xhci has its own interrupt enabling routine, which will try to
use MSI-X/MSI if present. So the usb core shouldn't try to enable
legacy interrupts; on some machines the xhci legacy IRQ setting
is invalid.
v3: Be careful to not break XHCI_BROKEN_MSI workaround (by trenn)
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Oliver Neukum <oneukum@suse.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Frederik Himpe <fhimpe@vub.ac.be>
Cc: David Haerdeman <david@hardeman.nu>
Cc: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Hannes Reinecke <hare@suse.de>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The USB core hub thread (khubd) is designed with external USB hubs in
mind. It expects that if a port status change bit is set, the hub will
continue to send a notification through the hub status data transfer.
Basically, it expects hub notifications to be level-triggered.
The xHCI host controller is designed to be edge-triggered on the logical
'OR' of all the port status change bits. When all port status change
bits are clear, and a new change bit is set, the xHC will generate a
Port Status Change Event. If another change bit is set in the same port
status register before the first bit is cleared, it will not send
another event.
This means that the hub code may lose port status changes because of
race conditions between clearing change bits. The user sees this as a
"dead port" that doesn't react to device connects.
The fix is to turn on port polling whenever a new change bit is set.
Once the USB core issues a hub status request that shows that no change
bits are set in any USB ports, turn off port polling.
We can't allow the USB core to poll the roothub for port events during
host suspend because if the PCI host is in D3cold, the port registers
will be all f's. Instead, stop the port polling timer, and
unconditionally restart it when the host resumes. If there are no port
change bits set after the resume, the first call to hub_status_data will
disable polling.
This patch should be backported to stable kernels with the first xHCI
support, 2.6.31 and newer, that include the commit
0f2a79300a "USB: xhci: Root hub support."
There will be merge conflicts because the check for HC_STATE_SUSPENDED
was moved into xhci_suspend in 3.8.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: stable@vger.kernel.org
that check will have to be done by all users
of xhci_suspend() so it sounds a lot better to
move the check to xhci_suspend() in order to
avoid code duplication.
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This minor patch creates a more stricter conditional for the Z1 sytems for applying
the Compliance Mode Patch, this to avoid the quirk to be applied to models that
contain a "Z1" in their dmi product string but are different from Z1 systems.
This patch should be backported to stable kernels as old as 3.2, that
contain the commit 71c731a296 "usb: host:
xhci: Fix Compliance Mode on SN65LVPE502CP Hardware"
Signed-off-by: Alexis R. Cortes <alexis.cortes@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
David reports that at drivers/usb/host/xhci.c:2257:
static bool xhci_is_sync_in_ep(unsigned int ep_type)
{
return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
}
The static analyser cppcheck says
[linux-3.7-rc2/drivers/usb/host/xhci.c:2257]: (style) Redundant condition: If ep_type == 5, the comparison ep_type != 7 is always true.
Maybe the original programmer intention was something like
static bool xhci_is_sync_in_ep(unsigned int ep_type)
{
return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
}
Fix this.
This patch should be backported to stable kernels as old as 3.2, that
contain the commit 2b69899934 "xhci: USB
3.0 BW checking."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: David Binderman <dcb314@hotmail.com>
Cc: stable@vger.kernel.org
Non-static xHCI driver symbols should start with the "xhci_" prefix, in
order to avoid namespace pollution. Rename the "handshake" function to
"xhci_handshake".
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Remove the variable ep_ctx from xhci_add_endpoint(), since it is
assigned but unused. Caught by Coverity.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Coverity complains that xhci_evaluate_context_result() is missing a
break statement after the COMP_EBADSLT switch case. It's not a big
deal, since we wanted to return the same error code as the case
statement below it does. The end result would be one that a Slot
Disabled error completion code would also print the warning message
associated with a Context State error code. No other bad behavior would
result.
It's not worth backporting to stable kernels, since it only fixes an
issue with too much debugging.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xhci_service_interval_to_ns() returns long long
to avoid an overflow. However, the type cast happens
too late. The fix is to force ULL from the beginning.
This patch should be backported to kernels as old as 3.5, that contain
the commit e3567d2c15 "xhci: Add Intel
U1/U2 timeout policy."
Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
CC: stable@vger.kernel.org
An le16 is accessed without conversion.
This patch should be backported to kernels as old as 3.5, that contain
the commit e3567d2c15 "xhci: Add Intel
U1/U2 timeout policy."
Signed-off-by: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
CC: stable@vger.kernel.org
This minor change adds a new system to which the "Fix Compliance Mode
on SN65LVPE502CP Hardware" patch has to be applied also.
System added:
Vendor: Hewlett-Packard. System Model: Z1
Signed-off-by: Alexis R. Cortes <alexis.cortes@ti.com>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In 71c731a: usb: host: xhci: Fix Compliance Mode on SN65LVPE502CP Hardware
when extracting DMI strings (vendor or product_name) to mark them as quirk
we may get NULL pointer in case of non-x86 systems which won't define
CONFIG_DMI. Hence susbsequent strstr() calls crash while driver probing.
So, returning 'false' here in case we get a NULL vendor or product_name.
This is tested with ARM (exynos) system.
This patch should be backported to stable kernels as old as 3.6, that
contain the commit 71c731a296 "usb: host:
xhci: Fix Compliance Mode on SN65LVPE502CP Hardware"
Signed-off-by: Vivek Gautam <gautam.vivek@samsung.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Sebastian Gottschall (DD-WRT) <s.gottschall@dd-wrt.com>
Cc: stable@vger.kernel.org
The Intel XHCI specification says that after clearing the run/stop bit
the controller may take up to 16ms to halt. We've seen a device take
14ms, which with the current timeout of 10ms causes the kernel to
abort the suspend. Increasing the timeout to the recommended value
fixes the problem.
This patch should be backported to kernels as old as 2.6.37, that
contain the commit 5535b1d5f8 "USB: xHCI:
PCI power management implementation".
Signed-off-by: Michael Spang <spang@chromium.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
This resolves the merge problems with:
drivers/usb/dwc3/gadget.c
drivers/usb/musb/tusb6010.c
that had been seen in linux-next.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
drivers/usb/host/xhci.c:1826:14: warning: symbol 'xhci_get_block_size' was not declared. Should it be static?
drivers/usb/host/xhci.c:1844:14: warning: symbol 'xhci_get_largest_overhead' was not declared. Should it be static?
drivers/usb/host/xhci-ring.c:2304:36: warning: context imbalance in 'handle_tx_event' - unexpected unlock
drivers/usb/host/xhci-hub.c:425:6: warning: symbol 'xhci_set_remote_wake_mask' was not declared. Should it be static?
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The patch is used to cancel command when the command isn't
acknowledged and a timeout occurs.
This patch should be backported to kernels as old as 3.0, that contain
the commit 7ed603ecf8 "xhci: Add an
assertion to check for virt_dev=0 bug." That commit papers over a NULL
pointer dereference, and this patch fixes the underlying issue that
caused the NULL pointer dereference.
Signed-off-by: Elric Fu <elricfu1@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Miroslav Sabljic <miroslav.sabljic@avl.com>
Cc: stable@vger.kernel.org
Software have to abort command ring and cancel command
when a command is failed or hang. Otherwise, the command
ring will hang up and can't handle the others. An example
of a command that may hang is the Address Device Command,
because waiting for a SET_ADDRESS request to be acknowledged
by a USB device is outside of the xHC's ability to control.
To cancel a command, software will initialize a command
descriptor for the cancel command, and add it into a
cancel_cmd_list of xhci.
Sarah: Fixed missing newline on "Have the command ring been stopped?"
debugging statement.
This patch should be backported to kernels as old as 3.0, that contain
the commit 7ed603ecf8 "xhci: Add an
assertion to check for virt_dev=0 bug." That commit papers over a NULL
pointer dereference, and this patch fixes the underlying issue that
caused the NULL pointer dereference.
Signed-off-by: Elric Fu <elricfu1@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Miroslav Sabljic <miroslav.sabljic@avl.com>
Cc: stable@vger.kernel.org
Adding cmd_ring_state for command ring. It helps to verify
the current command ring state for controlling the command
ring operations.
This patch should be backported to kernels as old as 3.0. The commit
7ed603ecf8 "xhci: Add an assertion to
check for virt_dev=0 bug." papers over the NULL pointer dereference that
I now believe is related to a timed out Set Address command. This (and
the four patches that follow it) contain the real fix that also allows
VIA USB 3.0 hubs to consistently re-enumerate during the plug/unplug
stress tests.
Signed-off-by: Elric Fu <elricfu1@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Miroslav Sabljic <miroslav.sabljic@avl.com>
Cc: stable@vger.kernel.org
This patch is intended to work around a known issue on the
SN65LVPE502CP USB3.0 re-driver that can delay the negotiation
between a device and the host past the usual handshake timeout.
If that happens on the first insertion, the host controller
port will enter in Compliance Mode and NO port status event will
be generated (as per xHCI Spec) making impossible to detect this
event by software. The port will remain in compliance mode until
a warm reset is applied to it.
As a result of this, the port will seem "dead" to the user and no
device connections or disconnections will be detected.
For solving this, the patch creates a timer which polls every 2
seconds the link state of each host controller's port (this
by reading the PORTSC register) and recovers the port by issuing a
Warm reset every time Compliance mode is detected.
If a xHC USB3.0 port has previously entered to U0, the compliance
mode issue will NOT occur only until system resumes from
sleep/hibernate, therefore, the compliance mode timer is stopped
when all xHC USB 3.0 ports have entered U0. The timer is initialized
again after each system resume.
Since the issue is being caused by a piece of hardware, the timer
will be enabled ONLY on those systems that have the SN65LVPE502CP
installed (this patch uses DMI strings for detecting those systems)
therefore making this patch to act as a quirk (XHCI_COMP_MODE_QUIRK
has been added to the xhci stack).
This patch applies for these systems:
Vendor: Hewlett-Packard. System Models: Z420, Z620 and Z820.
This patch should be backported to kernels as old as 3.2, as that was
the first kernel to support warm reset. The kernels will need to
contain both commit 10d674a82e "USB: When
hot reset for USB3 fails, try warm reset" and commit
8bea2bd37d "usb: Add support for root hub
port status CAS". The first patch add warm reset support, and the
second patch modifies the USB core to issue a warm reset when the port
is in compliance mode.
Signed-off-by: Alexis R. Cortes <alexis.cortes@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
The intent was to test whether the flag was set.
This patch should be backported to stable kernels as old as 3.0, since
it fixes a bug in commit e95829f474 "xhci:
Switch PPT ports to EHCI on shutdown.", which was marked for stable.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
The Intel desktop boards DH77EB and DH77DF have a hardware issue that
can be worked around by BIOS. If the USB ports are switched to xHCI on
shutdown, the xHCI host will send a spurious interrupt, which will wake
the system. Some BIOS will work around this, but not all.
The bug can be avoided if the USB ports are switched back to EHCI on
shutdown. The Intel Windows driver switches the ports back to EHCI, so
change the Linux xHCI driver to do the same.
Unfortunately, we can't tell the two effected boards apart from other
working motherboards, because the vendors will change the DMI strings
for the DH77EB and DH77DF boards to their own custom names. One example
is Compulab's mini-desktop, the Intense-PC. Instead, key off the
Panther Point xHCI host PCI vendor and device ID, and switch the ports
over for all PPT xHCI hosts.
The only impact this will have on non-effected boards is to add a couple
hundred milliseconds delay on boot when the BIOS has to switch the ports
over from EHCI to xHCI.
This patch should be backported to kernels as old as 3.0, that contain
the commit 69e848c209 "Intel xhci: Support
EHCI/xHCI port switching."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Denis Turischev <denis@compulab.co.il>
Tested-by: Denis Turischev <denis@compulab.co.il>
Cc: stable@vger.kernel.org
The NEC/Renesas 720201 xHCI host controller does not complete its reset
within 250 milliseconds. In fact, it takes about 9 seconds to reset the
host controller, and 1 second for the host to be ready for doorbell
rings. Extend the reset and CNR polling timeout to 10 seconds each.
This patch should be backported to kernels as old as 2.6.31, that
contain the commit 66d4eadd8d "USB: xhci:
BIOS handoff and HW initialization."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Edwin Klein Mentink <e.kleinmentink@zonnet.nl>
Cc: stable@vger.kernel.org
There are a few (new) usbdevfs capabilities which an application cannot
discover in any other way then checking the kernel version. There are 3
problems with this:
1) It is just not very pretty.
2) Given the tendency of enterprise distros to backport stuff it is not
reliable.
3) As discussed in length on the mailinglist, USBDEVFS_URB_BULK_CONTINUATION
does not work as it should when combined with USBDEVFS_URB_SHORT_NOT_OK
(which is its intended use) on devices attached to an XHCI controller.
So the availability of these features can be host controller dependent,
making depending on them based on the kernel version not a good idea.
This patch besides adding the new ioctl also adds flags for the following
existing capabilities:
USBDEVFS_CAP_ZERO_PACKET, available since 2.6.31
USBDEVFS_CAP_BULK_CONTINUATION, available since 2.6.32, except for XHCI
USBDEVFS_CAP_NO_PACKET_SIZE_LIM, available since 3.3
Note that this patch only does not advertise the USBDEVFS_URB_BULK_CONTINUATION
cap for XHCI controllers, bulk transfers with this flag set will still be
accepted when submitted to XHCI controllers.
Returning -EINVAL for them would break existing apps, and in most cases the
troublesome scenario wrt USBDEVFS_URB_SHORT_NOT_OK urbs on XHCI controllers
will never get hit, so this would break working use cases.
The disadvantage of not returning -EINVAL is that cases were it is causing
real trouble may go undetected / the cause of the trouble may be unclear,
but this is the best we can do.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When system software decides to power down the xHC with the intent of
resuming operation at a later time, it will ask xHC to save the internal
state and restore it when resume to correctly recover from a power event.
Two bits are used to enable this operation: Save State and Restore State.
xHCI spec 4.23.2 says software should "Set the Controller Save/Restore
State flag in the USBCMD register and wait for the Save/Restore State
Status flag in the USBSTS register to transition to '0'". However, it does
not define how long software should wait for the SSS/RSS bit to transition
to 0.
Currently the timeout is set to 1ms. There is bug report
(https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1002697)
indicates that the timeout is too short for ASMedia ASM1042 host controller
to save/restore the state successfully. Increase the timeout to 10ms helps to
resolve the issue.
This patch should be backported to stable kernels as old as 2.6.37, that
contain the commit 5535b1d5f8 "USB: xHCI:
PCI power management implementation"
Signed-off-by: Andiry Xu <andiry.xu@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Ming Lei <ming.lei@canonical.com>
Cc: stable@vger.kernel.org
This patch fixes an issue discovered by Dan Carpenter:
The patch 3b3db026414b: "xhci: Add infrastructure for host-specific
LPM policies." from May 9, 2012, leads to the following warning:
drivers/usb/host/xhci.c:3909 xhci_get_timeout_no_hub_lpm()
warn: signedness bug returning '-22'
3906 default:
3907 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
3908 __func__);
3909 return -EINVAL;
^^^^^^^^^^^^^^
This should be a u16 like USB3_LPM_DISABLED or something.
3910 }
3911
3912 if (sel <= max_sel_pel && pel <= max_sel_pel)
3913 return USB3_LPM_DEVICE_INITIATED;
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fengguang reports that the xHCI driver isn't linked properly on his
machine:
ERROR: "__udivdi3" [drivers/usb/host/xhci-hcd.ko] undefined!
ERROR: "handle_edge_irq" [drivers/gpio/gpio-pch.ko] undefined!
ERROR: "irq_to_desc" [drivers/gpio/gpio-pch.ko] undefined!
The driver compiles fine on my 64-bit box (gcc version 4.6.1).
Fengguang thinks it's because the xHCI driver was using DIV_ROUND_UP()
instead of DIV_ROUND_UP_ULL() with arguments that were unsigned long
long variables.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Wu Fengguang <wfg@linux.intel.com>
The USB 2.0 Link PM code is conditionally compiled when
CONFIG_USB_SUSPEND=y. I believe that's a mistake, since Link PM is not
directly related to USB device suspend and Link PM is implemented
without relying on any of the suspend code in the USB core. For now,
keep the USB 2.0 Link PM code conditionally compiled if
CONFIG_USB_SUSPEND=y.
This patch does move the code to implement USB 3.0 Link PM out of the
xHCI driver #ifdefs for CONFIG_USB_SUSPEND and moves it into a section
dependent on CONFIG_PM. The USB core functions for USB 3.0 Link PM are
already conditionally compiled when CONFIG_PM=y.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
All Intel xHCI host controllers support USB 3.0 Link Power Management.
The Panther Point xHCI host controller needs the xHCI driver to
calculate the U1 and U2 timeout values, because it will blindly accept a
MEL that would cause scheduling issues.
The Lynx Point xHCI host controller will reject MEL values that are too
high, but internally it implements the same algorithm that is needed for
Panther Point xHCI.
Simplify the code paths by just having the xHCI driver calculate what
the U1/U2 timeouts should be. Comments on the policy are in the code.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The choice of U1 and U2 timeouts for USB 3.0 Link Power Management (LPM)
is highly host controller specific. Here are a few examples of why it's
host specific:
1. Setting the U1/U2 timeout too short may cause the link to go into
U1/U2 in between service intervals, which some hosts may tolerate,
and some may not.
2. The host controller has to modify its bus schedule in order to take
into account the Maximum Exit Latency (MEL) to bring all the links
from the host to the device into U0. If the MEL is too big, and it
takes too long to bring the links into an active state, the host
controller may not be able to service periodic endpoints in time.
3. Host controllers may also have scheduling limitations that force
them to disable U1 or U2 if a USB device is behind too many tiers of
hubs.
We could take an educated guess at what U1/U2 timeouts may work for a
particular host controller. However, that would result in a binary
search on every new configuration or alt setting installation, with
multiple failed Evaluate Context commands. Worse, the host may blindly
accept the timeouts and just fail to update its schedule for U1/U2 exit
latencies, which could result in randomly delayed periodic transfers.
Since we don't want to cause jitter in periodic transfers, or delay
config/alt setting changes too much, lay down a framework that xHCI
vendors can extend in order to add their own U1/U2 timeout policies.
To extend the framework, they will need to:
- Modify the PCI init code to add a new xhci->quirk for their host, and
set the XHCI_LPM_SUPPORT quirk flag.
- Add their own vendor-specific hooks, like the ones that will be added
in xhci_call_host_update_timeout_for_endpoint() and
xhci_check_tier_policy()
- Make the LPM enable/disable methods call those functions based on the
xhci->quirk for their host.
An example will be provided for the Intel xHCI host controller in the
next patch.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The upcoming USB 3.0 Link PM patches will introduce new API to enable
and disable low-power link states. We must be able to disable LPM in
order to reset a device, or place the device into U3 (device suspend).
Therefore, we need to make sure the Evaluate Context command to disable
the LPM timeouts can't fail due to there being no room on the command
ring.
Introduce a new flag to the function that queues the Evaluate Context
command, command_must_succeed. This tells the ring handler that a TRB
has already been reserved for the command (by incrementing
xhci->cmd_ring_reserved_trbs), and basically ensures that prepare_ring()
won't fail. A similar flag was already implemented for the Configure
Endpoint command queuing function.
All functions that currently call xhci_configure_endpoint() to issue an
Evaluate Context command pass "false" for the "must_succeed" parameter,
so this patch should have no effect on current xHCI driver behavior.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This commit adds a bit-array to xhci bus_state for keeping track of
which ports are undergoing a resume transition. If any of the bits
are set when xhci_hub_status_data() is called, the routine will return
a non-zero value even if no ports have any status changes pending.
This will allow usbcore to handle races between root-hub suspend and
port wakeup.
This patch should be backported to kernels as old as 3.4, that contain
the commit 879d38e6bc "USB: fix race
between root-hub suspend and remote wakeup".
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: stable@vger.kernel.org
The xHCI 1.0 spec errata released on June 13, 2011, changes the ordering
that the xHCI registers are saved and restored in. It moves the
interrupt pending (IMAN) and interrupt control (IMOD) registers to be
saved and restored last. I believe that's because the host controller
may attempt to fetch the event ring table when interrupts are
re-enabled. Therefore we need to restore the event ring registers
before we re-enable interrupts.
This should be backported to kernels as old as 2.6.37, that contain the
commit 5535b1d5f8 "USB: xHCI: PCI power
management implementation"
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Elric Fu <elricfu1@gmail.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Cc: stable@vger.kernel.org
The xhci_save_registers() function saved the event ring dequeue pointer
in the s3 register structure, but xhci_restore_registers() never
restored it. No other code in the xHCI successful resume path would
ever restore it either. Fix that.
This should be backported to kernels as old as 2.6.37, that contain the
commit 5535b1d5f8 "USB: xHCI: PCI power
management implementation".
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Elric Fu <elricfu1@gmail.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Cc: stable@vger.kernel.org
Eric Fu reports a problem with his VIA host controller fetching a zeroed
event ring pointer on resume from suspend. The host should have been
halted, but we can't be sure because that code ignores the return value
from xhci_halt(). Print a warning when the host controller refuses to
halt within XHCI_MAX_HALT_USEC (currently 16 seconds).
(Update: it turns out that the VIA host controller is reporting a halted
state when it fetches the zeroed event ring pointer. However, we still
need this warning for other host controllers.)
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This adds a fairly simple xhci-platform driver support. Currently it is
used by the dwc3 driver for supporting host mode.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Update sg tablesize as we can expand the ring now.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
In the past, the room_on_ring() check was implemented by walking all over
the ring, which is wasteful and complicated.
Count the number of free TRBs instead. The free TRBs number should be
updated when enqueue/dequeue pointer is updated, or upon the completion
of a set dequeue pointer command.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
The latest released errata for USB2.0 ECN LPM adds new fields to USB2.0
extension descriptor, defines two BESL values for device: baseline BESL
and deep BESL. Baseline BESL value communicates a nominal power savings
design point and the deep BESL value communicates a significant power
savings design point.
If device indicates BESL value, driver will use a value count in both
host BESL and device BESL. Use baseline BESL value as default.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Tested-by: Jason Fan <jcfan@qca.qualcomm.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
There's really no point in having hcd->irq as a
signed integer when we consider the fact that
IRQ 0 means NO_IRQ. In order to avoid confusion,
make hcd->irq unsigned and fix users who were
passing -1 as the IRQ number to usb_add_hcd.
Tested-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Intel has a PCI USB xhci host controller on a new platform. It doesn't
have a line IRQ definition in BIOS. The Linux driver refuses to
initialize this controller, but Windows works well because it only depends
on MSI.
Actually, Linux also can work for MSI. This patch avoids the line IRQ
checking for USB3 HCDs in usb core PCI probe. It allows the xHCI driver
to try to enable MSI or MSI-X first. It will fail the probe if MSI
enabling failed and there's no legacy PCI IRQ.
This patch should be backported to kernels as old as 2.6.32.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
According to USB 3.0 Specification Table 9-22, if
bmAttributes [4:0] are set to zero, it means "no
streams supported", but the way this helper was
defined on Linux, we will *always* have one stream
which might cause several problems.
For example on DWC3, we would tell the controller
endpoint has streams enabled and yet start transfers
with Stream ID set to 0, which would goof up the host
side.
While doing that, convert the macro to an inline
function due to the different checks we now need.
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
I encountered a result of COMP_2ND_BW_ERR while improving how the pwc
webcam driver handles not having the full usb1 bandwidth available to
itself.
I created the following test setup, a NEC xhci controller with a
single TT USB 2 hub plugged into it, with a usb keyboard and a pwc webcam
plugged into the usb2 hub. This caused the following to show up in dmesg
when trying to stream from the pwc camera at its highest alt setting:
xhci_hcd 0000:01:00.0: ERROR: unexpected command completion code 0x23.
usb 6-2.1: Not enough bandwidth for altsetting 9
And usb_set_interface returned -EINVAL, which caused my pwc code to not
do the right thing as it expected -ENOSPC.
This patch makes the xhci driver properly handle COMP_2ND_BW_ERR and makes
usb_set_interface return -ENOSPC as expected.
This should be backported to stable kernels as old as 2.6.32.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
With devices that can need up to 128 segments (with 64 TRBs per
segment), we can't afford to print out the entire endpoint ring every
time an URB is canceled. Instead, print the offset of the TRB, along
with device pathname and endpoint number.
Only print DMA addresses, since virtual addresses of internal structures
are not useful. Change the cancellation code to be more clear about
what steps of the cancellation it is in the process of doing (queueing
the request, handling the stop endpoint command, turning the TDs into
no-ops, or moving the dequeue pointers).
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xHCI host controllers may not be capable of MSI, but they should be able
to be used in legacy PCI interrupt mode. Similarly, some xHCI host
controllers will have MSI support but not MSI-X support. Lower the
dmesg log level from an error to debug. The message won't appear unless
CONFIG_USB_XHCI_HCD_DEBUGGING is turned on.
If we need to find out whether the device can support MSI or MSI-X and
it's not being enabled by the driver, it's easy to ask the user to run
lspci.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When system enters suspend, xHCI driver clears command ring by writing zero
to all the TRBs. However, this also writes zero to the Link TRB, and the ring
is mangled. This may cause driver accesses wrong memory address and the
result is unpredicted.
When clear the command ring, keep the last Link TRB intact, only clear its
cycle bit. This should fix the "command ring full" issue reported by Oliver
Neukum.
This should be backported to stable kernels as old as 2.6.37, since the
commit 89821320 "xhci: Fix command ring replay after resume" is merged.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Oliver Neukum <oneukum@suse.de>
This patch (as1494) fixes a problem in xhci-hcd's resume routine.
When the controller is runtime-resumed, this can only mean that one of
the two root hubs has made a wakeup request and therefore needs to be
resumed as well. Rather than try to determine which root hub requires
attention (which might be difficult in the case where a new
non-SuperSpeed device has been plugged in), the patch simply resumes
both root hubs.
Without this change, there is a race: The controller might be put back
to sleep before it can activate its IRQ line, and the wakeup condition
might never get handled.
The patch also simplifies the logic in xhci_resume a little, combining
some repeated flag settings into a single pair of statements.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
CC: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@vger.kernel.org>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This removes the need of ifdefs within the init function and with it the
headache about the correct clean without bus X but with bus/platform Y &
Z.
xhci-pci is only compiled if CONFIG_PCI is selected which can be
de-selected now without trouble. For now the result is kinda useless
because we have no other glue code. However, since nobody is using
USB_ARCH_HAS_XHCI then it should not be an issue :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
xhci_gen_setup() is generic so it can be used to perform the bare xhci
setup even on non-pci based platform. The typedef for the function
pointer is moved into the headerfile
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The MSI related fuctionality requires a few structs which are not
available if CONFIG_PCI is not enabled. This is a prepartion to allow
xhci be built without CONFIG_PCI set.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch moves the complete MSI/MSI-X/Legacy dance into its own
function. There is however one difference: If the XHCI_BROKEN_MSI flag
is set then we don't free and register the irq, we simply return.
This is preparation for later PCI decouple.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
If the device pass the USB2 software LPM and the host supports hardware
LPM, enable hardware LPM for the device to let the host decide when to
put the link into lower power state.
If hardware LPM is enabled for a port and driver wants to put it into
suspend, it must first disable hardware LPM, resume the port into U0,
and then suspend the port.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch tests USB2 software LPM for a USB2 LPM-capable device.
When a lpm-capable device is addressed, if the host also supports software
LPM, apply a test by putting the device into L1 state and resume it to see
if the device can do L1 suspend/resume successfully.
If the device fails to enter L1 or resume from L1 state, it may not
function normally and usbcore may disconnect and re-enumerate it. In this
case, store the device's Vid and Pid information, make sure the host will
not test LPM for it twice.
The test result is per device/host. Some devices claim to be lpm-capable,
but fail to enter L1 or resume. So the test is necessary.
The xHCI 1.0 errata has modified the USB2.0 LPM implementation. It redefines
the HIRD field to BESL, and adds another register Port Hardware LPM Control
(PORTHLPMC). However, this should not affect the LPM behavior on xHC which
does not implement 1.0 errata.
USB2.0 LPM errata defines a new bit BESL in the device's USB 2.0 extension
descriptor. If the device reports it uses BESL, driver should use BESL
instead of HIRD for it.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The Intel Panther Point xHCI host tracks SuperSpeed endpoints in a
different way than USB 2.0/1.1 endpoints. The bandwidth interval tables
are not used, and instead the bandwidth is calculated in a very simple
way. Bandwidth for SuperSpeed endpoints is tracked individually in each
direction, since each direction has the full USB 3.0 bandwidth available.
10% of the bus bandwidth is reserved for non-periodic transfers.
This checking would be more complex if we had USB 3.0 LPM enabled, because
an additional latency for isochronous ping times need to be taken into
account. However, we don't have USB 3.0 LPM support in Linux yet.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
instead of reading the xhci interface version each time _even_ if the
quirk is not required, simply check if the quirk flag is set. This flag
is only set of the module parameter is set and here is where I moved the
version check to.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The xhci_hcd->devs is an array of pointers rather than pointer to pointer.
Hence this check is not required.
Signed-off-by: Sifram Rajas <Sifram Rajas sifram.rajas@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In xhci_urb_enqueue(), allocate a block of memory for all the TDs instead
of allocating memory for each of them separately. This reduces the number
of kzalloc calling when an isochronous usb is submitted.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now that we have a bandwidth interval table per root port or TT that
describes the endpoint bandwidth information, we can finally use it to
check whether the bus bandwidth is oversubscribed for a new device
configuration/alternate interface setting.
The complication for this algorithm is that the bit of hardware logic that
creates the bus schedule is only 12-bit logic. In order to make sure it
can represent the maximum bus bandwidth in 12 bits, it has to convert the
endpoint max packet size and max esit payload into "blocks" (basically a
less-precise representation). The block size for each speed of device is
different, aside from low speed and full speed. In order to make sure we
don't allow a setup where the scheduler might fail, we also have to do the
bandwidth checking in blocks.
After checking that the endpoints fit in the schedule, we store the
bandwidth used for this root port or TT. If this is a FS/LS device under
an external HS hub, we also update the TT bandwidth and the root port
bandwidth (if this is a newly activated or deactivated TT).
I won't go into the details of the algorithm, as it's pretty well
documented in the comments.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In order to update the root port or TT's bandwidth interval table, we will
need to keep track of a list of endpoints, per interval. That way we can
easily know the new largest max packet size when we have to remove an
endpoint.
Add an endpoint list for each root port or TT structure, sorted by
endpoint max packet size. Insert new endpoints into the list such that
the head of the list always has the endpoint with the greatest max packet
size. Only insert endpoints and update the interval table with new
information when those endpoints are periodic.
Make sure to update the number of active TTs when we add or drop periodic
endpoints. A TT is only considered active if it has one or more periodic
endpoints attached (control and bulk are best effort, and counted in the
20% reserved on the high speed bus). If the number of active endpoints
for a TT was zero, and it's now non-zero, increment the number of active
TTs for the rootport. If the number of active endpoints was non-zero, and
it's now zero, decrement the number of active TTs.
We have to be careful when we're checking the bandwidth for a new
configuration/alt setting. If we don't have enough bandwidth, we need to
be able to "roll back" the bandwidth information stored in the endpoint
and the root port/TT interval bandwidth table. We can't just create a
copy of the interval bandwidth table, modify it, and check the bandwidth
with the copy because we have lists of endpoints and entries can't be on
more than one list. Instead, we copy the old endpoint bandwidth
information, and use it to revert the interval table when the bandwidth
check fails.
We don't check the bandwidth after endpoints are dropped from the interval
table when a device is reset or freed after a disconnect, because having
endpoints use less bandwidth should not push the bandwidth usage over the
limits. Besides which, we can't fail a device disconnect.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
In the upcoming patches, we'll use some stored endpoint information to
make software keep track of the worst-case bandwidth schedule. We need to
store several variables associated with each periodic endpoint:
- the type of endpoint
- Max Packet Size
- Mult
- Max ESIT payload
- Max Burst Size (aka number of packets, stored in one-based form)
- the endpoint interval (normalized to powers of 2 microframes)
All this information is available to the hardware, and stored in its
device output context. However, we need to ensure that the new
information is stored before the xHCI driver drops the xhci->lock to wait
on the Configure Endpoint command, so that another driver requesting a
configuration or alt setting change will see the update. The Configure
Endpoint command will never fail on the hardware that needs this software
bandwidth checking (assuming the slot is enabled and the flags are set
properly), so updating the endpoint info before the command completes
should be fine.
Until we add in the bandwidth checking code, just update the endpoint
information after the Configure Endpoint command completes, and after a
Reset Device command completes. Don't bother to clear the endpoint
bandwidth info when a device is being freed, since the xhci_virt_ep is
just going to be freed anyway.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
For upcoming patches, we need to keep information about the bandwidth
domains under the xHCI host. Each root port is a separate primary
bandwidth domain, and each high speed hub's TT (and potentially each port
on a multi-TT hub) is a secondary bandwidth domain.
If the table were in text form, it would look a bit like this:
EP Interval Sum of Number Largest Max Max Packet
of Packets Packet Size Overhead
0 N mps overhead
...
15 N mps overhead
Overhead is the maximum packet overhead (for bit stuffing, CRC, protocol
overhead, etc) for all the endpoints in this interval. Devices with
different speeds have different max packet overhead. For example, if
there is a low speed and a full speed endpoint that both have an interval
of 3, we would use the higher overhead (the low speed overhead). Interval
0 is a bit special, since we really just want to know the sum of the max
ESIT payloads instead of the largest max packet size. That's stored in
the interval0_esit_payload variable. For root ports, we also need to keep
track of the number of active TTs.
For each root port, and each TT under a root port, store some information
about the bandwidth consumption. Dynamically allocate an array of root
port bandwidth information for the number of root ports on the xHCI host.
Each root port stores a list of TTs under the root port. A single TT hub
only has one entry in the list, but a multi-TT hub will have an entry per
port.
When the USB core says that a USB device is a hub, create one or more
entries in the root port TT list for the hub. When a device is deleted,
and it is a hub, search through the root port TT list and delete all
TT entries for the hub. Keep track of which TT entry is associated with a
device under a TT.
LS/FS devices attached directly to the root port will have usb_device->tt
set to the roothub. Ignore that, and treat it like a primary bandwidth
domain, since there isn't really a high speed bus between the roothub and
the host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Move the code to check whether we've reached the host controller's limit
on the number of endpoints out of the two conditional statements, to
remove duplicate code.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Some alternate interface settings have no endpoints associated with them.
This shows up in some USB webcams, particularly the Logitech HD 1080p,
which uses the uvcvideo driver. If a driver switches between two alt
settings with no endpoints, there is no need to issue a configure endpoint
command, because there is no endpoint information to update.
The only time a configure endpoint command with just the add slot flag set
makes sense is when the driver is updating hub characteristics in the slot
context. However, that code never calls xhci_check_bandwidth, so we
should be safe not issuing a command if only the slot context add flag is
set.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now ${LINUX}/drivers/usb/* can use usb_endpoint_maxp(desc) to get maximum packet size
instead of le16_to_cpu(desc->wMaxPacketSize).
This patch fix it up
Cc: Armin Fuerst <fuerst@in.tum.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Johannes Erdfelt <johannes@erdfelt.com>
Cc: Vojtech Pavlik <vojtech@suse.cz>
Cc: Oliver Neukum <oliver@neukum.name>
Cc: David Kubicek <dave@awk.cz>
Cc: Johan Hovold <jhovold@gmail.com>
Cc: Brad Hards <bhards@bigpond.net.au>
Acked-by: Felipe Balbi <balbi@ti.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Dahlmann <dahlmann.thomas@arcor.de>
Cc: David Brownell <david-b@pacbell.net>
Cc: David Lopo <dlopo@chipidea.mips.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Xie Xiaobo <X.Xie@freescale.com>
Cc: Li Yang <leoli@freescale.com>
Cc: Jiang Bo <tanya.jiang@freescale.com>
Cc: Yuan-hsin Chen <yhchen@faraday-tech.com>
Cc: Darius Augulis <augulis.darius@gmail.com>
Cc: Xiaochen Shen <xiaochen.shen@intel.com>
Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Cc: OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>
Cc: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Ben Dooks <ben@simtec.co.uk>
Cc: Thomas Abraham <thomas.ab@samsung.com>
Cc: Herbert Pötzl <herbert@13thfloor.at>
Cc: Arnaud Patard <arnaud.patard@rtp-net.org>
Cc: Roman Weissgaerber <weissg@vienna.at>
Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Tony Olech <tony.olech@elandigitalsystems.com>
Cc: Florian Floe Echtler <echtler@fs.tum.de>
Cc: Christian Lucht <lucht@codemercs.com>
Cc: Juergen Stuber <starblue@sourceforge.net>
Cc: Georges Toth <g.toth@e-biz.lu>
Cc: Bill Ryder <bryder@sgi.com>
Cc: Kuba Ober <kuba@mareimbrium.org>
Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a driver tries to cancel an URB, and the host controller is dying,
xhci_urb_dequeue will giveback the URB without removing the xhci_tds
that comprise that URB from the td_list or the cancelled_td_list. This
can cause a race condition between the driver calling URB dequeue and
the stop endpoint command watchdog timer.
If the timer fires on a dying host, and a driver attempts to resubmit
while the watchdog timer has dropped the xhci->lock to giveback a
cancelled URB, URBs may be given back by the xhci_urb_dequeue() function.
At that point, the URB's priv pointer will be freed and set to NULL, but
the TDs will remain on the td_list. This will cause an oops in
xhci_giveback_urb_in_irq() when the watchdog timer attempts to loop
through the endpoints' td_lists, giving back killed URBs.
Make sure that xhci_urb_dequeue() removes TDs from the TD lists and
canceled TD lists before it gives back the URB.
This patch should be backported to kernels as old as 2.6.36.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Cc: stable@kernel.org
When the isochronous transfer support was introduced, and the xHCI driver
switched to using urb->hcpriv to store an "urb_priv" pointer, a couple of
memory leaks were introduced into the URB enqueue function in its error
handling paths.
xhci_urb_enqueue allocates urb_priv, but it doesn't free it if changing
the control endpoint's max packet size fails or the bulk endpoint is in
the middle of allocating or deallocating streams.
xhci_urb_enqueue also doesn't free urb_priv if any of the four endpoint
types' enqueue functions fail. Instead, it expects those functions to
free urb_priv if an error occurs. However, the bulk, control, and
interrupt enqueue functions do not free urb_priv if the endpoint ring is
NULL. It will, however, get freed if prepare_transfer() fails in those
enqueue functions.
Several of the error paths in the isochronous endpoint enqueue function
also fail to free it. xhci_queue_isoc_tx_prepare() doesn't free urb_priv
if prepare_ring() indicates there is not enough room for all the
isochronous TDs in this URB. If individual isochronous TDs fail to be
queued (perhaps due to an endpoint state change), urb_priv is also leaked.
This argues that the freeing of urb_priv should be done in the function
that allocated it, xhci_urb_enqueue.
This patch looks rather ugly, but refactoring the code will have to wait
because this patch needs to be backported to stable kernels.
This patch should be backported to kernels as old as 2.6.36.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Cc: stable@kernel.org
Commit fccf4e8620
"USB: Free bandwidth when usb_disable_device is called" caused a bit of an
issue when the xHCI host controller driver is unloaded. It changed the
USB core to remove all endpoints when a USB device is disabled. When the
driver is unloaded, it will remove the SuperSpeed split root hub, which
will disable all devices under that roothub and then halt the host
controller. When the second High Speed split roothub is removed, the USB
core will attempt to disable the endpoints, which will submit a Configure
Endpoint command to a halted host controller.
The command will eventually time out, but it makes the xHCI driver unload
take *minutes* if there are a couple of USB 1.1/2.0 devices attached. We
must halt the host controller when the SuperSpeed roothub is removed,
because we can't allow any interrupts from things like port status
changes.
Make several different functions not submit commands or URBs to the host
controller when the host is halted, by adding a check in
xhci_check_args(). xhci_check_args() is used by these functions:
xhci.c-int xhci_urb_enqueue()
xhci.c-int xhci_drop_endpoint()
xhci.c-int xhci_add_endpoint()
xhci.c-int xhci_check_bandwidth()
xhci.c-void xhci_reset_bandwidth()
xhci.c-static int xhci_check_streams_endpoint()
xhci.c-int xhci_discover_or_reset_device()
It's also used by xhci_free_dev(). However, we have to take special
care in that case, because we want the device memory to be freed if the
host controller is halted.
This patch should be backported to the 2.6.39 and 3.0 kernel.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (115 commits)
EHCI: fix direction handling for interrupt data toggles
USB: serial: add IDs for WinChipHead USB->RS232 adapter
USB: OHCI: fix another regression for NVIDIA controllers
usb: gadget: m66592-udc: add pullup function
usb: gadget: m66592-udc: add function for external controller
usb: gadget: r8a66597-udc: add pullup function
usb: renesas_usbhs: support multi driver
usb: renesas_usbhs: inaccessible pipe is not an error
usb: renesas_usbhs: care buff alignment when dma handler
USB: PL2303: correctly handle baudrates above 115200
usb: r8a66597-hcd: fixup USB_PORT_STAT_C_SUSPEND shift
usb: renesas_usbhs: compile/config are rescued
usb: renesas_usbhs: fixup comment-out
usb: update email address in ohci-sh and r8a66597-hcd
usb: r8a66597-hcd: add function for external controller
EHCI: only power off port if over-current is active
USB: mon: Allow to use usbmon without debugfs
USB: EHCI: go back to using the system clock for QH unlinks
ehci: add pci quirk for Ordissimo and RM Slate 100 too
ehci: refactor pci quirk to use standard dmi_check_system method
...
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
The asrock p67 xhci controller completely dies on resume, add a
quirk for this, to bring the host back online after a suspend.
This should be backported to stable kernels as old as 2.6.37.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
It is one new TRB Completion Code for the xHCI spec v1.0.
Asserted if the xHC detects a problem with a device that does not allow it to
be successfully accessed, e.g. due to a device compliance or compatibility
problem. This error may be returned by any command or transfer, and is fatal
as far as the Slot is concerned. Return -EPROTO by urb->status or frame->status
of ISOC for transfer case. And return -ENODEV for configure endpoint command,
evaluate context command and address device command if there is an incompatible
Device Error. The error codes will be sent back to the USB core to decide how
to do. It's unnecessary for other commands because after the three commands run
successfully means that the device has been accepted.
Signed-off-by: Alex He <alex.he@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
While trying to switch a UAS device from the BOT configuration to the UAS
configuration via the bConfigurationValue file, Tanya ran into an issue in
the USB core. usb_disable_device() sets entries in udev->ep_out and
udev->ep_out to NULL, but doesn't call into the xHCI bandwidth management
functions to remove the BOT configuration endpoints from the xHCI host's
internal structures.
The USB core would then attempt to add endpoints for the UAS
configuration, and some of the endpoints had the same address as endpoints
in the BOT configuration. The xHCI driver blindly added the endpoints
again, but the xHCI host controller rejected the Configure Endpoint
command because active endpoints were added without being dropped.
Make the xHCI driver reject calls to xhci_add_endpoint() that attempt to
add active endpoints without first calling xhci_drop_endpoint().
This should be backported to kernels as old as 2.6.31.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Tanya Brokhman <tlinder@codeaurora.org>
Cc: stable@kernel.org
Some Fresco Logic hosts, including those found in the AUAU N533V laptop,
advertise MSI, but fail to actually generate MSI interrupts. Add a new
xHCI quirk to skip MSI enabling for the Fresco Logic host controllers.
Fresco Logic confirms that all chips with PCI vendor ID 0x1b73 and device
ID 0x1000, regardless of PCI revision ID, do not support MSI.
This should be backported to stable kernels as far back as 2.6.36, which
was the first kernel to support MSI on xHCI hosts.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Sergey Galanov <sergey.e.galanov@gmail.com>
Cc: stable@kernel.org
xHCI controllers respond to a Reset Device command when the Slot is in the
Enabled/Disabled state by returning an error. This is fine on other host
controllers, but the Etron xHCI host controller returns a vendor-specific
error code that the xHCI driver doesn't understand. The xHCI driver then
gives up on device enumeration.
Instead of issuing a command that will fail, just return. This fixes the
issue with the xhci driver not working on ASRock P67 Pro/Extreme boards.
This should be backported to stable kernels as far back as 2.6.34.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Some of the recently-added cpu_to_leXX and leXX_to_cpu made things somewhat
messy; this patch neatens some of these areas, removing unnecessary casts
in those parts also. In some places (where Y & Z are constants) a
comparison of (leXX_to_cpu(X) & Y) == Z has been replaced with
(X & cpu_to_leXX(Y)) == cpu_to_leXX(Z). The endian reversal of the
constants should wash out at compile time.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Commit 834cb0fc47 "xhci: Fix memory leak
bug when dropping endpoints" added a small endian bug. This patch fixes
xhci_check_bandwidth() to read add/drop_flags LE.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The Panther Point chipset has an xHCI host controller that has a limit to
the number of active endpoints it can handle. Ideally, it would signal
that it can't handle anymore endpoints by returning a Resource Error for
the Configure Endpoint command, but they don't. Instead it needs software
to keep track of the number of active endpoints, across configure endpoint
commands, reset device commands, disable slot commands, and address device
commands.
Add a new endpoint context counter, xhci_hcd->num_active_eps, and use it
to track the number of endpoints the xHC has active. This gets a little
tricky, because commands to change the number of active endpoints can
fail. This patch adds a new xHCI quirk for these Intel hosts, and the new
code should not have any effect on other xHCI host controllers.
Fail a new device allocation if we don't have room for the new default
control endpoint. Use the endpoint ring pointers to determine what
endpoints were active before a Reset Device command or a Disable Slot
command, and drop those once the command completes.
Fail a configure endpoint command if it would add too many new endpoints.
We have to be a bit over zealous here, and only count the number of new
endpoints to be added, without subtracting the number of dropped
endpoints. That's because a second configure endpoint command for a
different device could sneak in before we know if the first command is
completed. If the first command dropped resources, the host controller
fails the command for some reason, and we're nearing the limit of
endpoints, we could end up oversubscribing the host.
To fix this race condition, when evaluating whether a configure endpoint
command will fix in our bandwidth budget, only add the new endpoints to
xhci->num_active_eps, and don't subtract the dropped endpoints. Ignore
changed endpoints (ones that are dropped and then re-added), as that
shouldn't effect the host's endpoint resources. When the configure
endpoint command completes, subtract off the dropped endpoints.
This may mean some configuration changes may temporarily fail, but it's
always better to under-subscribe than over-subscribe resources.
(Originally my plan had been to push the resource allocation down into the
ring allocation functions. However, that would cause us to allocate
unnecessary resources when endpoints were changed, because the xHCI driver
allocates a new ring for the changed endpoint, and only deletes the old
ring once the Configure Endpoint command succeeds. A further complication
would have been dealing with the per-device endpoint ring cache.)
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When the xHCI host controller dies, the USB core may attempt to reset the
devices to their default configuration before disconnecting them. This
causes calls into the xHCI bandwidth allocation functions. Don't allow
those functions to submit commands or work on xHCI structures if the host
controller is marked as dying.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When the USB core wants to change to an alternate interface setting that
doesn't include an active endpoint, or de-configuring the device, the xHCI
driver needs to issue a Configure Endpoint command to tell the host to
drop some endpoints from the schedule. After the command completes, the
xHCI driver needs to free rings for any endpoints that were dropped.
Unfortunately, the xHCI driver wasn't actually freeing the endpoint rings
for dropped endpoints. The rings would be freed if the endpoint's
information was simply changed (and a new ring was installed), but dropped
endpoints never had their rings freed. This caused errors when the ring
segment DMA pool was freed when the xHCI driver was unloaded:
[ 5582.883995] xhci_hcd 0000:06:00.0: dma_pool_destroy xHCI ring segments, ffff88003371d000 busy
[ 5582.884002] xhci_hcd 0000:06:00.0: dma_pool_destroy xHCI ring segments, ffff880033716000 busy
[ 5582.884011] xhci_hcd 0000:06:00.0: dma_pool_destroy xHCI ring segments, ffff880033455000 busy
[ 5582.884018] xhci_hcd 0000:06:00.0: Freed segment pool
[ 5582.884026] xhci_hcd 0000:06:00.0: Freed device context pool
[ 5582.884033] xhci_hcd 0000:06:00.0: Freed small stream array pool
[ 5582.884038] xhci_hcd 0000:06:00.0: Freed medium stream array pool
[ 5582.884048] xhci_hcd 0000:06:00.0: xhci_stop completed - status = 1
[ 5582.884061] xhci_hcd 0000:06:00.0: USB bus 3 deregistered
[ 5582.884193] xhci_hcd 0000:06:00.0: PCI INT A disabled
Fix this issue and free endpoint rings when their endpoints are
successfully dropped.
This patch should be backported to kernels as old as 2.6.31.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
This is a new TRB Completion Code of the xHCI spec 1.0.
Asserted by the Evalute Context Command if the proposed Max Exit Latency would
not allow the periodic endpoints of the Device Slot to be scheduled.
Signed-off-by: Alex He <alex.he@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xHCI 1.0 spec says the TT Think Time field shall be set to zero if the device
is not a High-speed hub.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Sparse complains about the arguments to xhci_evaluate_context_result() and
xhci_configure_endpoint_result():
CHECK drivers/usb/host/xhci.c
drivers/usb/host/xhci.c:1647:53: warning: incorrect type in argument 3 (different signedness)
drivers/usb/host/xhci.c:1647:53: expected int *cmd_status
drivers/usb/host/xhci.c:1647:53: got unsigned int [usertype] *[assigned] cmd_status
drivers/usb/host/xhci.c:1648:50: warning: incorrect type in argument 3 (different signedness)
drivers/usb/host/xhci.c:1648:50: expected int *cmd_status
drivers/usb/host/xhci.c:1648:50: got unsigned int [usertype] *[assigned] cmd_status
The command status is taken from the command completion event TRB, and
will always be a positive number. Change the signature of
xhci_evaluate_context_result() and xhci_configure_endpoint_result() to
take a u32 for cmd_status.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
During a "plug-unplug" stress test on an NEC xHCI card, a null pointer
dereference was observed. xhci_address_device() dereferenced a null
virt_dev (possibly an erroneous udev->slot_id?); this patch adds a WARN_ON &
message to aid debug if it can be recreated.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch changes the struct members defining access to xHCI device-visible
memory to use __le32/__le64 where appropriate, and then adds swaps where
required. Checked with sparse that all accesses are correct.
MMIO accesses use readl/writel so already are performed LE, but prototypes
now reflect this with __le*.
There were a couple of (debug) instances of DMA pointers being truncated to
32bits which have been fixed too.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch disable the optional PM feature inside the Hudson3 platform under
the following conditions:
1. If an isochronous device is connected to xHCI port and is active;
2. Optional PM feature that powers down the internal Bus PLL when the link is
in low power state is enabled.
The PM feature needs to be disabled to eliminate PLL startup delays when the
link comes out of low power state. The performance of DMA data transfer could
be impacted if system delay were encountered and in addition to the PLL start
up delays. Disabling the PM would leave room for unpredictable system delays
in order to guarantee uninterrupted data transfer to isochronous audio or
video stream devices that require time sensitive information. If data in an
audio/video stream was interrupted then erratic audio or video performance
may be encountered.
AMD PLL quirk is already implemented in OHCI/EHCI driver. After moving the
quirk code to pci-quirks.c and export them, xHCI driver can call it directly
without having the quirk implementation in itself.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
On a resume, when the power is lost during hibernate, the USB core will
call hub_reset_resume for the xHCI USB 2.0 roothub, but not for the USB
3.0 roothub:
[ 164.748310] usb usb1: root hub lost power or was reset
[ 164.748353] usb usb2: root hub lost power or was reset
[ 164.748487] usb usb3: root hub lost power or was reset
[ 164.748488] xhci_hcd 0000:01:00.0: Stop HCD
...
[ 164.870039] hub 4-0:1.0: hub_resume
...
[ 164.870054] hub 3-0:1.0: hub_reset_resume
This causes issues later, because the USB core assumes the USB 3.0 hub
attached to the USB 3.0 roothub is still active. It attempts to queue a
control URB for the external hub, which fails because all the device
slot contexts were released when the USB 3.0 roothub lost power:
[ 164.980044] hub 4-1:1.0: hub_resume
[ 164.980047] xhci_hcd 0000:01:00.0: Get port status returned 0x10101
[ 164.980049] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980053] hub 3-0:1.0: port 1: status 0101 change 0001
[ 164.980056] hub 4-1:1.0: hub_port_status failed (err = -22)
[ 164.980060] xhci_hcd 0000:01:00.0: `MEM_WRITE_DWORD(3'b000, 32'hffffc90008948440, 32'h202e1, 4'hf);
[ 164.980062] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980066] xhci_hcd 0000:01:00.0: clear port connect change, actual port 0 status = 0x2e1
[ 164.980069] hub 4-1:1.0: hub_port_status failed (err = -22)
[ 164.980072] xhci_hcd 0000:01:00.0: get port status, actual port 1 status = 0x2a0
[ 164.980074] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980077] xhci_hcd 0000:01:00.0: Get port status returned 0x100
[ 164.980079] hub 4-1:1.0: hub_port_status failed (err = -22)
[ 164.980082] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980085] hub 4-1:1.0: hub_port_status failed (err = -22)
[ 164.980088] hub 4-1:1.0: port 4: status 0000 change 0000
[ 164.980091] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980094] hub 4-1:1.0: activate --> -22
[ 164.980113] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980117] hub 4-1:1.0: hub_port_status failed (err = -22)
[ 164.980119] xHCI xhci_urb_enqueue called with unaddressed device
[ 164.980123] hub 4-1:1.0: can't resume port 4, status -22
[ 164.980126] hub 4-1:1.0: port 4 status ffff.ffff after resume, -22
[ 164.980129] usb 4-1.4: can't resume, status -22
[ 164.980131] hub 4-1:1.0: logical disconnect on port 4
This causes issues when a USB 3.0 hard drive is attached to the external
USB 3.0 hub when the system is hibernated:
[ 6249.849653] sd 8:0:0:0: [sdb] Unhandled error code
[ 6249.849659] sd 8:0:0:0: [sdb] Result: hostbyte=DID_ERROR driverbyte=DRIVER_OK
[ 6249.849663] sd 8:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 2a 08 00 00 02 00
[ 6249.849671] end_request: I/O error, dev sdb, sector 10760
Make sure to inform the USB core that *both* xHCI roothubs lost power.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Currently, when resetting a device, xHCI driver disables all but one
endpoints and frees their rings, but leaves alone any streams that
might have been allocated. Later, when users try to free allocated
streams, we oops in xhci_setup_no_streams_ep_input_ctx() because
ep->ring is NULL.
Let's free not only rings but also stream data as well, so that
calling free_streams() on a device that was reset will be safe.
This should be queued for stable trees back to 2.6.35.
Reviewed-by: Micah Elizabeth Scott <micah@vmware.com>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (172 commits)
USB: Add support for SuperSpeed isoc endpoints
xhci: Clean up cycle bit math used during stalls.
xhci: Fix cycle bit calculation during stall handling.
xhci: Update internal dequeue pointers after stalls.
USB: Disable auto-suspend for USB 3.0 hubs.
USB: Remove bogus USB_PORT_STAT_SUPER_SPEED symbol.
xhci: Return canceled URBs immediately when host is halted.
xhci: Fixes for suspend/resume of shared HCDs.
xhci: Fix re-init on power loss after resume.
xhci: Make roothub functions deal with device removal.
xhci: Limit roothub ports to 15 USB3 & 31 USB2 ports.
xhci: Return a USB 3.0 hub descriptor for USB3 roothub.
xhci: Register second xHCI roothub.
xhci: Change xhci_find_slot_id_by_port() API.
xhci: Refactor bus suspend state into a struct.
xhci: Index with a port array instead of PORTSC addresses.
USB: Set usb_hcd->state and flags for shared roothubs.
usb: Make core allocate resources per PCI-device.
usb: Store bus type in usb_hcd, not in driver flags.
usb: Change usb_hcd->bandwidth_mutex to a pointer.
...
When the xHCI host controller is halted, it won't respond to commands
placed on the command ring. So if an URB is cancelled after the first
roothub is deallocated, it will try to place a stop endpoint command on
the command ring, which will fail. The command watchdog timer will fire
after five seconds, and the host controller will be marked as dying, and
all URBs will be completed.
Add a flag to the xHCI's internal state variable for when the host
controller is halted. Immediately return the canceled URB if the host
controller is halted.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Make sure the HCD_FLAG_HW_ACCESSIBLE flag is mirrored by both roothubs,
since it refers to whether the shared hardware is accessible. Make sure
each bus is marked as suspended by setting usb_hcd->state to
HC_STATE_SUSPENDED when the PCI host controller is resumed.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When a host controller has lost power during a suspend, we must
reinitialize it. Now that the xHCI host has two roothubs, xhci_run() and
xhci_stop() expect to be called with both usb_hcd structures. Be sure
that the re-initialization code in xhci_resume() mirrors the process the
USB PCI probe function uses.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This patch changes the xHCI driver to allocate two roothubs. This touches
the driver initialization and shutdown paths, roothub emulation code, and
port status change event handlers. This is a rather large patch, but it
can't be broken up, or it would break git-bisect.
Make the xHCI driver register its own PCI probe function. This will call
the USB core to create the USB 2.0 roothub, and then create the USB 3.0
roothub. This gets the code for registering a shared roothub out of the
USB core, and allows other HCDs later to decide if and how many shared
roothubs they want to allocate.
Make sure the xHCI's reset method marks the xHCI host controller's primary
roothub as the USB 2.0 roothub. This ensures that the high speed bus will
be processed first when the PCI device is resumed, and any USB 3.0 devices
that have migrated over to high speed will migrate back after being reset.
This ensures that USB persist works with these odd devices.
The reset method will also mark the xHCI USB2 roothub as having an
integrated TT. Like EHCI host controllers with a "rate matching hub" the
xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller.
It doesn't really have a TT, but we'll lie and say it has an integrated
TT. We need to do this because the USB core will reject LS/FS devices
under a HS hub without a TT.
Other details:
-------------
The roothub emulation code is changed to return the correct number of
ports for the two roothubs. For the USB 3.0 roothub, it only reports the
USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS
ports. The code to disable a port now checks the speed of the roothub,
and refuses to disable SuperSpeed ports under the USB 3.0 roothub.
The code for initializing a new device context must be changed to set the
proper roothub port number. Since we've split the xHCI host into two
roothubs, we can't just use the port number in the ancestor hub. Instead,
we loop through the array of hardware port status register speeds and find
the Nth port with a similar speed.
The port status change event handler is updated to figure out whether the
port that reported the change is a USB 3.0 port, or a non-SuperSpeed port.
Once it figures out the port speed, it kicks the proper roothub.
The function to find a slot ID based on the port index is updated to take
into account that the two roothubs will have over-lapping port indexes.
It checks that the virtual device with a matching port index is the same
speed as the passed in roothub.
There's also changes to the driver initialization and shutdown paths:
1. Make sure that the xhci_hcd pointer is shared across the two
usb_hcd structures. The xhci_hcd pointer is allocated and the
registers are mapped in when xhci_pci_setup() is called with the
primary HCD. When xhci_pci_setup() is called with the non-primary
HCD, the xhci_hcd pointer is stored.
2. Make sure to set the sg_tablesize for both usb_hcd structures. Set
the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit
DMA. (The PCI DMA mask is set from the primary HCD further down in
the xhci_pci_setup() function.)
3. Ensure that the host controller doesn't start kicking khubd in
response to port status changes before both usb_hcd structures are
registered. xhci_run() only starts the xHC running once it has been
called with the non-primary roothub. Similarly, the xhci_stop()
function only halts the host controller when it is called with the
non-primary HCD. Then on the second call, it resets and cleans up the
MSI-X irqs.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
There are several variables in the xhci_hcd structure that are related to
bus suspend and resume state. There are a couple different port status
arrays that are accessed by port index. Move those variables into a
separate structure, xhci_bus_state. Stash that structure in xhci_hcd.
When we have two roothhubs that can be suspended and resumed separately,
we can have two xhci_bus_states, and index into the port arrays in each
structure with the fake roothub port index (not the real hardware port
index).
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Make sure to call into the USB core's link, unlink, and giveback URB
functions with the usb_hcd pointer found by using urb->dev->bus. This
will avoid confusion later, when the xHCI driver will deal with URBs from
two separate buses (the USB 3.0 roothub and the faked USB 2.0 roothub).
Assume xhci_urb_dequeue() will be called with the proper usb_hcd.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The USB core will set hcd->state to HC_STATE_RUNNING before calling
xhci_run, so there's no point in setting it twice. The USB core also
doesn't pay attention to HC_STATE_RUNNING on the resume path anymore; it
uses HCD_RH_RUNNING(), which looks at hcd->flags & (1U <<
HCD_FLAG_RH_RUNNING. Therefore, it's safe to remove the state set in
xhci_bus_resume().
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The xHCI driver doesn't ever test hcd->state for HC_STATE_HALT. The USB
core recently stopped using it internally, so there's no point in setting
it in the driver. We still need to set HC_STATE_RUNNING in order to make
it past the USB core's hcd->state check in register_roothub().
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xHCI 1.0 spec specifies the xHC shall halt within 16ms after software clears
Run/Stop bit. In xHCI 0.96 spec the time limit is 16 microframes (2ms), it's
too short and often cause dmesg shows "Host controller not halted, aborting
reset." message when rmmod xhci-hcd.
Modify the time limit to comply with xHCI 1.0 specification and prevents the
warning message showing when remove xhci-hcd.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Set hcd->state = HC_STATE_SUSPENDED if there is a power loss during system
resume or the system is hibernated, otherwise leave it be. The variable
old_state is redundant and made an unreachable code path, so remove it.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
The test of placing a number of command no-ops on the command ring and
counting the number of no-op events that were generated was only used
during the initial xHCI driver bring up. This test is no longer used, so
delete it.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Functions that are not used outsde of the module they are defined
should be marked as static.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
xhci->ir_set points to __iomem region, but xhci_print_ir_set accepts
plain struct xhci_intr_reg * causing multiple sparse warning at call
sites and inside the fucntion when we try to read that memory.
Instead of adding __iomem qualifier to the argument let's rework the
function so it itself gets needed register set from xhci and prints
it.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
When xhci_discover_or_reset_device() is called after a host controller
power loss, the virtual device may need to be reallocated. Make sure
xhci_alloc_dev() uses GFP_NOIO. This avoid causing a deadlock by allowing
the kernel to flush pending I/O while reallocating memory for a virtual
device for a USB mass storage device that's holding the backing store for
dirty memory buffers.
This patch should be queued for the 2.6.37 stable tree.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Synchronize the interrupts instead of free them in xhci_suspend(). This will
prevent a double free when the host is suspended and then the card removed.
Set the flag hcd->msix_enabled when using MSI-X, and check the flag in
suspend_common(). MSI-X synchronization will be handled by xhci_suspend(),
and MSI/INTx will be synchronized in suspend_common().
This patch should be queued for the 2.6.37 stable tree.
Reported-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
We have been having problems with the USB-IF Gold Tree tests when plugging
and unplugging devices from the tree. I have seen that the reset-device
and configure-endpoint commands, which are invoked from
xhci_discover_or_reset_device() and xhci_configure_endpoint(), will sometimes
time out.
After much debugging, I determined that the commands themselves do not actually
time out, but rather their completion events do not get delivered to the right
place.
This happens when the command ring has just wrapped around, and it's enqueue
pointer is left pointing to the link TRB. xhci_discover_or_reset_device() and
xhci_configure_endpoint() use the enqueue pointer directly as their command
TRB pointer, without checking whether it's pointing to the link TRB.
When the completion event arrives, if the command TRB is pointing to the link
TRB, the check against the command ring dequeue pointer in
handle_cmd_in_cmd_wait_list() fails, so the completion inside the command does
not get signaled.
The patch below fixes the timeout problem for me.
This should be queued for the 2.6.35 and 2.6.36 stable trees.
Signed-off-by: Paul Zimmerman <paulz@synopsys.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Andiry's xHCI bus suspend patch introduced the possibly of a host
controller replaying old commands on the command ring, if the host
successfully restores the registers after a resume.
After a resume from suspend, the xHCI driver must restore the registers,
including the command ring pointer. I had suggested that Andiry set the
command ring pointer to the current command ring dequeue pointer, so that
the driver wouldn't have to zero the command ring.
Unfortunately, setting the command ring pointer to the current dequeue
pointer won't work because the register assumes the pointer is 64-byte
aligned, and TRBs on the command ring are 16-byte aligned. The lower
seven bits will always be masked off, leading to the written pointer being
up to 3 TRBs behind the intended pointer.
Here's a log excerpt. On init, the xHCI driver places a vendor-specific
command on the command ring:
[ 215.750958] xhci_hcd 0000:01:00.0: Vendor specific event TRB type = 48
[ 215.750960] xhci_hcd 0000:01:00.0: NEC firmware version 30.25
[ 215.750962] xhci_hcd 0000:01:00.0: Command ring deq = 0x3781e010 (DMA)
When we resume, the command ring dequeue pointer to be written should have
been 0x3781e010. Instead, it's 0x3781e000:
[ 235.557846] xhci_hcd 0000:01:00.0: // Setting command ring address to 0x3781e001
[ 235.557848] xhci_hcd 0000:01:00.0: `MEM_WRITE_DWORD(3'b000, 64'hffffc900100bc038, 64'h3781e001, 4'hf);
[ 235.557850] xhci_hcd 0000:01:00.0: `MEM_WRITE_DWORD(3'b000, 32'hffffc900100bc020, 32'h204, 4'hf);
[ 235.557866] usb usb9: root hub lost power or was reset
(I can't see the results of this bug because the xHCI restore always fails
on this box, and the xHCI driver re-allocates everything.)
The fix is to zero the command ring and put the software and hardware
enqueue and dequeue pointer back to the beginning of the ring. We do this
before the system suspends, to be paranoid and prevent the BIOS from
starting the host without clearing the command ring pointer, which might
cause the host to muck with stale memory. (The pointer isn't required to
be in the suspend power well, but it could be.) The command ring pointer
is set again after the host resumes.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Andiry Xu <andiry.xu@amd.com>
Jiri Slaby reports spinlock is held while calling kmalloc(GFP_KERNEL)
and request_irq() in xhci_resume().
Release the spinlock when setup interrupt.
Reported-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
This reverts commit ef821ae70f.
The correct thing to do is to drop the spinlock, not change
the GFP flag here.
Thanks to Sarah for pointing out I shouldn't have taken this patch in
the first place.
Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
coccinelle check scripts/coccinelle/locks/call_kern.cocci found that
in drivers/usb/host/xhci.c an allocation with GFP_KERNEL is done
with locks held:
xhci_resume
spin_lock_irq(xhci->lock)
xhci_setup_msix
kmalloc(GFP_KERNEL)
Change it to GFP_ATOMIC.
Signed-off-by: David Sterba <dsterba@suse.cz>
CC: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Fix this error when CONFIG_PM is not enabled:
drivers/usb/host/xhci.c:675: error: implicit declaration of function 'usb_root_hub_lost_power'
Wrap xhci_suspend() and xhci_resume() into an ifdef CONFIG_PM, along with
the functions that only they call -- xhci_save_registers() and
xhci_restore_registers().
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch implements the PCI suspend/resume.
Please refer to xHCI spec for doing the suspend/resume operation.
For S3, CSS/SRS in USBCMD is used to save/restore the internal state.
However, an error maybe occurs while restoring the internal state.
In this case, it means that HC internal state is wrong and HC will be
re-initialized.
Signed-off-by: Libin Yang <libin.yang@amd.com>
Signed-off-by: Dong Nguyen <dong.nguyen@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add software trigger USB device suspend resume function hook.
Do port suspend & resume in terms of xHCI spec.
Port Suspend:
Stop all endpoints via Stop Endpoint Command with Suspend (SP) flag set.
Place individual ports into suspend mode by writing '3' for Port Link State
(PLS) field into PORTSC register. This can only be done when the port is in
Enabled state. When writing, the Port Link State Write Strobe (LWS) bit shall
be set to '1'.
Allocate an xhci_command and stash it in xhci_virt_device to wait completion for
the last Stop Endpoint Command. Use the Suspend bit in TRB to indicate the Stop
Endpoint Command is for port suspend. Based on Sarah's suggestion.
Port Resume:
Write '0' in PLS field, device will transition to running state.
Ring an endpoints' doorbell to restart it.
Ref: USB device remote wake need another patch to implement. For details of
how USB subsystem do power management, please see:
Documentation/usb/power-management.txt
Signed-off-by: Crane Cai <crane.cai@amd.com>
Signed-off-by: Libin Yang <libin.yang@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
xHCI driver uses hardware assigned device address. This may cause device
address conflict in certain cases.
Use kernel assigned address for devices under xHCI. Store the xHC assigned
address locally in xHCI driver.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Rename xhci_reset_device() to xhci_discover_or_reset_device().
If xhci_discover_or_reset_device() is called to reset a device which does
not exist or does not match the udev, it calls xhci_alloc_dev() to
re-allocate the device.
This would prevent the reset device failure, possibly due to the xHC restore
error during S3/S4 resume.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add a pointer to udev in struct xhci_virt_device. When allocate a new
virt_device, make the pointer point to the corresponding udev.
Modify xhci_check_args(), check if virt_dev->udev matches the target udev,
to make sure command is issued to the right device.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Most of the work for interrupt handling is done in xhci-ring.c, so it makes
sense to move the functions that are first called when an interrupt happens
(xhci_irq() or xhci_msi_irq()) into xhci-ring.c, so that the compiler can better
optimize them.
Shorten some lines to make it pass checkpatch.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
I've been using perf to measure the top symbols while transferring 1GB of data
on a USB 3.0 drive with dd. This is using the raw disk with /dev/sdb, with a
block size of 1K.
During performance testing, the top symbol was xhci_triad_to_transfer_ring(), a
function that should return immediately if streams are not enabled for an
endpoint. It turned out that the functions to find the endpoint ring was
defined in xhci-mem.c and used in xhci-ring.c and xhci-hcd.c. I moved a copy of
xhci_triad_to_transfer_ring() and xhci_urb_to_transfer_ring() into xhci-ring.c
and declared them static. I also made a static version of
xhci_urb_to_transfer_ring() in xhci.c.
This improved throughput on a 1GB read of the raw disk with dd from
186MB/s to 195MB/s, and perf reported sampling the xhci_triad_to_transfer_ring()
0.06% of the time, rather than 9.26% of the time.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add urb_priv data structure to xHCI driver. This structure allows multiple
xhci TDs to be linked to one urb, which is essential for isochronous
transfer. For non-isochronous urb, only one TD is needed for one urb;
for isochronous urb, the TD number for the urb is equal to
urb->number_of_packets.
The length field of urb_priv indicates the number of TDs in the urb.
The td_cnt field indicates the number of TDs already processed by xHC.
When td_cnt matches length, the urb can be given back to usbcore.
When an urb is dequeued or cancelled, add all the unprocessed TDs to the
endpoint's cancelled_td_list. When process a cancelled TD, increase
td_cnt field. When td_cnt equals urb_priv->length, giveback the
cancelled urb.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Enable MSI/MSI-X supporting in xhci driver.
Provide the mechanism to fall back using MSI and Legacy IRQs
if MSI-X IRQs register failed.
Signed-off-by: Dong Nguyen <Dong.Nguyen@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>,
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1393) converts several of the single-bit fields in
struct usb_hcd to atomic flags. This is for safety's sake; not all
CPUs can update bitfield values atomically, and these flags are used
in multiple contexts.
The flag fields that are set only during registration or removal can
remain as they are, since non-atomic accesses at those times will not
cause any problems.
(Strictly speaking, the authorized_default flag should become atomic
as well. I didn't bother with it because it gets changed only via
sysfs. It can be done later, if anyone wants.)
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When code to manipulate the command register was refactored from
xhci_run() to xhci_start(), a debugging statement was left behind that no
longer applies. Remove that statement.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Sergei Shtylyov <sshtylyov@mvista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a configured device is reset, the control endpoint's ring is reused.
If control transfers to the device were issued before the device is reset,
the dequeue pointer will be somewhere in the middle of the ring. If the
device is then issued an address with the set address command, the xHCI
driver must provide a valid input context for control endpoint zero.
The original code would give the hardware the original input context,
which had a dequeue pointer set to the top of the ring. This would cause
the host to re-execute any control transfers until it reached the ring's
enqueue pointer. When issuing a set address command for a device that has
just been configured and then reset, use the control endpoint's enqueue
pointer as the hardware's dequeue pointer.
Assumption: All control transfers will be completed or cancelled before
the set address command is issued to the device. If there are any
outstanding control transfers, this code will not work.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The NEC xHCI host controller firmware version can be found by putting a
vendor-specific command on the command ring and extracting the BCD
encoded-version out of the vendor-specific event TRB.
The firmware version debug line in dmesg will look like:
xhci_hcd 0000:05:00.0: NEC firmware version 30.21
(NEC merged with Renesas Technologies and became Renesas Electronics on
April 1, 2010. I have their OK to merge this vendor-specific code.)
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Satoshi Otani <satoshi.otani.xm@renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When the run bit is set in the xHCI command register, it may take a few
microseconds for the host to start running. We cannot ring any doorbells
until the host is actually running, so wait until the status register says
the host is running.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Shinya Saito <shinya.saito.sx@renesas.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
After software resets an xHCI host controller, it must wait for the
"Controller Not Ready" (CNR) bit in the status register to be cleared.
Software is not supposed to ring any doorbells or write to any registers
except the status register until this bit is cleared.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
After using state stored in xhci_virt_ep to clean up a stalled endpoint,
be sure to set the stalled stream ID back to 0.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a device is disconnected, xhci_free_virt_device() is called. Ramya
found that if the device had streams enabled, and then the driver freed
the streams with a call to usb_free_streams(), then about a minute after
he had called this, his machine crashed with a Bad DMA error. It turns
out that xhci_free_virt_device() would attempt to free the endpoint's
stream_info data structure if it wasn't NULL, and the free streams
function was not setting it to NULL after freeing it.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Ramya Desai <ramya.desai@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1375) eliminates the usb_host_ss_ep_comp structure used
for storing a dynamically-allocated copy of the SuperSpeed endpoint
companion descriptor. The SuperSpeed descriptor is placed directly in
the usb_host_endpoint structure, alongside the standard endpoint
descriptor.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Much of the xHCI driver code assumes that endpoints only have one ring.
Now an endpoint can have one ring per enabled stream ID, so correct that
assumption. Use functions that translate the stream_id field in the URB
or the DMA address of a TRB into the correct stream ring.
Correct the polling loop to print out all enabled stream rings. Make the
URB cancellation routine find the correct stream ring if the URB has
stream_id set. Make sure the URB enqueueing routine does the same. Also
correct the code that handles stalled/halted endpoints.
Check that commands and registers that can take stream IDs handle them
properly. That includes ringing an endpoint doorbell, resetting a
stalled/halted endpoint, and setting a transfer ring dequeue pointer
(since that command can set the dequeue pointer in a stream context or an
endpoint context).
Correct the transfer event handler to translate a TRB DMA address into the
stream ring it was enqueued to. Make the code to allocate and prepare TD
structures adds the TD to the right td_list for the stream ring. Make
sure the code to give the first TRB in a TD to the hardware manipulates
the correct stream ring.
When an endpoint stalls, store the stream ID of the stream ring that
stalled in the xhci_virt_ep structure. Use that instead of the stream ID
in the URB, since an URB may be re-used after it is given back after a
non-control endpoint stall.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add support for allocating streams for USB 3.0 bulk endpoints. See
Documentation/usb/bulk-streams.txt for more information about how and why
you would use streams.
When an endpoint has streams enabled, instead of having one ring where all
transfers are enqueued to the hardware, it has several rings. The ring
dequeue pointer in the endpoint context is changed to point to a "Stream
Context Array". This is basically an array of pointers to transfer rings,
one for each stream ID that the driver wants to use.
The Stream Context Array size must be a power of two, and host controllers
can place a limit on the size of the array (4 to 2^16 entries). These
two facts make calculating the size of the Stream Context Array and the
number of entries actually used by the driver a bit tricky.
Besides the Stream Context Array and rings for all the stream IDs, we need
one more data structure. The xHCI hardware will not tell us which stream
ID a transfer event was for, but it will give us the slot ID, endpoint
index, and physical address for the TRB that caused the event. For every
endpoint on a device, add a radix tree to map physical TRB addresses to
virtual segments within a stream ring.
Keep track of whether an endpoint is transitioning to using streams, and
don't enqueue any URBs while that's taking place. Refuse to transition an
endpoint to streams if there are already URBs enqueued for that endpoint.
We need to make sure that freeing streams does not fail, since a driver's
disconnect() function may attempt to do this, and it cannot fail.
Pre-allocate the command structure used to issue the Configure Endpoint
command, and reserve space on the command ring for each stream endpoint.
This may be a bit overkill, but it is permissible for the driver to
allocate all streams in one call and free them in multiple calls. (It is
not advised, however, since it is a waste of resources and time.)
Even with the memory and ring room pre-allocated, freeing streams can
still fail because the xHC rejects the configure endpoint command. It is
valid (by the xHCI 0.96 spec) to return a "Bandwidth Error" or a "Resource
Error" for a configure endpoint command. We should never see a Bandwidth
Error, since bulk endpoints do not effect the reserved bandwidth. The
host controller can still return a Resource Error, but it's improbable
since the xHC would be going from a more resource-intensive configuration
(streams) to a less resource-intensive configuration (no streams).
If the xHC returns a Resource Error, the endpoint will be stuck with
streams and will be unusable for drivers. It's an unavoidable consequence
of broken host controller hardware.
Includes bug fixes from the original patch, contributed by
John Youn <John.Youn@synopsys.com> and Andy Green <AGreen@PLXTech.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When the USB core installs a new interface, it unconditionally clears the
halts on all the endpoints on the new interface. Usually the xHCI host
needs to know when an endpoint is reset, so it can change its internal
endpoint state. In this case, it doesn't care, because the endpoints were
never halted in the first place.
To avoid issuing a redundant Reset Endpoint command, the xHCI driver looks
at xhci_virt_ep->stopped_td to determine if the endpoint was actually
halted. However, the functions that handle the stall never set that
variable to NULL after it dealt with the stall. So if an endpoint stalled
and a Reset Endpoint command completed, and then the class driver tried to
install a new alternate setting, the xHCI driver would access the old
xhci_virt_ep->stopped_td pointer. A similar problem occurs if the
endpoint has been stopped to cancel a transfer.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
When a signal interrupts a Configure Endpoint command, the cmd_completion used
in xhci_configure_endpoint() is not re-initialized and the
wait_for_completion_interruptible_timeout() will return failure. Initialize
cmd_completion in xhci_configure_endpoint().
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Naming consistency with other USB HCDs.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>