mirror of https://gitee.com/openkylin/linux.git
691 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Kees Cook | f4e6e289cb |
usercopy: Include offset in hardened usercopy report
This refactors the hardened usercopy code so that failure reporting can happen within the checking functions instead of at the top level. This simplifies the return value handling and allows more details and offsets to be included in the report. Having the offset can be much more helpful in understanding hardened usercopy bugs. Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Geert Uytterhoeven | 85c3e4a5a1 |
mm/slab.c: do not hash pointers when debugging slab
If CONFIG_DEBUG_SLAB/CONFIG_DEBUG_SLAB_LEAK are enabled, the slab code
prints extra debug information when e.g. corruption is detected. This
includes pointers, which are not very useful when hashed.
Fix this by using %px to print unhashed pointers instead where it makes
sense, and by removing the printing of a last user pointer referring to
code.
[geert+renesas@glider.be: v2]
Link: http://lkml.kernel.org/r/1513179267-2509-1-git-send-email-geert+renesas@glider.be
Link: http://lkml.kernel.org/r/1512641861-5113-1-git-send-email-geert+renesas@glider.be
Fixes:
|
|
Levin, Alexander (Sasha Levin) | 75f296d93b |
kmemcheck: stop using GFP_NOTRACK and SLAB_NOTRACK
Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Levin, Alexander (Sasha Levin) | 4950276672 |
kmemcheck: remove annotations
Patch series "kmemcheck: kill kmemcheck", v2. As discussed at LSF/MM, kill kmemcheck. KASan is a replacement that is able to work without the limitation of kmemcheck (single CPU, slow). KASan is already upstream. We are also not aware of any users of kmemcheck (or users who don't consider KASan as a suitable replacement). The only objection was that since KASAN wasn't supported by all GCC versions provided by distros at that time we should hold off for 2 years, and try again. Now that 2 years have passed, and all distros provide gcc that supports KASAN, kill kmemcheck again for the very same reasons. This patch (of 4): Remove kmemcheck annotations, and calls to kmemcheck from the kernel. [alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs] Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexey Dobriyan | 4fd0b46e89 |
slab, slub, slob: convert slab_flags_t to 32-bit
struct kmem_cache::flags is "unsigned long" which is unnecessary on 64-bit as no flags are defined in the higher bits. Switch the field to 32-bit and save some space on x86_64 until such flags appear: add/remove: 0/0 grow/shrink: 0/107 up/down: 0/-657 (-657) function old new delta sysfs_slab_add 720 719 -1 ... check_object 699 676 -23 [akpm@linux-foundation.org: fix printk warning] Link: http://lkml.kernel.org/r/20171021100635.GA8287@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexey Dobriyan | d50112edde |
slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON, etc). SLAB is bloated temporarily by switching to "unsigned long", but only temporarily. Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | a3ba074447 |
mm/slab.c: only set __GFP_RECLAIMABLE once
SLAB_RECLAIM_ACCOUNT is a permanent attribute of a slab cache. Set __GFP_RECLAIMABLE as part of its ->allocflags rather than check the cachep flag on every page allocation. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1710171527560.140898@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | 5b36577109 |
mm: slabinfo: remove CONFIG_SLABINFO
According to discussion with Christoph (https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like it is pointless to keep CONFIG_SLABINFO around. This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo is still available. [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Greg Kroah-Hartman | b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
Johannes Weiner | 7779f21236 |
mm: memcontrol: account slab stats per lruvec
Josef's redesign of the balancing between slab caches and the page cache requires slab cache statistics at the lruvec level. Link: http://lkml.kernel.org/r/20170530181724.27197-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Johannes Weiner | 385386cff4 |
mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats" Josef is working on a new approach to balancing slab caches and the page cache. For this to work, he needs slab cache statistics on the lruvec level. These patches implement that by adding infrastructure that allows updating and reading generic VM stat items per lruvec, then switches some existing VM accounting sites, including the slab accounting ones, to this new cgroup-aware API. I'll follow up with more patches on this, because there is actually substantial simplification that can be done to the memory controller when we replace private memcg accounting with making the existing VM accounting sites cgroup-aware. But this is enough for Josef to base his slab reclaim work on, so here goes. This patch (of 5): To re-implement slab cache vs. page cache balancing, we'll need the slab counters at the lruvec level, which, ever since lru reclaim was moved from the zone to the node, is the intersection of the node, not the zone, and the memcg. We could retain the per-zone counters for when the page allocator dumps its memory information on failures, and have counters on both levels - which on all but NUMA node 0 is usually redundant. But let's keep it simple for now and just move them. If anybody complains we can restore the per-zone counters. [hannes@cmpxchg.org: fix oops] Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Canjiang Lu | e077195029 |
mm/slab.c: replace open-coded round-up code with ALIGN
Link: http://lkml.kernel.org/r/20170616072918epcms5p4ff16c24ef8472b4c3b4371823cd87856@epcms5p4 Signed-off-by: Canjiang Lu <canjiang.lu@samsung.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | de4d195308 |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: "The main changes are: - Debloat RCU headers - Parallelize SRCU callback handling (plus overlapping patches) - Improve the performance of Tree SRCU on a CPU-hotplug stress test - Documentation updates - Miscellaneous fixes" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits) rcu: Open-code the rcu_cblist_n_lazy_cbs() function rcu: Open-code the rcu_cblist_n_cbs() function rcu: Open-code the rcu_cblist_empty() function rcu: Separately compile large rcu_segcblist functions srcu: Debloat the <linux/rcu_segcblist.h> header srcu: Adjust default auto-expediting holdoff srcu: Specify auto-expedite holdoff time srcu: Expedite first synchronize_srcu() when idle srcu: Expedited grace periods with reduced memory contention srcu: Make rcutorture writer stalls print SRCU GP state srcu: Exact tracking of srcu_data structures containing callbacks srcu: Make SRCU be built by default srcu: Fix Kconfig botch when SRCU not selected rcu: Make non-preemptive schedule be Tasks RCU quiescent state srcu: Expedite srcu_schedule_cbs_snp() callback invocation srcu: Parallelize callback handling kvm: Move srcu_struct fields to end of struct kvm rcu: Fix typo in PER_RCU_NODE_PERIOD header comment rcu: Use true/false in assignment to bool rcu: Use bool value directly ... |
|
Greg Thelen | a87c75fbcc |
slab: avoid IPIs when creating kmem caches
Each slab kmem cache has per cpu array caches. The array caches are created when the kmem_cache is created, either via kmem_cache_create() or lazily when the first object is allocated in context of a kmem enabled memcg. Array caches are replaced by writing to /proc/slabinfo. Array caches are protected by holding slab_mutex or disabling interrupts. Array cache allocation and replacement is done by __do_tune_cpucache() which holds slab_mutex and calls kick_all_cpus_sync() to interrupt all remote processors which confirms there are no references to the old array caches. IPIs are needed when replacing array caches. But when creating a new array cache, there's no need to send IPIs because there cannot be any references to the new cache. Outside of memcg kmem accounting these IPIs occur at boot time, so they're not a problem. But with memcg kmem accounting each container can create kmem caches, so the IPIs are wasteful. Avoid unnecessary IPIs when creating array caches. Test which reports the IPI count of allocating slab in 10000 memcg: import os def ipi_count(): with open("/proc/interrupts") as f: for l in f: if 'Function call interrupts' in l: return int(l.split()[1]) def echo(val, path): with open(path, "w") as f: f.write(val) n = 10000 os.chdir("/mnt/cgroup/memory") pid = str(os.getpid()) a = ipi_count() for i in range(n): os.mkdir(str(i)) echo("1G\n", "%d/memory.limit_in_bytes" % i) echo("1G\n", "%d/memory.kmem.limit_in_bytes" % i) echo(pid, "%d/cgroup.procs" % i) open("/tmp/x", "w").close() os.unlink("/tmp/x") b = ipi_count() print "%d loops: %d => %d (+%d ipis)" % (n, a, b, b-a) echo(pid, "cgroup.procs") for i in range(n): os.rmdir(str(i)) patched: 10000 loops: 1069 => 1170 (+101 ipis) unpatched: 10000 loops: 1192 => 48933 (+47741 ipis) Link: http://lkml.kernel.org/r/20170416214544.109476-1-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Paul E. McKenney | 5f0d5a3ae7 |
mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted from their assumption that SLAB_DESTROY_BY_RCU provided an existence guarantee, that is, that no block from such a slab would be reallocated during an RCU read-side critical section. Of course, that is not the case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire slab of blocks. However, there is a phrase for this, namely "type safety". This commit therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order to avoid future instances of this sort of confusion. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> [ paulmck: Add comments mentioning the old name, as requested by Eric Dumazet, in order to help people familiar with the old name find the new one. ] Acked-by: David Rientjes <rientjes@google.com> |
|
Ingo Molnar | 3f8c24529b |
sched/headers: Prepare to move kstack_end() from <linux/sched.h> to <linux/sched/task_stack.h>
But first update the usage sites with the new header dependency. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Tejun Heo | c9fc586403 |
slab: introduce __kmemcg_cache_deactivate()
__kmem_cache_shrink() is called with %true @deactivate only for memcg caches. Remove @deactivate from __kmem_cache_shrink() and introduce __kmemcg_cache_deactivate() instead. Each memcg-supporting allocator should implement it and it should deactivate and drain the cache. This is to allow memcg cache deactivation behavior to further deviate from simple shrinking without messing up __kmem_cache_shrink(). This is pure reorganization and doesn't introduce any observable behavior changes. v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir. Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Tejun Heo | 290b6a58b7 |
Revert "slub: move synchronize_sched out of slab_mutex on shrink"
Patch series "slab: make memcg slab destruction scalable", v3.
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.
I've seen machines which end up with hundred thousands of caches and
many millions of kernfs_nodes. The current code is O(N^2) on the total
number of caches and has synchronous rcu_barrier() and
synchronize_sched() in cgroup offline / release path which is executed
while holding cgroup_mutex. Combined, this leads to very expensive and
slow cache destruction operations which can easily keep running for half
a day.
This also messes up /proc/slabinfo along with other cache iterating
operations. seq_file operates on 4k chunks and on each 4k boundary
tries to seek to the last position in the list. With a huge number of
caches on the list, this becomes very slow and very prone to the list
content changing underneath it leading to a lot of missing and/or
duplicate entries.
This patchset addresses the scalability problem.
* Add root and per-memcg lists. Update each user to use the
appropriate list.
* Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched
and asynchronous.
* For dying empty slub caches, remove the sysfs files after
deactivation so that we don't end up with millions of sysfs files
without any useful information on them.
This patchset contains the following nine patches.
0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch
0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch
0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch
0004-slab-reorganize-memcg_cache_params.patch
0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch
0006-slab-implement-slab_root_caches-list.patch
0007-slab-introduce-__kmemcg_cache_deactivate.patch
0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch
0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch
0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch
0001 reverts an existing optimization to prepare for the following
changes. 0002 is a prep patch. 0003 makes rcu_barrier() in release
path batched and asynchronous. 0004-0006 separate out the lists.
0007-0008 replace synchronize_sched() in slub destruction path with
call_rcu_sched(). 0009 removes sysfs files early for empty dying
caches. 0010 makes destruction work items use a workqueue with limited
concurrency.
This patch (of 10):
Revert
|
|
Vlastimil Babka | af3b5f8764 |
mm, slab: rename kmalloc-node cache to kmalloc-<size>
SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
John Sperbeck | c4e490cf14 |
mm/slab.c: fix SLAB freelist randomization duplicate entries
This patch fixes a bug in the freelist randomization code. When a high
random number is used, the freelist will contain duplicate entries. It
will result in different allocations sharing the same chunk.
It will result in odd behaviours and crashes. It should be uncommon but
it depends on the machines. We saw it happening more often on some
machines (every few hours of running tests).
Fixes:
|
|
Linus Torvalds | c11a6cfb01 |
Merge branch 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo: "Mostly patches to initialize workqueue subsystem earlier and get rid of keventd_up(). The patches were headed for the last merge cycle but got delayed due to a bug found late minute, which is fixed now. Also, to help debugging, destroy_workqueue() is more chatty now on a sanity check failure." * 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: workqueue: move wq_numa_init() to workqueue_init() workqueue: remove keventd_up() debugobj, workqueue: remove keventd_up() usage slab, workqueue: remove keventd_up() usage power, workqueue: remove keventd_up() usage tty, workqueue: remove keventd_up() usage mce, workqueue: remove keventd_up() usage workqueue: make workqueue available early during boot workqueue: dump workqueue state on sanity check failures in destroy_workqueue() |
|
David Rientjes | bf00bd3458 |
mm, slab: maintain total slab count instead of active count
Rather than tracking the number of active slabs for each node, track the total number of slabs. This is a minor improvement that avoids active slab tracking when a slab goes from free to partial or partial to free. For slab debugging, this also removes an explicit free count since it can easily be inferred by the difference in number of total objects and number of active objects. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612042020110.115755@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Greg Thelen | f728b0a5d7 |
mm, slab: faster active and free stats
Reading /proc/slabinfo or monitoring slabtop(1) can become very
expensive if there are many slab caches and if there are very lengthy
per-node partial and/or free lists.
Commit
|
|
Vladimir Davydov | 89e364db71 |
slub: move synchronize_sched out of slab_mutex on shrink
synchronize_sched() is a heavy operation and calling it per each cache owned by a memory cgroup being destroyed may take quite some time. What is worse, it's currently called under the slab_mutex, stalling all works doing cache creation/destruction. Actually, there isn't much point in calling synchronize_sched() for each cache - it's enough to call it just once - after setting cpu_partial for all caches and before shrinking them. This way, we can also move it out of the slab_mutex, which we have to hold for iterating over the slab cache list. Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991 Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reported-by: Doug Smythies <dsmythies@telus.net> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Aruna Ramakrishna | 07a63c41fa |
mm/slab: improve performance of gathering slabinfo stats
On large systems, when some slab caches grow to millions of objects (and many gigabytes), running 'cat /proc/slabinfo' can take up to 1-2 seconds. During this time, interrupts are disabled while walking the slab lists (slabs_full, slabs_partial, and slabs_free) for each node, and this sometimes causes timeouts in other drivers (for instance, Infiniband). This patch optimizes 'cat /proc/slabinfo' by maintaining a counter for total number of allocated slabs per node, per cache. This counter is updated when a slab is created or destroyed. This enables us to skip traversing the slabs_full list while gathering slabinfo statistics, and since slabs_full tends to be the biggest list when the cache is large, it results in a dramatic performance improvement. Getting slabinfo statistics now only requires walking the slabs_free and slabs_partial lists, and those lists are usually much smaller than slabs_full. We tested this after growing the dentry cache to 70GB, and the performance improved from 2s to 5ms. Link: http://lkml.kernel.org/r/1472517876-26814-1-git-send-email-aruna.ramakrishna@oracle.com Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 86d9f48534 |
mm/slab: fix kmemcg cache creation delayed issue
There is a bug report that SLAB makes extreme load average due to over
2000 kworker thread.
https://bugzilla.kernel.org/show_bug.cgi?id=172981
This issue is caused by kmemcg feature that try to create new set of
kmem_caches for each memcg. Recently, kmem_cache creation is slowed by
synchronize_sched() and futher kmem_cache creation is also delayed since
kmem_cache creation is synchronized by a global slab_mutex lock. So,
the number of kworker that try to create kmem_cache increases quietly.
synchronize_sched() is for lockless access to node's shared array but
it's not needed when a new kmem_cache is created. So, this patch rules
out that case.
Fixes:
|
|
Tejun Heo | 8bc4a04455 | Merge branch 'for-4.9' into for-4.10 | |
Tejun Heo | eac0337af1 |
slab, workqueue: remove keventd_up() usage
Now that workqueue can handle work item queueing from very early during boot, there is no need to gate schedule_delayed_work_on() while !keventd_up(). Remove it. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org |
|
Sebastian Andrzej Siewior | 6731d4f123 |
slab: Convert to hotplug state machine
Install the callbacks via the state machine. Signed-off-by: Richard Weinberger <richard@nod.at> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Link: http://lkml.kernel.org/r/20160823125319.abeapfjapf2kfezp@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
Linus Torvalds | 1eccfa090e |
Implements HARDENED_USERCOPY verification of copy_to_user/copy_from_user
bounds checking for most architectures on SLAB and SLUB. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 Comment: Kees Cook <kees@outflux.net> iQIcBAABCgAGBQJXl9tlAAoJEIly9N/cbcAm5BoP/ikTtDp2bFw1sn92yHTnIWzl O+dcKVAeRgjfnSvPfb1JITpaM58exQSaDsPBeR0DbVzU1zDdhLcwHHiQupFh98Ka vBZthbrlL/u4NB26enEEW0iyA32BsxYBMnIu0z5ux9RbZflmQwGQ0c0rvy3dJ7/b FzB5ayVST5y/a0m6/sImeeExh78GU9rsMb1XmJRMwlJAy6miDz/F9TP0LnuW6PhG J5XC99ygNJS1pQBLACRsrZw6ImgBxXnWCok6tWPMxFfD+rJBU2//wqS+HozyMWHL iYP7+ytVo/ZVok4114X/V4Oof3a6wqgpBuYrivJ228QO+UsLYbYLo6sZ8kRK7VFm 9GgHo/8rWB1T9lBbSaa7UL5r0dVNNLjFGS42vwV+YlgUMQ1A35VRojO0jUnJSIQU Ug1IxKmylLd0nEcwD8/l3DXeQABsfL8GsoKW0OtdTZtW4RND4gzq34LK6t7hvayF kUkLg1OLNdUJwOi16M/rhugwYFZIMfoxQtjkRXKWN4RZ2QgSHnx2lhqNmRGPAXBG uy21wlzUTfLTqTpoeOyHzJwyF2qf2y4nsziBMhvmlrUvIzW1LIrYUKCNT4HR8Sh5 lC2WMGYuIqaiu+NOF3v6CgvKd9UW+mxMRyPEybH8mEgfm+FLZlWABiBjIUpSEZuB JFfuMv1zlljj/okIQRg8 =USIR -----END PGP SIGNATURE----- Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull usercopy protection from Kees Cook: "Tbhis implements HARDENED_USERCOPY verification of copy_to_user and copy_from_user bounds checking for most architectures on SLAB and SLUB" * tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: mm: SLUB hardened usercopy support mm: SLAB hardened usercopy support s390/uaccess: Enable hardened usercopy sparc/uaccess: Enable hardened usercopy powerpc/uaccess: Enable hardened usercopy ia64/uaccess: Enable hardened usercopy arm64/uaccess: Enable hardened usercopy ARM: uaccess: Enable hardened usercopy x86/uaccess: Enable hardened usercopy mm: Hardened usercopy mm: Implement stack frame object validation mm: Add is_migrate_cma_page |
|
Fabian Frederick | bd721ea73e |
treewide: replace obsolete _refok by __ref
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit
|
|
Andrey Ryabinin | b3cbd9bf77 |
mm/kasan: get rid of ->state in struct kasan_alloc_meta
The state of object currently tracked in two places - shadow memory, and the ->state field in struct kasan_alloc_meta. We can get rid of the latter. The will save us a little bit of memory. Also, this allow us to move free stack into struct kasan_alloc_meta, without increasing memory consumption. So now we should always know when the last time the object was freed. This may be useful for long delayed use-after-free bugs. As a side effect this fixes following UBSAN warning: UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13 member access within misaligned address ffff88000d1efebc for type 'struct qlist_node' which requires 8 byte alignment Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com Reported-by: kernel test robot <xiaolong.ye@intel.com> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Wei Yongjun | de24baecd7 |
mm/slab: use list_move instead of list_del/list_add
Using list_move() instead of list_del() + list_add() to avoid needlessly poisoning the next and prev values. Link: http://lkml.kernel.org/r/1468929772-9174-1-git-send-email-weiyj_lk@163.com Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 72baeef0c2 |
slab: do not panic on invalid gfp_mask
Both SLAB and SLUB BUG() when a caller provides an invalid gfp_mask. This is a rather harsh way to announce a non-critical issue. Allocator is free to ignore invalid flags. Let's simply replace BUG() by dump_stack to tell the offender and fixup the mask to move on with the allocation request. This is an example for kmalloc(GFP_KERNEL|__GFP_HIGHMEM) from a test module: Unexpected gfp: 0x2 (__GFP_HIGHMEM). Fixing up to gfp: 0x24000c0 (GFP_KERNEL). Fix your code! CPU: 0 PID: 2916 Comm: insmod Tainted: G O 4.6.0-slabgfp2-00002-g4cdfc2ef4892-dirty #936 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014 Call Trace: dump_stack+0x67/0x90 cache_alloc_refill+0x201/0x617 kmem_cache_alloc_trace+0xa7/0x24a ? 0xffffffffa0005000 mymodule_init+0x20/0x1000 [test_slab] do_one_initcall+0xe7/0x16c ? rcu_read_lock_sched_held+0x61/0x69 ? kmem_cache_alloc_trace+0x197/0x24a do_init_module+0x5f/0x1d9 load_module+0x1a3d/0x1f21 ? retint_kernel+0x2d/0x2d SyS_init_module+0xe8/0x10e ? SyS_init_module+0xe8/0x10e do_syscall_64+0x68/0x13f entry_SYSCALL64_slow_path+0x25/0x25 Link: http://lkml.kernel.org/r/1465548200-11384-2-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | bacdcb3460 |
slab: make GFP_SLAB_BUG_MASK information more human readable
printk offers %pGg for quite some time so let's use it to get a human readable list of invalid flags. The original output would be [ 429.191962] gfp: 2 after the change [ 429.191962] Unexpected gfp: 0x2 (__GFP_HIGHMEM) Link: http://lkml.kernel.org/r/1465548200-11384-1-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Thomas Garnier | 7c00fce98c |
mm: reorganize SLAB freelist randomization
The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kees Cook | 04385fc5e8 |
mm: SLAB hardened usercopy support
Under CONFIG_HARDENED_USERCOPY, this adds object size checking to the SLAB allocator to catch any copies that may span objects. Based on code from PaX and grsecurity. Signed-off-by: Kees Cook <keescook@chromium.org> Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> |
|
Alexander Potapenko | 4ebb31a42f |
mm, kasan: don't call kasan_krealloc() from ksize().
Instead of calling kasan_krealloc(), which replaces the memory allocation stack ID (if stack depot is used), just unpoison the whole memory chunk. Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Konstantin Serebryany <kcc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Potapenko | 55834c5909 |
mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrew Morton | 0edaf86cf1 |
include/linux/nodemask.h: create next_node_in() helper
Lots of code does node = next_node(node, XXX); if (node == MAX_NUMNODES) node = first_node(XXX); so create next_node_in() to do this and use it in various places. [mhocko@suse.com: use next_node_in() helper] Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Hui Zhu <zhuhui@xiaomi.com> Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yang Shi | a3187e438b |
mm: slab: remove ZONE_DMA_FLAG
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or not, so ZONE_DMA_FLAG sounds no longer useful. And, the use of ZONE_DMA_FLAG in slab looks pointless according to the comment [1] from Johannes Weiner, so remove them and ORing passed in flags with the cache gfp flags has been done in kmem_getpages(). [1] https://lkml.org/lkml/2014/9/25/553 Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.org Signed-off-by: Yang Shi <yang.shi@linaro.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Thomas Garnier | c7ce4f60ac |
mm: SLAB freelist randomization
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by: Thomas Garnier <thgarnie@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 801faf0db8 |
mm/slab: lockless decision to grow cache
To check whether free objects exist or not precisely, we need to grab a lock. But, accuracy isn't that important because race window would be even small and if there is too much free object, cache reaper would reap it. So, this patch makes the check for free object exisistence not to hold a lock. This will reduce lock contention in heavily allocation case. Note that until now, n->shared can be freed during the processing by writing slabinfo, but, with some trick in this patch, we can access it freely within interrupt disabled period. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=248/966 Kmalloc N*alloc N*free(64): Average=261/949 Kmalloc N*alloc N*free(128): Average=314/1016 Kmalloc N*alloc N*free(256): Average=741/1061 Kmalloc N*alloc N*free(512): Average=1246/1152 Kmalloc N*alloc N*free(1024): Average=2437/1259 Kmalloc N*alloc N*free(2048): Average=4980/1800 Kmalloc N*alloc N*free(4096): Average=9000/2078 * After Kmalloc N*alloc N*free(32): Average=344/792 Kmalloc N*alloc N*free(64): Average=347/882 Kmalloc N*alloc N*free(128): Average=390/959 Kmalloc N*alloc N*free(256): Average=393/1067 Kmalloc N*alloc N*free(512): Average=683/1229 Kmalloc N*alloc N*free(1024): Average=1295/1325 Kmalloc N*alloc N*free(2048): Average=2513/1664 Kmalloc N*alloc N*free(4096): Average=4742/2172 It shows that allocation performance decreases for the object size up to 128 and it may be due to extra checks in cache_alloc_refill(). But, with considering improvement of free performance, net result looks the same. Result for other size class looks very promising, roughly, 50% performance improvement. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 213b46958c |
mm/slab: refill cpu cache through a new slab without holding a node lock
Until now, cache growing makes a free slab on node's slab list and then we can allocate free objects from it. This necessarily requires to hold a node lock which is very contended. If we refill cpu cache before attaching it to node's slab list, we can avoid holding a node lock as much as possible because this newly allocated slab is only visible to the current task. This will reduce lock contention. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=355/750 Kmalloc N*alloc N*free(64): Average=452/812 Kmalloc N*alloc N*free(128): Average=559/1070 Kmalloc N*alloc N*free(256): Average=1176/980 Kmalloc N*alloc N*free(512): Average=1939/1189 Kmalloc N*alloc N*free(1024): Average=3521/1278 Kmalloc N*alloc N*free(2048): Average=7152/1838 Kmalloc N*alloc N*free(4096): Average=13438/2013 * After Kmalloc N*alloc N*free(32): Average=248/966 Kmalloc N*alloc N*free(64): Average=261/949 Kmalloc N*alloc N*free(128): Average=314/1016 Kmalloc N*alloc N*free(256): Average=741/1061 Kmalloc N*alloc N*free(512): Average=1246/1152 Kmalloc N*alloc N*free(1024): Average=2437/1259 Kmalloc N*alloc N*free(2048): Average=4980/1800 Kmalloc N*alloc N*free(4096): Average=9000/2078 It shows that contention is reduced for all the object sizes and performance increases by 30 ~ 40%. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 76b342bdc7 |
mm/slab: separate cache_grow() to two parts
This is a preparation step to implement lockless allocation path when there is no free objects in kmem_cache. What we'd like to do here is to refill cpu cache without holding a node lock. To accomplish this purpose, refill should be done after new slab allocation but before attaching the slab to the management list. So, this patch separates cache_grow() to two parts, allocation and attaching to the list in order to add some code inbetween them in the following patch. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 511e3a0588 |
mm/slab: make cache_grow() handle the page allocated on arbitrary node
Currently, cache_grow() assumes that allocated page's nodeid would be same with parameter nodeid which is used for allocation request. If we discard this assumption, we can handle fallback_alloc() case gracefully. So, this patch makes cache_grow() handle the page allocated on arbitrary node and clean-up relevant code. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 03d1d43a12 |
mm/slab: racy access/modify the slab color
Slab color isn't needed to be changed strictly. Because locking for changing slab color could cause more lock contention so this patch implements racy access/modify the slab color. This is a preparation step to implement lockless allocation path when there is no free objects in the kmem_cache. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=365/806 Kmalloc N*alloc N*free(64): Average=452/690 Kmalloc N*alloc N*free(128): Average=736/886 Kmalloc N*alloc N*free(256): Average=1167/985 Kmalloc N*alloc N*free(512): Average=2088/1125 Kmalloc N*alloc N*free(1024): Average=4115/1184 Kmalloc N*alloc N*free(2048): Average=8451/1748 Kmalloc N*alloc N*free(4096): Average=16024/2048 * After Kmalloc N*alloc N*free(32): Average=355/750 Kmalloc N*alloc N*free(64): Average=452/812 Kmalloc N*alloc N*free(128): Average=559/1070 Kmalloc N*alloc N*free(256): Average=1176/980 Kmalloc N*alloc N*free(512): Average=1939/1189 Kmalloc N*alloc N*free(1024): Average=3521/1278 Kmalloc N*alloc N*free(2048): Average=7152/1838 Kmalloc N*alloc N*free(4096): Average=13438/2013 It shows that contention is reduced for object size >= 1024 and performance increases by roughly 15%. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 6052b7880a |
mm/slab: don't keep free slabs if free_objects exceeds free_limit
Currently, determination to free a slab is done whenever each freed object is put into the slab. This has a following problem. Assume free_limit = 10 and nr_free = 9. Free happens as following sequence and nr_free changes as following. free(become a free slab) free(not become a free slab) nr_free: 9 -> 10 (at first free) -> 11 (at second free) If we try to check if we can free current slab or not on each object free, we can't free any slab in this situation because current slab isn't a free slab when nr_free exceed free_limit (at second free) even if there is a free slab. However, if we check it lastly, we can free 1 free slab. This problem would cause to keep too much memory in the slab subsystem. This patch try to fix it by checking number of free object after all free work is done. If there is free slab at that time, we can free slab as much as possible so we keep free slab as minimal. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | c3d332b6b2 |
mm/slab: clean-up kmem_cache_node setup
There are mostly same code for setting up kmem_cache_node either in cpuup_prepare() or alloc_kmem_cache_node(). Factor out and clean-up them. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Nishanth Menon <nm@ti.com> Tested-by: Jon Hunter <jonathanh@nvidia.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | ded0ecf611 |
mm/slab: factor out kmem_cache_node initialization code
It can be reused on other place, so factor out it. Following patch will use it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | a5aa63a5f7 |
mm/slab: drain the free slab as much as possible
slabs_tofree() implies freeing all free slab. We can do it with just providing INT_MAX. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 8888177ea1 |
mm/slab: remove BAD_ALIEN_MAGIC again
Initial attemp to remove BAD_ALIEN_MAGIC is once reverted by 'commit
|
|
Joonsoo Kim | 18726ca8b3 |
mm/slab: fix the theoretical race by holding proper lock
While processing concurrent allocation, SLAB could be contended a lot because it did a lots of work with holding a lock. This patchset try to reduce the number of critical section to reduce lock contention. Major changes are lockless decision to allocate more slab and lockless cpu cache refill from the newly allocated slab. Below is the result of concurrent allocation/free in slab allocation benchmark made by Christoph a long time ago. I make the output simpler. The number shows cycle count during alloc/free respectively so less is better. * Before Kmalloc N*alloc N*free(32): Average=365/806 Kmalloc N*alloc N*free(64): Average=452/690 Kmalloc N*alloc N*free(128): Average=736/886 Kmalloc N*alloc N*free(256): Average=1167/985 Kmalloc N*alloc N*free(512): Average=2088/1125 Kmalloc N*alloc N*free(1024): Average=4115/1184 Kmalloc N*alloc N*free(2048): Average=8451/1748 Kmalloc N*alloc N*free(4096): Average=16024/2048 * After Kmalloc N*alloc N*free(32): Average=344/792 Kmalloc N*alloc N*free(64): Average=347/882 Kmalloc N*alloc N*free(128): Average=390/959 Kmalloc N*alloc N*free(256): Average=393/1067 Kmalloc N*alloc N*free(512): Average=683/1229 Kmalloc N*alloc N*free(1024): Average=1295/1325 Kmalloc N*alloc N*free(2048): Average=2513/1664 Kmalloc N*alloc N*free(4096): Average=4742/2172 It shows that performance improves greatly (roughly more than 50%) for the object class whose size is more than 128 bytes. This patch (of 11): If we don't hold neither the slab_mutex nor the node lock, node's shared array cache could be freed and re-populated. If __kmem_cache_shrink() is called at the same time, it will call drain_array() with n->shared without holding node lock so problem can happen. This patch fix the situation by holding the node lock before trying to drain the shared array. In addition, add a debug check to confirm that n->shared access race doesn't exist. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Potapenko | 505f5dcb1c |
mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Alexander Potapenko | 7ed2f9e663 |
mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joe Perches | 1170532bb4 |
mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent. Miscellanea: - Realign arguments - Add missing newline to format - kmemleak-test.c has a "kmemleak: " prefix added to the "Kmemleak testing" logging message via pr_fmt Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joe Perches | 756a025f00 |
mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is 'user-visible'. Miscellanea: - Add a missing newline - Realign arguments Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 444eb2a449 |
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vladimir Davydov | 27ee57c93f |
mm: memcontrol: report slab usage in cgroup2 memory.stat
Show how much memory is used for storing reclaimable and unreclaimable in-kernel data structures allocated from slab caches. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 5b3810e5c6 |
mm, sl[au]b: print gfp_flags as strings in slab_out_of_memory()
We can now print gfp_flags more human-readable. Make use of this in slab_out_of_memory() for SLUB and SLAB. Also convert the SLAB variant it to pr_warn() along the way. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | f68f8dddb5 |
mm/slab: re-implement pfmemalloc support
Current implementation of pfmemalloc handling in SLAB has some problems. 1) pfmemalloc_active is set to true when there is just one or more pfmemalloc slabs in the system, but it is cleared when there is no pfmemalloc slab in one arbitrary kmem_cache. So, pfmemalloc_active could be wrongly cleared. 2) Search to partial and free list doesn't happen when non-pfmemalloc object are not found in cpu cache. Instead, allocating new slab happens and it is not optimal. 3) Even after sk_memalloc_socks() is disabled, cpu cache would keep pfmemalloc objects tagged with SLAB_OBJ_PFMEMALLOC. It isn't cleared if sk_memalloc_socks() is disabled so it could cause problem. 4) If cpu cache is filled with pfmemalloc objects, it would cause slow down non-pfmemalloc allocation. To me, current pointer tagging approach looks complex and fragile so this patch re-implement whole thing instead of fixing problems one by one. Design principle for new implementation is that 1) Don't disrupt non-pfmemalloc allocation in fast path even if sk_memalloc_socks() is enabled. It's more likely case than pfmemalloc allocation. 2) Ensure that pfmemalloc slab is used only for pfmemalloc allocation. 3) Don't consider performance of pfmemalloc allocation in memory deficiency state. As a result, all pfmemalloc alloc/free in memory tight state will be handled in slow-path. If there is non-pfmemalloc free object, it will be returned first even for pfmemalloc user in fast-path so that performance of pfmemalloc user isn't affected in normal case and pfmemalloc objects will be kept as long as possible. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Mel Gorman <mgorman@techsingularity.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 70f75067b1 |
mm/slab: avoid returning values by reference
Returing values by reference is bad practice. Instead, just use function return value. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Christoph Lameter <cl@linux.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | b03a017beb |
mm/slab: introduce new slab management type, OBJFREELIST_SLAB
SLAB needs an array to manage freed objects in a slab. It is only used if some objects are freed so we can use free object itself as this array. This requires additional branch in somewhat critical lock path to check if it is first freed object or not but that's all we need. Benefits is that we can save extra memory usage and reduce some computational overhead by allocating a management array when new slab is created. Code change is rather complex than what we can expect from the idea, in order to handle debugging feature efficiently. If you want to see core idea only, please remove '#if DEBUG' block in the patch. Although this idea can apply to all caches whose size is larger than management array size, it isn't applied to caches which have a constructor. If such cache's object is used for management array, constructor should be called for it before that object is returned to user. I guess that overhead overwhelm benefit in that case so this idea doesn't applied to them at least now. For summary, from now on, slab management type is determined by following logic. 1) if management array size is smaller than object size and no ctor, it becomes OBJFREELIST_SLAB. 2) if management array size is smaller than leftover, it becomes NORMAL_SLAB which uses leftover as a array. 3) if OFF_SLAB help to save memory than way 4), it becomes OFF_SLAB. It allocate a management array from the other cache so memory waste happens. 4) others become NORMAL_SLAB. It uses dedicated internal memory in a slab as a management array so it causes memory waste. In my system, without enabling CONFIG_DEBUG_SLAB, Almost caches become OBJFREELIST_SLAB and NORMAL_SLAB (using leftover) which doesn't waste memory. Following is the result of number of caches with specific slab management type. TOTAL = OBJFREELIST + NORMAL(leftover) + NORMAL + OFF /Before/ 126 = 0 + 60 + 25 + 41 /After/ 126 = 97 + 12 + 15 + 2 Result shows that number of caches that doesn't waste memory increase from 60 to 109. I did some benchmarking and it looks that benefit are more than loss. Kmalloc: Repeatedly allocate then free test /Before/ [ 0.286809] 1. Kmalloc: Repeatedly allocate then free test [ 1.143674] 100000 times kmalloc(32) -> 116 cycles kfree -> 78 cycles [ 1.441726] 100000 times kmalloc(64) -> 121 cycles kfree -> 80 cycles [ 1.815734] 100000 times kmalloc(128) -> 168 cycles kfree -> 85 cycles [ 2.380709] 100000 times kmalloc(256) -> 287 cycles kfree -> 95 cycles [ 3.101153] 100000 times kmalloc(512) -> 370 cycles kfree -> 117 cycles [ 3.942432] 100000 times kmalloc(1024) -> 413 cycles kfree -> 156 cycles [ 5.227396] 100000 times kmalloc(2048) -> 622 cycles kfree -> 248 cycles [ 7.519793] 100000 times kmalloc(4096) -> 1102 cycles kfree -> 452 cycles /After/ [ 1.205313] 100000 times kmalloc(32) -> 117 cycles kfree -> 78 cycles [ 1.510526] 100000 times kmalloc(64) -> 124 cycles kfree -> 81 cycles [ 1.827382] 100000 times kmalloc(128) -> 130 cycles kfree -> 84 cycles [ 2.226073] 100000 times kmalloc(256) -> 177 cycles kfree -> 92 cycles [ 2.814747] 100000 times kmalloc(512) -> 286 cycles kfree -> 112 cycles [ 3.532952] 100000 times kmalloc(1024) -> 344 cycles kfree -> 141 cycles [ 4.608777] 100000 times kmalloc(2048) -> 519 cycles kfree -> 210 cycles [ 6.350105] 100000 times kmalloc(4096) -> 789 cycles kfree -> 391 cycles In fact, I tested another idea implementing OBJFREELIST_SLAB with extendable linked array through another freed object. It can remove memory waste completely but it causes more computational overhead in critical lock path and it seems that overhead outweigh benefit. So, this patch doesn't include it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 10b2e9e8e8 |
mm/slab: factor out debugging initialization in cache_init_objs()
cache_init_objs() will be changed in following patch and current form doesn't fit well for that change. So, before doing it, this patch separates debugging initialization. This would cause two loop iteration when debugging is enabled, but, this overhead seems too light than debug feature itself so effect may not be visible. This patch will greatly simplify changes in cache_init_objs() in following patch. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | d8410234db |
mm/slab: factor out slab list fixup code
Slab list should be fixed up after object is detached from the slab and this happens at two places. They do exactly same thing. They will be changed in the following patch, so, to reduce code duplication, this patch factor out them and make it common function. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 3217fd9bdf |
mm/slab: make criteria for off slab determination robust and simple
To become an off slab, there are some constraints to avoid bootstrapping problem and recursive call. This can be avoided differently by simply checking that corresponding kmalloc cache is ready and it's not a off slab. It would be more robust because static size checking can be affected by cache size change or architecture type but dynamic checking isn't. One check 'freelist_cache->size > cachep->size / 2' is added to check benefit of choosing off slab, because, now, there is no size constraint which ensures enough advantage when selecting off slab. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | f3a3c320d5 |
mm/slab: do not change cache size if debug pagealloc isn't possible
We can fail to setup off slab in some conditions. Even in this case, debug pagealloc increases cache size to PAGE_SIZE in advance and it is waste because debug pagealloc cannot work for it when it isn't the off slab. To improve this situation, this patch checks first that this cache with increased size is suitable for off slab. It actually increases cache size when it is suitable for off-slab, so possible waste is removed. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 158e319bba |
mm/slab: clean up cache type determination
Current cache type determination code is open-code and looks not understandable. Following patch will introduce one more cache type and it would make code more complex. So, before it happens, this patch abstracts these codes. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 832a15d209 |
mm/slab: align cache size first before determination of OFF_SLAB candidate
Finding suitable OFF_SLAB candidate is more related to aligned cache size rather than original size. Same reasoning can be applied to the debug pagealloc candidate. So, this patch moves up alignment fixup to proper position. From that point, size is aligned so we can remove some alignment fixups. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 2e6b360216 |
mm/slab: put the freelist at the end of slab page
Currently, the freelist is at the front of slab page. This requires extra space to meet object alignment requirement. If we put the freelist at the end of a slab page, objects could start at page boundary and will be at correct alignment. This is possible because freelist has no alignment constraint itself. This gives us two benefits: It removes extra memory space for the freelist alignment and remove complex calculation at cache initialization step. I can't think notable drawback here. I mentioned that this would reduce extra memory space, but, this benefit is rather theoretical because it can be applied to very few cases. Following is the example cache type that can get benefit from this change. size align num before after 32 8 124 4100 4092 64 8 63 4103 4095 88 8 46 4102 4094 272 8 15 4103 4095 408 8 10 4098 4090 32 16 124 4108 4092 64 16 63 4111 4095 32 32 124 4124 4092 64 32 63 4127 4095 96 32 42 4106 4074 before means whole size for objects and aligned freelist before applying patch and after shows the result of this patch. Since before is more than 4096, number of object should decrease and memory waste happens. Anyway, this patch removes complex calculation so looks beneficial to me. [akpm@linux-foundation.org: fix kerneldoc] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 249247b6f8 |
mm/slab: remove object status buffer for DEBUG_SLAB_LEAK
Now, we don't use object status buffer in any setup. Remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | d31676dfde |
mm/slab: alternative implementation for DEBUG_SLAB_LEAK
DEBUG_SLAB_LEAK is a debug option. It's current implementation requires status buffer so we need more memory to use it. And, it cause kmem_cache initialization step more complex. To remove this extra memory usage and to simplify initialization step, this patch implement this feature with another way. When user requests to get slab object owner information, it marks that getting information is started. And then, all free objects in caches are flushed to corresponding slab page. Now, we can distinguish all freed object so we can know all allocated objects, too. After collecting slab object owner information on allocated objects, mark is checked that there is no free during the processing. If true, we can be sure that our information is correct so information is returned to user. Although this way is rather complex, it has two important benefits mentioned above. So, I think it is worth changing. There is one drawback that it takes more time to get slab object owner information but it is just a debug option so it doesn't matter at all. To help review, this patch implements new way only. Following patch will remove useless code. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 40b4413797 |
mm/slab: clean up DEBUG_PAGEALLOC processing code
Currently, open code for checking DEBUG_PAGEALLOC cache is spread to some sites. It makes code unreadable and hard to change. This patch cleans up this code. The following patch will change the criteria for DEBUG_PAGEALLOC cache so this clean-up will help it, too. [akpm@linux-foundation.org: fix build with CONFIG_DEBUG_PAGEALLOC=n] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 40323278b5 |
mm/slab: use more appropriate condition check for debug_pagealloc
debug_pagealloc debugging is related to SLAB_POISON flag rather than FORCED_DEBUG option, although FORCED_DEBUG option will enable SLAB_POISON. Fix it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | a307ebd468 |
mm/slab: activate debug_pagealloc in SLAB when it is actually enabled
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 260b61dd46 |
mm/slab: remove the checks for slab implementation bug
Some of "#if DEBUG" are for reporting slab implementation bug rather than user usecase bug. It's not really needed because slab is stable for a quite long time and it makes code too dirty. This patch remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 6fb924304a |
mm/slab: remove useless structure define
It is obsolete so remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 12c61fe9b7 |
mm/slab: fix stale code comment
This patchset implements a new freed object management way, that is, OBJFREELIST_SLAB. Purpose of it is to reduce memory overhead in SLAB. SLAB needs a array to manage freed objects in a slab. If there is leftover after objects are packed into a slab, we can use it as a management array, and, in this case, there is no memory waste. But, in the other cases, we need to allocate extra memory for a management array or utilize dedicated internal memory in a slab for it. Both cases causes memory waste so it's not good. With this patchset, freed object itself can be used for a management array. So, memory waste could be reduced. Detailed idea and numbers are described in last patch's commit description. Please refer it. In fact, I tested another idea implementing OBJFREELIST_SLAB with extendable linked array through another freed object. It can remove memory waste completely but it causes more computational overhead in critical lock path and it seems that overhead outweigh benefit. So, this patchset doesn't include it. I will attach prototype just for a reference. This patch (of 16): We use freelist_idx_t type for free object management whose size would be smaller than size of unsigned int. Fix it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | ca25719551 |
mm: new API kfree_bulk() for SLAB+SLUB allocators
This patch introduce a new API call kfree_bulk() for bulk freeing memory objects not bound to a single kmem_cache. Christoph pointed out that it is possible to implement freeing of objects, without knowing the kmem_cache pointer as that information is available from the object's page->slab_cache. Proposing to remove the kmem_cache argument from the bulk free API. Jesper demonstrated that these extra steps per object comes at a performance cost. It is only in the case CONFIG_MEMCG_KMEM is compiled in and activated runtime that these steps are done anyhow. The extra cost is most visible for SLAB allocator, because the SLUB allocator does the page lookup (virt_to_head_page()) anyhow. Thus, the conclusion was to keep the kmem_cache free bulk API with a kmem_cache pointer, but we can still implement a kfree_bulk() API fairly easily. Simply by handling if kmem_cache_free_bulk() gets called with a kmem_cache NULL pointer. This does increase the code size a bit, but implementing a separate kfree_bulk() call would likely increase code size even more. Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K @ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y. Code size increase for SLAB: add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74) function old new delta kmem_cache_free_bulk 660 734 +74 SLAB fastpath: 87 cycles(tsc) 21.814 sz - fallback - kmem_cache_free_bulk - kfree_bulk 1 - 103 cycles 25.878 ns - 41 cycles 10.498 ns - 81 cycles 20.312 ns 2 - 94 cycles 23.673 ns - 26 cycles 6.682 ns - 42 cycles 10.649 ns 3 - 92 cycles 23.181 ns - 21 cycles 5.325 ns - 39 cycles 9.950 ns 4 - 90 cycles 22.727 ns - 18 cycles 4.673 ns - 26 cycles 6.693 ns 8 - 89 cycles 22.270 ns - 14 cycles 3.664 ns - 23 cycles 5.835 ns 16 - 88 cycles 22.038 ns - 14 cycles 3.503 ns - 22 cycles 5.543 ns 30 - 89 cycles 22.284 ns - 13 cycles 3.310 ns - 20 cycles 5.197 ns 32 - 88 cycles 22.249 ns - 13 cycles 3.420 ns - 20 cycles 5.166 ns 34 - 88 cycles 22.224 ns - 14 cycles 3.643 ns - 20 cycles 5.170 ns 48 - 88 cycles 22.088 ns - 14 cycles 3.507 ns - 20 cycles 5.203 ns 64 - 88 cycles 22.063 ns - 13 cycles 3.428 ns - 20 cycles 5.152 ns 128 - 89 cycles 22.483 ns - 15 cycles 3.891 ns - 23 cycles 5.885 ns 158 - 89 cycles 22.381 ns - 15 cycles 3.779 ns - 22 cycles 5.548 ns 250 - 91 cycles 22.798 ns - 16 cycles 4.152 ns - 23 cycles 5.967 ns SLAB when enabling MEMCG_KMEM runtime: - kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0) 1 - 148 cycles 37.220 ns - 66 cycles 16.622 ns - 66 cycles 16.583 ns 2 - 141 cycles 35.510 ns - 51 cycles 12.820 ns - 58 cycles 14.625 ns 3 - 140 cycles 35.017 ns - 37 cycles 9.326 ns - 33 cycles 8.474 ns 4 - 137 cycles 34.507 ns - 31 cycles 7.888 ns - 33 cycles 8.300 ns 8 - 140 cycles 35.069 ns - 25 cycles 6.461 ns - 25 cycles 6.436 ns 16 - 138 cycles 34.542 ns - 23 cycles 5.945 ns - 22 cycles 5.670 ns 30 - 136 cycles 34.227 ns - 22 cycles 5.502 ns - 22 cycles 5.587 ns 32 - 136 cycles 34.253 ns - 21 cycles 5.475 ns - 21 cycles 5.324 ns 34 - 136 cycles 34.254 ns - 21 cycles 5.448 ns - 20 cycles 5.194 ns 48 - 136 cycles 34.075 ns - 21 cycles 5.458 ns - 21 cycles 5.367 ns 64 - 135 cycles 33.994 ns - 21 cycles 5.350 ns - 21 cycles 5.259 ns 128 - 137 cycles 34.446 ns - 23 cycles 5.816 ns - 22 cycles 5.688 ns 158 - 137 cycles 34.379 ns - 22 cycles 5.727 ns - 22 cycles 5.602 ns 250 - 138 cycles 34.755 ns - 24 cycles 6.093 ns - 23 cycles 5.986 ns Code size increase for SLUB: function old new delta kmem_cache_free_bulk 717 799 +82 SLUB benchmark: SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0) sz - fallback - kmem_cache_free_bulk - kfree_bulk 1 - 61 cycles 15.486 ns - 53 cycles 13.364 ns - 57 cycles 14.464 ns 2 - 54 cycles 13.703 ns - 32 cycles 8.110 ns - 33 cycles 8.482 ns 3 - 53 cycles 13.272 ns - 25 cycles 6.362 ns - 27 cycles 6.947 ns 4 - 51 cycles 12.994 ns - 24 cycles 6.087 ns - 24 cycles 6.078 ns 8 - 50 cycles 12.576 ns - 21 cycles 5.354 ns - 22 cycles 5.513 ns 16 - 49 cycles 12.368 ns - 20 cycles 5.054 ns - 20 cycles 5.042 ns 30 - 49 cycles 12.273 ns - 18 cycles 4.748 ns - 19 cycles 4.758 ns 32 - 49 cycles 12.401 ns - 19 cycles 4.821 ns - 19 cycles 4.810 ns 34 - 98 cycles 24.519 ns - 24 cycles 6.154 ns - 24 cycles 6.157 ns 48 - 83 cycles 20.833 ns - 21 cycles 5.446 ns - 21 cycles 5.429 ns 64 - 75 cycles 18.891 ns - 20 cycles 5.247 ns - 20 cycles 5.238 ns 128 - 93 cycles 23.271 ns - 27 cycles 6.856 ns - 27 cycles 6.823 ns 158 - 102 cycles 25.581 ns - 30 cycles 7.714 ns - 30 cycles 7.695 ns 250 - 107 cycles 26.917 ns - 38 cycles 9.514 ns - 38 cycles 9.506 ns SLUB when enabling MEMCG_KMEM runtime: - kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0) 1 - 85 cycles 21.484 ns - 78 cycles 19.569 ns - 75 cycles 18.938 ns 2 - 81 cycles 20.363 ns - 45 cycles 11.258 ns - 44 cycles 11.076 ns 3 - 78 cycles 19.709 ns - 33 cycles 8.354 ns - 32 cycles 8.044 ns 4 - 77 cycles 19.430 ns - 28 cycles 7.216 ns - 28 cycles 7.003 ns 8 - 101 cycles 25.288 ns - 23 cycles 5.849 ns - 23 cycles 5.787 ns 16 - 76 cycles 19.148 ns - 20 cycles 5.162 ns - 20 cycles 5.081 ns 30 - 76 cycles 19.067 ns - 19 cycles 4.868 ns - 19 cycles 4.821 ns 32 - 76 cycles 19.052 ns - 19 cycles 4.857 ns - 19 cycles 4.815 ns 34 - 121 cycles 30.291 ns - 25 cycles 6.333 ns - 25 cycles 6.268 ns 48 - 108 cycles 27.111 ns - 21 cycles 5.498 ns - 21 cycles 5.458 ns 64 - 100 cycles 25.164 ns - 20 cycles 5.242 ns - 20 cycles 5.229 ns 128 - 155 cycles 38.976 ns - 27 cycles 6.886 ns - 27 cycles 6.892 ns 158 - 132 cycles 33.034 ns - 30 cycles 7.711 ns - 30 cycles 7.728 ns 250 - 130 cycles 32.612 ns - 38 cycles 9.560 ns - 38 cycles 9.549 ns Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | e6cdb58d1c |
slab: implement bulk free in SLAB allocator
This patch implements the free side of bulk API for the SLAB allocator kmem_cache_free_bulk(), and concludes the implementation of optimized bulk API for SLAB allocator. Benchmarked[1] cost of alloc+free (obj size 256 bytes) on CPU i7-4790K @ 4.00GHz, with no debug options, no PREEMPT and CONFIG_MEMCG_KMEM=y but no active user of kmemcg. SLAB single alloc+free cost: 87 cycles(tsc) 21.814 ns with this optimized config. bulk- Current fallback - optimized SLAB bulk 1 - 102 cycles(tsc) 25.747 ns - 41 cycles(tsc) 10.490 ns - improved 59.8% 2 - 94 cycles(tsc) 23.546 ns - 26 cycles(tsc) 6.567 ns - improved 72.3% 3 - 92 cycles(tsc) 23.127 ns - 20 cycles(tsc) 5.244 ns - improved 78.3% 4 - 90 cycles(tsc) 22.663 ns - 18 cycles(tsc) 4.588 ns - improved 80.0% 8 - 88 cycles(tsc) 22.242 ns - 14 cycles(tsc) 3.656 ns - improved 84.1% 16 - 88 cycles(tsc) 22.010 ns - 13 cycles(tsc) 3.480 ns - improved 85.2% 30 - 89 cycles(tsc) 22.305 ns - 13 cycles(tsc) 3.303 ns - improved 85.4% 32 - 89 cycles(tsc) 22.277 ns - 13 cycles(tsc) 3.309 ns - improved 85.4% 34 - 88 cycles(tsc) 22.246 ns - 13 cycles(tsc) 3.294 ns - improved 85.2% 48 - 88 cycles(tsc) 22.121 ns - 13 cycles(tsc) 3.492 ns - improved 85.2% 64 - 88 cycles(tsc) 22.052 ns - 13 cycles(tsc) 3.411 ns - improved 85.2% 128 - 89 cycles(tsc) 22.452 ns - 15 cycles(tsc) 3.841 ns - improved 83.1% 158 - 89 cycles(tsc) 22.403 ns - 14 cycles(tsc) 3.746 ns - improved 84.3% 250 - 91 cycles(tsc) 22.775 ns - 16 cycles(tsc) 4.111 ns - improved 82.4% Notice it is not recommended to do very large bulk operation with this bulk API, because local IRQs are disabled in this period. [1] https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/slab_bulk_test01.c Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | 7b0501dd6b |
slab: avoid running debug SLAB code with IRQs disabled for alloc_bulk
Move the call to cache_alloc_debugcheck_after() outside the IRQ disabled section in kmem_cache_alloc_bulk(). When CONFIG_DEBUG_SLAB is disabled the compiler should remove this code. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | 2a777eac17 |
slab: implement bulk alloc in SLAB allocator
This patch implements the alloc side of bulk API for the SLAB allocator. Further optimization are still possible by changing the call to __do_cache_alloc() into something that can return multiple objects. This optimization is left for later, given end results already show in the area of 80% speedup. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | d5e3ed66d6 |
slab: use slab_post_alloc_hook in SLAB allocator shared with SLUB
Reviewers notice that the order in slab_post_alloc_hook() of kmemcheck_slab_alloc() and kmemleak_alloc_recursive() gets swapped compared to slab.c / SLAB allocator. Also notice memset now occurs before calling kmemcheck_slab_alloc() and kmemleak_alloc_recursive(). I assume this reordering of kmemcheck, kmemleak and memset is okay because this is the order they are used by the SLUB allocator. This patch completes the sharing of alloc_hook's between SLUB and SLAB. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | 011eceaf0a |
slab: use slab_pre_alloc_hook in SLAB allocator shared with SLUB
Deduplicate code in SLAB allocator functions slab_alloc() and slab_alloc_node() by using the slab_pre_alloc_hook() call, which is now shared between SLUB and SLAB. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | fab9963a69 |
mm: fault-inject take over bootstrap kmem_cache check
Remove the SLAB specific function slab_should_failslab(), by moving the check against fault-injection for the bootstrap slab, into the shared function should_failslab() (used by both SLAB and SLUB). This is a step towards sharing alloc_hook's between SLUB and SLAB. This bootstrap slab "kmem_cache" is used for allocating struct kmem_cache objects to the allocator itself. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dmitry Safonov | 52b4b950b5 |
mm: slab: free kmem_cache_node after destroy sysfs file
When slub_debug alloc_calls_show is enabled we will try to track location and user of slab object on each online node, kmem_cache_node structure and cpu_cache/cpu_slub shouldn't be freed till there is the last reference to sysfs file. This fixes the following panic: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: list_locations+0x169/0x4e0 PGD 257304067 PUD 438456067 PMD 0 Oops: 0000 [#1] SMP CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30 Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011 task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000 RIP: list_locations+0x169/0x4e0 Call Trace: alloc_calls_show+0x1d/0x30 slab_attr_show+0x1b/0x30 sysfs_read_file+0x9a/0x1a0 vfs_read+0x9c/0x170 SyS_read+0x58/0xb0 system_call_fastpath+0x16/0x1b Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10 CR2: 0000000000000020 Separated __kmem_cache_release from __kmem_cache_shutdown which now called on slab_kmem_cache_release (after the last reference to sysfs file object has dropped). Reintroduced locking in free_partial as sysfs file might access cache's partial list after shutdowning - partial revert of the commit |
|
Geliang Tang | 7aa0d22785 |
mm/slab.c: add a helper function get_first_slab
Add a new helper function get_first_slab() that get the first slab from a kmem_cache_node. Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Geliang Tang | 73c0219d8e |
mm/slab.c: use list_for_each_entry in cache_flusharray
Simplify the code with list_for_each_entry(). Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Geliang Tang | d8ad47d83f |
mm/slab.c use list_first_entry_or_null()
Simplify the code with list_first_entry_or_null(). Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Jesper Dangaard Brouer | 865762a811 |
slab/slub: adjust kmem_cache_alloc_bulk API
Adjust kmem_cache_alloc_bulk API before we have any real users. Adjust API to return type 'int' instead of previously type 'bool'. This is done to allow future extension of the bulk alloc API. A future extension could be to allow SLUB to stop at a page boundary, when specified by a flag, and then return the number of objects. The advantage of this approach, would make it easier to make bulk alloc run without local IRQs disabled. With an approach of cmpxchg "stealing" the entire c->freelist or page->freelist. To avoid overshooting we would stop processing at a slab-page boundary. Else we always end up returning some objects at the cost of another cmpxchg. To keep compatible with future users of this API linking against an older kernel when using the new flag, we need to return the number of allocated objects with this API change. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Kirill A. Shutemov | bc4f610d5a |
slab, slub: use page->rcu_head instead of page->lru plus cast
We have properly typed page->rcu_head, no need to cast page->lru. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | d0164adc89 |
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vladimir Davydov | f3ccb2c422 |
memcg: unify slab and other kmem pages charging
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and uncharging kmem pages to memcg, but currently they are not used for charging slab pages (i.e. they are only used for charging pages allocated with alloc_kmem_pages). The only reason why the slab subsystem uses special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it needs to charge to the memcg of kmem cache while memcg_charge_kmem charges to the memcg that the current task belongs to. To remove this diversity, this patch adds an extra argument to __memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is not NULL, the function tries to charge to the memcg it points to, otherwise it charge to the current context. Next, it makes the slab subsystem use this function to charge slab pages. Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since __memcg_kmem_charge stores a pointer to the memcg in the page struct, we don't need memcg_uncharge_slab anymore and can use free_kmem_pages. Besides, one can now detect which memcg a slab page belongs to by reading /proc/kpagecgroup. Note, this patch switches slab to charge-after-alloc design. Since this design is already used for all other memcg charges, it should not make any difference. [hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup] Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Catalin Marinas | d4322d88f5 |
mm: slab: only move management objects off-slab for sizes larger than KMALLOC_MIN_SIZE
On systems with a KMALLOC_MIN_SIZE of 128 (arm64, some mips and powerpc configurations defining ARCH_DMA_MINALIGN to 128), the first kmalloc_caches[] entry to be initialised after slab_early_init = 0 is "kmalloc-128" with index 7. Depending on the debug kernel configuration, sizeof(struct kmem_cache) can be larger than 128 resulting in an INDEX_NODE of 8. Commit |
|
Joonsoo Kim | 03a2d2a3ea |
mm/slab: fix unexpected index mapping result of kmalloc_size(INDEX_NODE+1)
Commit description is copied from the original post of this bug:
http://comments.gmane.org/gmane.linux.kernel.mm/135349
Kernels after v3.9 use kmalloc_size(INDEX_NODE + 1) to get the next
larger cache size than the size index INDEX_NODE mapping. In kernels
3.9 and earlier we used malloc_sizes[INDEX_L3 + 1].cs_size.
However, sometimes we can't get the right output we expected via
kmalloc_size(INDEX_NODE + 1), causing a BUG().
The mapping table in the latest kernel is like:
index = {0, 1, 2 , 3, 4, 5, 6, n}
size = {0, 96, 192, 8, 16, 32, 64, 2^n}
The mapping table before 3.10 is like this:
index = {0 , 1 , 2, 3, 4 , 5 , 6, n}
size = {32, 64, 96, 128, 192, 256, 512, 2^(n+3)}
The problem on my mips64 machine is as follows:
(1) When configured DEBUG_SLAB && DEBUG_PAGEALLOC && DEBUG_LOCK_ALLOC
&& DEBUG_SPINLOCK, the sizeof(struct kmem_cache_node) will be "150",
and the macro INDEX_NODE turns out to be "2": #define INDEX_NODE
kmalloc_index(sizeof(struct kmem_cache_node))
(2) Then the result of kmalloc_size(INDEX_NODE + 1) is 8.
(3) Then "if(size >= kmalloc_size(INDEX_NODE + 1)" will lead to "size
= PAGE_SIZE".
(4) Then "if ((size >= (PAGE_SIZE >> 3))" test will be satisfied and
"flags |= CFLGS_OFF_SLAB" will be covered.
(5) if (flags & CFLGS_OFF_SLAB)" test will be satisfied and will go to
"cachep->slabp_cache = kmalloc_slab(slab_size, 0u)", and the result
here may be NULL while kernel bootup.
(6) Finally,"BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));" causes the
BUG info as the following shows (may be only mips64 has this problem):
This patch fixes the problem of kmalloc_size(INDEX_NODE + 1) and removes
the BUG by adding 'size >= 256' check to guarantee that all necessary
small sized slabs are initialized regardless sequence of slab size in
mapping table.
Fixes:
|
|
Vlastimil Babka | 96db800f5d |
mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit |
|
Christoph Lameter | 484748f0b6 |
slab: infrastructure for bulk object allocation and freeing
Add the basic infrastructure for alloc/free operations on pointer arrays. It includes a generic function in the common slab code that is used in this infrastructure patch to create the unoptimized functionality for slab bulk operations. Allocators can then provide optimized allocation functions for situations in which large numbers of objects are needed. These optimization may avoid taking locks repeatedly and bypass metadata creation if all objects in slab pages can be used to provide the objects required. Allocators can extend the skeletons provided and add their own code to the bulk alloc and free functions. They can keep the generic allocation and freeing and just fall back to those if optimizations would not work (like for example when debugging is on). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Michal Hocko | 2f064f3485 |
mm: make page pfmemalloc check more robust
Commit |
|
Daniel Sanders | 34cc6990d4 |
slab: correct size_index table before replacing the bootstrap kmem_cache_node
This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | 4167e9b2cf |
mm: remove GFP_THISNODE
NOTE: this is not about __GFP_THISNODE, this is only about GFP_THISNODE.
GFP_THISNODE is a secret combination of gfp bits that have different
behavior than expected. It is a combination of __GFP_THISNODE,
__GFP_NORETRY, and __GFP_NOWARN and is special-cased in the page
allocator slowpath to fail without trying reclaim even though it may be
used in combination with __GFP_WAIT.
An example of the problem this creates: commit
|