Instead of testing whether a given dfa exists in every code path, have
a default null dfa that is used when loaded policy doesn't provide a
dfa.
This will let us get rid of special casing and avoid dereference bugs
when special casing is missed.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Do not copy uninitalized fields th.td_hilen, th.td_data.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: John Johansen <john.johansen@canonical.com>
The top 8 bits of the base field have never been used, in fact can't
be used, by the current 'dfa16' format. However they will be used in the
future as flags, so mask them off when using base as an index value.
Note: the use of the top 8 bits, without masking is trapped by the verify
checks that base entries are within the size bounds.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <kees@ubuntu.com>
Update aa_dfa_match so that it doesn't result in an input string being
walked twice (once to get its length and another time to match)
Add a single step functions
aa_dfa_next
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <kees@ubuntu.com>
move LSM-, credentials-, and keys-related files from Documentation/
to Documentation/security/,
add Documentation/security/00-INDEX, and
update all occurrences of Documentation/<moved_file>
to Documentation/security/<moved_file>.
A basic dfa matching engine based off the dfa engine in the Dragon
Book. It uses simple row comb compression with a check field.
This allows AppArmor to do pattern matching in linear time, and also
avoids stack issues that an nfa based engine may have. The dfa
engine uses a byte based comparison, with all values being valid.
Any potential character encoding are handled user side when the dfa
tables are created. By convention AppArmor uses \0 to separate two
dependent path matches since \0 is not a valid path character
(this is done in the link permission check).
The dfa tables are generated in user space and are verified at load
time to be internally consistent.
There are several future improvements planned for the dfa engine:
* The dfa engine may be converted to a hybrid nfa-dfa engine, with
a fixed size limited stack. This would allow for size time
tradeoffs, by inserting limited nfa states to help control
state explosion that can occur with dfas.
* The dfa engine may pickup the ability to do limited dynamic
variable matching, instead of fixing all variables at policy
load time.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>