler_entry and irq_handler_exit provide when an interrupt is handled. They provide good data about when the system has switched to kernel space and how it affects the currently running processes. There are some IRQ vectors which trigger the system into kernel space, which are not handled in generic IRQ handlers. Tracing such events gives us the information about IRQ interaction with other system events. The trace also tells where the system is spending its time. We want to know which cores are handling interrupts and how they are affecting other processes in the system. Also, the trace provides information about when the cores are idle and which interrupts are changing that state. <snip> On the other hand, my usecase is tracing just local timer event and getting a value of instruction pointer. I suggested to add an argument local timer event to get instruction pointer before. But there is another way to get it with external module like systemtap. So, I don't need to add any argument to irq vector tracepoints now. [Patch Description] Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events. But there is an above use case to trace specific irq_vector rather than tracing all events. In this case, we are concerned about overhead due to unwanted events. So, add following tracepoints instead of introducing irq_vector_entry/exit. so that we can enable them independently. - local_timer_vector - reschedule_vector - call_function_vector - call_function_single_vector - irq_work_entry_vector - error_apic_vector - thermal_apic_vector - threshold_apic_vector - spurious_apic_vector - x86_platform_ipi_vector Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty makes a zero when tracepoints are disabled. Detailed explanations are as follows. - Create trace irq handlers with entering_irq()/exiting_irq(). - Create a new IDT, trace_idt_table, at boot time by adding a logic to _set_gate(). It is just a copy of original idt table. - Register the new handlers for tracpoints to the new IDT by introducing macros to alloc_intr_gate() called at registering time of irq_vector handlers. - Add checking, whether irq vector tracing is on/off, into load_current_idt(). This has to be done below debug checking for these reasons. - Switching to debug IDT may be kicked while tracing is enabled. - On the other hands, switching to trace IDT is kicked only when debugging is disabled. In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being used for other purposes. Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org> |