Currently attempts to open a file with O_DIRECT in data=journal mode
causes the open to fail with -EINVAL. This makes it very hard to test
data=journal mode. So we will let the open succeed, but then always
fall back to O_DSYNC buffered writes.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The i_mutex lock and flush_completed_IO() added by commit 2581fdc810
in ext4_evict_inode() causes lockdep complaining about potential
deadlock in several places. In most/all of these LOCKDEP complaints
it looks like it's a false positive, since many of the potential
circular locking cases can't take place by the time the
ext4_evict_inode() is called; but since at the very least it may mask
real problems, we need to address this.
This change removes the flush_completed_IO() and i_mutex lock in
ext4_evict_inode(). Instead, we take a different approach to resolve
the software lockup that commit 2581fdc810 intends to fix. Rather
than having ext4-dio-unwritten thread wait for grabing the i_mutex
lock of an inode, we use mutex_trylock() instead, and simply requeue
the work item if we fail to grab the inode's i_mutex lock.
This should speed up work queue processing in general and also
prevents the following deadlock scenario: During page fault,
shrink_icache_memory is called that in turn evicts another inode B.
Inode B has some pending io_end work so it calls ext4_ioend_wait()
that waits for inode B's i_ioend_count to become zero. However, inode
B's ioend work was queued behind some of inode A's ioend work on the
same cpu's ext4-dio-unwritten workqueue. As the ext4-dio-unwritten
thread on that cpu is processing inode A's ioend work, it tries to
grab inode A's i_mutex lock. Since the i_mutex lock of inode A is
still hold before the page fault happened, we enter a deadlock.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Add a new REQ_PRIO to let requests preempt others in the cfq I/O schedule,
and lave REQ_META purely for marking requests as metadata in blktrace.
All existing callers of REQ_META except for XFS are updated to also
set REQ_PRIO for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Replace all occurnanced of the undocumented READ_META with READ | REQ_META
and remove the unused WRITE_META define.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Bug discovered by Jan Kara:
Finally, commit 1449032be1 returned back
the old IO submission code but apparently it forgot to return the old
handling of uninitialized buffers so we unconditionnaly call
block_write_full_page() without specifying end_io function. So AFAICS
we never convert unwritten extents to written in some cases. For
example when I mount the fs as: mount -t ext4 -o
nomblk_io_submit,dioread_nolock /dev/ubdb /mnt and do
int fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0600);
char buf[1024];
memset(buf, 'a', sizeof(buf));
fallocate(fd, 0, 0, 16384);
write(fd, buf, sizeof(buf));
I get a file full of zeros (after remounting the filesystem so that
pagecache is dropped) instead of seeing the first KB contain 'a's.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
EXT4_IO_END_UNWRITTEN flag set and the increase of i_aiodio_unwritten
should be done simultaneously since ext4_end_io_nolock always clear
the flag and decrease the counter in the same time.
We don't increase i_aiodio_unwritten when setting
EXT4_IO_END_UNWRITTEN so it will go nagative and causes some process
to wait forever.
Part of the patch came from Eric in his e-mail, but it doesn't fix the
problem met by Michael actually.
http://marc.info/?l=linux-ext4&m=131316851417460&w=2
Reported-and-Tested-by: Michael Tokarev<mjt@tls.msk.ru>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
Flush inode's i_completed_io_list before calling ext4_io_wait to
prevent the following deadlock scenario: A page fault happens while
some process is writing inode A. During page fault,
shrink_icache_memory is called that in turn evicts another inode
B. Inode B has some pending io_end work so it calls ext4_ioend_wait()
that waits for inode B's i_ioend_count to become zero. However, inode
B's ioend work was queued behind some of inode A's ioend work on the
same cpu's ext4-dio-unwritten workqueue. As the ext4-dio-unwritten
thread on that cpu is processing inode A's ioend work, it tries to
grab inode A's i_mutex lock. Since the i_mutex lock of inode A is
still hold before the page fault happened, we enter a deadlock.
Also moves ext4_flush_completed_IO and ext4_ioend_wait from
ext4_destroy_inode() to ext4_evict_inode(). During inode deleteion,
ext4_evict_inode() is called before ext4_destroy_inode() and in
ext4_evict_inode(), we may call ext4_truncate() without holding
i_mutex lock. As a result, there is a race between flush_completed_IO
that is called from ext4_ext_truncate() and ext4_end_io_work, which
may cause corruption on an io_end structure. This change moves
ext4_flush_completed_IO and ext4_ioend_wait from ext4_destroy_inode()
to ext4_evict_inode() to resolve the race between ext4_truncate() and
ext4_end_io_work during inode deletion.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
ext4_should_writeback_data() had an incorrect sequence of
tests to determine if it should return 0 or 1: in
particular, even in no-journal mode, 0 was being returned
for a non-regular-file inode.
This meant that, in non-journal mode, we would use
ext4_journalled_aops for directories, symlinks, and other
non-regular files. However, calling journalled aop
callbacks when there is no valid handle, can cause problems.
This would cause a kernel crash with Jan Kara's commit
2d859db3e4 ("ext4: fix data corruption in inodes with
journalled data"), because we now dereference 'handle' in
ext4_journalled_write_end().
I also added BUG_ONs to check for a valid handle in the
obviously journal-only aops callbacks.
I tested this running xfstests with a scratch device in
these modes:
- no-journal
- data=ordered
- data=writeback
- data=journal
All work fine; the data=journal run has many failures and a
crash in xfstests 074, but this is no different from a
vanilla kernel.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (60 commits)
ext4: prevent memory leaks from ext4_mb_init_backend() on error path
ext4: use EXT4_BAD_INO for buddy cache to avoid colliding with valid inode #
ext4: use ext4_msg() instead of printk in mballoc
ext4: use ext4_kvzalloc()/ext4_kvmalloc() for s_group_desc and s_group_info
ext4: introduce ext4_kvmalloc(), ext4_kzalloc(), and ext4_kvfree()
ext4: use the correct error exit path in ext4_init_inode_table()
ext4: add missing kfree() on error return path in add_new_gdb()
ext4: change umode_t in tracepoint headers to be an explicit __u16
ext4: fix races in ext4_sync_parent()
ext4: Fix overflow caused by missing cast in ext4_fallocate()
ext4: add action of moving index in ext4_ext_rm_idx for Punch Hole
ext4: simplify parameters of reserve_backup_gdb()
ext4: simplify parameters of add_new_gdb()
ext4: remove lock_buffer in bclean() and setup_new_group_blocks()
ext4: simplify journal handling in setup_new_group_blocks()
ext4: let setup_new_group_blocks() set multiple bits at a time
ext4: fix a typo in ext4_group_extend()
ext4: let ext4_group_add_blocks() handle 0 blocks quickly
ext4: let ext4_group_add_blocks() return an error code
ext4: rename ext4_add_groupblocks() to ext4_group_add_blocks()
...
Fix up conflict in fs/ext4/inode.c: commit aacfc19c62 ("fs: simplify
the blockdev_direct_IO prototype") had changed the ext4_ind_direct_IO()
function for the new simplified calling convention, while commit
dae1e52cb1 ("ext4: move ext4_ind_* functions from inode.c to
indirect.c") moved the function to another file.
When journalling data for an inode (either because it is a symlink or
because the filesystem is mounted in data=journal mode), ext4_evict_inode()
can discard unwritten data by calling truncate_inode_pages(). This is
because we don't mark the buffer / page dirty when journalling data but only
add the buffer to the running transaction and thus mm does not know there
are still unwritten data.
Fix the problem by carefully tracking transaction containing inode's data,
committing this transaction, and writing uncheckpointed buffers when inode
should be reaped.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
For filesystems that delay their end_io processing we should keep our
i_dio_count until the the processing is done. Enable this by moving
the inode_dio_done call to the end_io handler if one exist. Note that
the actual move to the workqueue for ext4 and XFS is not done in
this patch yet, but left to the filesystem maintainers. At least
for XFS it's not needed yet either as XFS has an internal equivalent
to i_dio_count.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Simple filesystems always pass inode->i_sb_bdev as the block device
argument, and never need a end_io handler. Let's simply things for
them and for my grepping activity by dropping these arguments. The
only thing not falling into that scheme is ext4, which passes and
end_io handler without needing special flags (yet), but given how
messy the direct I/O code there is use of __blockdev_direct_IO
in one instead of two out of three cases isn't going to make a large
difference anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Let filesystems handle waiting for direct I/O requests themselves instead
of doing it beforehand. This means filesystem-specific locks to prevent
new dio referenes from appearing can be held. This is important to allow
generalizing i_dio_count to non-DIO_LOCKING filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rewrite ext4_page_mkwrite() to use __block_page_mkwrite() helper. This
removes the need of using i_alloc_sem to avoid races with truncate which
seems to be the wrong locking order according to lock ordering documented in
mm/rmap.c. Also calling ext4_da_write_begin() as used by the old code seems to
be problematic because we can decide to flush delay-allocated blocks which
will acquire s_umount semaphore - again creating unpleasant lock dependency
if not directly a deadlock.
Also add a check for frozen filesystem so that we don't busyloop in page fault
when the filesystem is frozen.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch moves functions from inode.c to indirect.c.
The moved functions are ext4_ind_* functions and their helpers.
Functions called from inode.c are declared extern.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Move two functions that will be needed by the indirect functions to be
moved to indirect.c as well as inode.c to truncate.h as inline
functions, so that we can avoid having duplicate copies of the
function (which can be a maintenance problem) without having to expose
them as globally functions.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In preparation for moving the indirect functions to a separate file,
move __ext4_check_blockref() to block_validity.c and rename it to
ext4_check_blockref() which is exported as globally visible function.
Also, rename the cpp macro ext4_check_inode_blockref() to
ext4_ind_check_inode(), to make it clear that it is only valid for use
with non-extent mapped inodes.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We are going to move all ext4_ind_* functions to indirect.c.
Before we do that, let's rename 2 functions called ext4_indirect_*
to ext4_ind_*, to keep to the naming convention.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We are about to move all indirect inode functions to a new file.
Before we do that, let's split ext4_ind_truncate() out of ext4_truncate()
leaving only generic code in the latter, so we will be able to move
ext4_ind_truncate() to the new file.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
sync(2) is performed in two stages: the WB_SYNC_NONE sync and the
WB_SYNC_ALL sync. Identify the first stage with .tagged_writepages and
do livelock prevention for it, too.
Jan's commit f446daaea9 ("mm: implement writeback livelock avoidance
using page tagging") is a partial fix in that it only fixed the
WB_SYNC_ALL phase livelock.
Although ext4 is tested to no longer livelock with commit f446daaea9,
it may due to some "redirty_tail() after pages_skipped" effect which
is by no means a guarantee for _all_ the file systems.
Note that writeback_inodes_sb() is called by not only sync(), they are
treated the same because the other callers also need livelock prevention.
Impact: It changes the order in which pages/inodes are synced to disk.
Now in the WB_SYNC_NONE stage, it won't proceed to write the next inode
until finished with the current inode.
Acked-by: Jan Kara <jack@suse.cz>
CC: Dave Chinner <david@fromorbit.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
While creating fixed tracepoints for ext3, basically by porting them
from ext4, I found a lot of useless retyping, wrong type usage, useless
variable passing and other inconsistencies in the ext4 fixed tracepoint
code.
This patch cleans the fixed tracepoint code for ext4 and also simplify
some of them.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
anything else, so that the filesystem can track internally if it
needs to push out a transaction for fdatasync or not.
This is just the prototype change with no user for it yet. I plan
to push large XFS changes for the next merge window, and getting
this trivial infrastructure in this window would help a lot to avoid
tree interdependencies.
Also remove incorrect comments that ->dirty_inode can't block. That
has been changed a long time ago, and many implementations rely on it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Trivial conversion. Fixup one error handling case calling vmtruncate()
and remove ->truncate callback. We also fix a bug that IS_IMMUTABLE and
IS_APPEND files could not be truncated during failed writes. In fact, the
test can be completely removed as upper layers do necessary permission
checks for truncate in do_sys_[f]truncate() and may_open() anyway.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch adds new routines: "ext4_punch_hole" "ext4_ext_punch_hole"
and "ext4_ext_check_cache"
fallocate has been modified to call ext4_punch_hole when the punch hole
flag is passed. At the moment, we only support punching holes in
extents, so this routine is pretty much a wrapper for the ext4_ext_punch_hole
routine.
The ext4_ext_punch_hole routine first completes all outstanding writes
with the associated pages, and then releases them. The unblock
aligned data is zeroed, and all blocks in between are punched out.
The ext4_ext_check_cache routine is very similar to ext4_ext_in_cache
except it accepts a ext4_ext_cache parameter instead of a ext4_extent
parameter. This routine is used by ext4_ext_punch_hole to check and
see if a block in a hole that has been cached. The ext4_ext_cache
parameter is necessary because the members ext4_extent structure are
not large enough to hold a 32 bit value. The existing
ext4_ext_in_cache routine has become a wrapper to this new function.
[ext4 punch hole patch series 5/5 v7]
Signed-off-by: Allison Henderson <achender@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Mingming Cao <cmm@us.ibm.com>
This patch modifies the existing ext4_block_truncate_page() function
which was used by the truncate code path, and which zeroes out block
unaligned data, by adding a new length parameter, and renames it to
ext4_block_zero_page_rage(). This function can now be used to zero out the
head of a block, the tail of a block, or the middle
of a block.
The ext4_block_truncate_page() function is now a wrapper to
ext4_block_zero_page_range().
[ext4 punch hole patch series 2/5 v7]
Signed-off-by: Allison Henderson <achender@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Mingming Cao <cmm@us.ibm.com>
This patch adds an allocation request flag to the ext4_has_free_blocks
function which enables the use of reserved blocks. This will allow a
punch hole to proceed even if the disk is full. Punching a hole may
require additional blocks to first split the extents.
Because ext4_has_free_blocks is a low level function, the flag needs
to be passed down through several functions listed below:
ext4_ext_insert_extent
ext4_ext_create_new_leaf
ext4_ext_grow_indepth
ext4_ext_split
ext4_ext_new_meta_block
ext4_mb_new_blocks
ext4_claim_free_blocks
ext4_has_free_blocks
[ext4 punch hole patch series 1/5 v7]
Signed-off-by: Allison Henderson <achender@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Mingming Cao <cmm@us.ibm.com>
In commit c8d46e41 (ext4: Add flag to files with blocks intentionally
past EOF), if the EOFBLOCKS_FL flag is set, we call ext4_truncate()
before calling vmtruncate(). This caused any allocated but unwritten
blocks created by calling fallocate() with the FALLOC_FL_KEEP_SIZE
flag to be dropped. This was done to make to make sure that
EOFBLOCKS_FL would not be cleared while still leaving blocks past
i_size allocated. This was not necessary, since ext4_truncate()
guarantees that blocks past i_size will be dropped, even in the case
where truncate() has increased i_size before calling ext4_truncate().
So fix this by removing the EOFBLOCKS_FL special case treatment in
ext4_setattr(). In addition, use truncate_setsize() followed by a
call to ext4_truncate() instead of using vmtruncate(). This is more
efficient since it skips the call to inode_newsize_ok(), which has
been checked already by inode_change_ok(). This is also in a win in
the case where EOFBLOCKS_FL is set since it avoids calling
ext4_truncate() twice.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In order to stabilize pages during disk writes, ext4_page_mkwrite must
wait for writeback operations to complete before making a page
writable. Furthermore, the function must return locked pages, and
recheck the writeback status if the page lock is ever dropped. The
"someone could wander in" part of this patch was suggested by Chris
Mason.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
wait_on_page_writeback already checks the writeback bit, so callers of it
needn't do that test.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In __ext4_get_inode_loc, we calculate inodes_per_block every time by
EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb). AFAICS, this function is a
hot path for ext4, so we'd better use s_inodes_per_block directly
instead of calculating every time.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: fix data corruption regression by reverting commit 6de9843dab
ext4: Allow indirect-block file to grow the file size to max file size
ext4: allow an active handle to be started when freezing
ext4: sync the directory inode in ext4_sync_parent()
ext4: init timer earlier to avoid a kernel panic in __save_error_info
jbd2: fix potential memory leak on transaction commit
ext4: fix a double free in ext4_register_li_request
ext4: fix credits computing for indirect mapped files
ext4: remove unnecessary [cm]time update of quota file
jbd2: move bdget out of critical section
Revert commit 6de9843dab, since it
caused a data corruption regression with BitTorrent downloads. Thanks
to Damien for discovering and bisecting to find the problem commit.
https://bugzilla.kernel.org/show_bug.cgi?id=32972
Reported-by: Damien Grassart <damien@grassart.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We can create 4402345721856 byte file with indirect block mapping.
However, if we grow an indirect-block file to the size with ftruncate(),
we can see an ext4 warning. The following patch fixes this problem.
How to reproduce:
# dd if=/dev/zero of=/mnt/mp1/hoge bs=1 count=0 seek=4402345721856
0+0 records in
0+0 records out
0 bytes (0 B) copied, 0.000221428 s, 0.0 kB/s
# tail -n 1 /var/log/messages
Nov 25 15:10:27 test kernel: EXT4-fs warning (device sda8): ext4_block_to_path:345: block 1074791436 > max in inode 12
Signed-off-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When writing a contiguous set of blocks, two indirect blocks could be
needed depending on how the blocks are aligned, so we need to increase
the number of credits needed by one.
[ Also fixed a another bug which could further underestimate the
number of journal credits needed by 1; the code was using integer
division instead of DIV_ROUND_UP() -- tytso]
Signed-off-by: Yongqiang Yang <xiaoqiangnk@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (43 commits)
ext4: fix a BUG in mb_mark_used during trim.
ext4: unused variables cleanup in fs/ext4/extents.c
ext4: remove redundant set_buffer_mapped() in ext4_da_get_block_prep()
ext4: add more tracepoints and use dev_t in the trace buffer
ext4: don't kfree uninitialized s_group_info members
ext4: add missing space in printk's in __ext4_grp_locked_error()
ext4: add FITRIM to compat_ioctl.
ext4: handle errors in ext4_clear_blocks()
ext4: unify the ext4_handle_release_buffer() api
ext4: handle errors in ext4_rename
jbd2: add COW fields to struct jbd2_journal_handle
jbd2: add the b_cow_tid field to journal_head struct
ext4: Initialize fsync transaction ids in ext4_new_inode()
ext4: Use single thread to perform DIO unwritten convertion
ext4: optimize ext4_bio_write_page() when no extent conversion is needed
ext4: skip orphan cleanup if fs has unknown ROCOMPAT features
ext4: use the nblocks arg to ext4_truncate_restart_trans()
ext4: fix missing iput of root inode for some mount error paths
ext4: make FIEMAP and delayed allocation play well together
ext4: suppress verbose debugging information if malloc-debug is off
...
Fi up conflicts in fs/ext4/super.c due to workqueue changes
The map_bh() call will have already set the buffer_head to mapped.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
- Add more ext4 tracepoints.
- Change ext4 tracepoints to use dev_t field with MAJOR/MINOR macros
so that we can save 4 bytes in the ring buffer on some platforms.
- Add sync_mode to ext4_da_writepages, ext4_da_write_pages, and
ext4_da_writepages_result tracepoints. Also remove for_reclaim
field from ext4_da_writepages since it is usually not very useful.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Checking return code from ext4_journal_get_write_access() is important
with snapshots, because this function invokes COW, so may return new
errors, such as ENOSPC.
ext4_clear_blocks() now returns < 0 for fatal errors, in which case,
ext4_free_data() is aborted.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
nblocks is passed into ext4_truncate_restart_trans() from
ext4_ext_truncate_extend_restart() with a value different from the default
blocks_for_truncate(), but is being ignored.
The two other calls to ext4_truncate_restart_trans() already pass the
default value, which is then being recalculated inside the function.
Fix the problem by using the passed argument.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Move the initialization of all of the fields of the mpd structure to
write_cache_pages_da(). This simplifies the code considerably.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If we have accumulated a contiguous region of memory to be written
out, and the next page can added to this region, don't bother locking
(and then unlocking the page) before writing out the memory. In the
unlikely event that the next page was being written back by some other
CPU, we can also skip waiting that page to finish writeback.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Because the ext4 page writeback codepath had been prematurely calling
clear_page_dirty_for_io(), if it turned out that a particular page
couldn't be written out during a particular pass of
write_cache_pages_da(), the page would have to get redirtied by
calling redirty_pages_for_writeback(). Not only was this wasted work,
but redirty_page_for_writeback() would increment wbc->pages_skipped to
signal to writeback_sb_inodes() that buffers were locked, and that it
should skip this inode until later.
Since this signal was incorrect in ext4's case --- which was caused by
ext4's historically incorrect use of write_cache_pages() ---
ext4_da_writepages() saved and restored wbc->skipped_pages to avoid
confusing writeback_sb_inodes().
Now that we've fixed ext4 to call clear_page_dirty_for_io() right
before initiating the page I/O, we can nuke the page_skipped
save/restore hackery, and breathe a sigh of relief.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Move when we call clear_page_dirty_for_io() to just before we actually
write the page. This simplifies the code somewhat, and avoids marking
pages as clean and then needing to remark them as dirty later.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Eliminate duplicate code, unneeded variables, etc., to make it easier
to understand the code. No behavioral changes were made in this patch.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fold the __mpage_da_writepage() function into write_cache_pages_da().
This will give us opportunities to clean up and simplify the resulting
code.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If ext4_da_block_invalidatepages() is called because of a
failure from ext4_map_blocks() in mpage_da_map_and_submit(),
it's supposed to clean up -- including unlock -- all the
pages in the mpd structure. But these values may not match
up, even on a system in which block size == page size:
mpd->b_blocknr != mpd->first_page
mpd->b_size != (mpd->next_page - mpd->first_page)
ext4_da_block_invalidatepages() has been using b_blocknr and
b_size; this patch changes it to use first_page and
next_page.
Tested: I injected a small number (5%) of failures in
ext4_map_blocks() in the case that the flags contain
EXT4_GET_BLOCKS_DELALLOC_RESERVE, and ran fsstress on this
kernel. Without this patch, I got hung tasks every time.
With this patch, I see no hangs in many runs of fsstress.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In mpage_da_map_and_submit(), if we have a delayed block
allocation failure from ext4_map_blocks(), we need to mark
the IO as complete, by setting
mpd->io_done = 1;
Otherwise, we could end up submitting the pages in an outer
loop; since they are unlocked on mapping failure in
ext4_da_block_invalidatepages(), this will cause a bug check
in mpage_da_submit_io().
I tested this by injected failures into ext4_map_blocks().
Without this patch, a simple fsstress run will bug check;
with the patch, it works fine.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch fixes the warning "Using plain integer as NULL pointer",
generated by sparse, by replacing the offending 0s with NULL.
Signed-off-by: Peter Huewe <peterhuewe@gmx.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
pr_warning_ratelimited() doesn't exist.
Also include printk.h, which defines these things.
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 40389687 moved a call to ext4_forget() out of
ext4_free_branches and let ext4_free_blocks() handle calling
bforget(). But that change unfortunately did not replace the call to
ext4_forget() with brelse(), which was needed to drop the in-use count
of the indirect block's buffer head, which lead to a memory leak when
deleting files that used indirect blocks. Fix this.
Thanks to Hugh Dickins for pointing this out.
Cc: stable@kernel.org
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Call ext4_std_error() in various places when we can't bail out
cleanly, so the file system can be marked as in error.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Replace the jbd2_inode structure (which is 48 bytes) with a pointer
and only allocate the jbd2_inode when it is needed --- that is, when
the file system has a journal present and the inode has been opened
for writing. This allows us to further slim down the ext4_inode_info
structure.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We can store the dynamic inode state flags in the high bits of
EXT4_I(inode)->i_flags, and eliminate i_state_flags. This saves 8
bytes from the size of ext4_inode_info structure, which when
multiplied by the number of the number of in the inode cache, can save
a lot of memory.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This fixes a number of places where we used sector_t instead of
ext4_lblk_t for logical blocks, which for ext4 are still 32-bit data
types. No point wasting space in the ext4_inode_info structure, and
requiring 64-bit arithmetic on 32-bit systems, when it isn't
necessary.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Remove the short element i_delalloc_reserved_flag from the
ext4_inode_info structure and replace it a new bit in i_state_flags.
Since we have an ext4_inode_info for every ext4 inode cached in the
inode cache, any savings we can produce here is a very good thing from
a memory utilization perspective.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
This fixes up some broken argument descriptions that Namhyung Kim had
originally submitted for ext3. This fixes the comments that were
still applicable in ext4.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Jon Nelson has found a test case which causes postgresql to fail with
the error:
psql:t.sql:4: ERROR: invalid page header in block 38269 of relation base/16384/16581
Under memory pressure, it looks like part of a file can end up getting
replaced by zero's. Until we can figure out the cause, we'll roll
back the change and use block_write_full_page() instead of
ext4_bio_write_page(). The new, more efficient writing function can
be used via the mount option mblk_io_submit, so we can test and fix
the new page I/O code.
To reproduce the problem, install postgres 8.4 or 9.0, and pin enough
memory such that the system just at the end of triggering writeback
before running the following sql script:
begin;
create temporary table foo as select x as a, ARRAY[x] as b FROM
generate_series(1, 10000000 ) AS x;
create index foo_a_idx on foo (a);
create index foo_b_idx on foo USING GIN (b);
rollback;
If the temporary table is created on a hard drive partition which is
encrypted using dm_crypt, then under memory pressure, approximately
30-40% of the time, pgsql will issue the above failure.
This patch should fix this problem, and the problem will come back if
the file system is mounted with the mblk_io_submit mount option.
Reported-by: Jon Nelson <jnelson@jamponi.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: Add new ext4 inode tracepoints
ext4: Don't call sb_issue_discard() in ext4_free_blocks()
ext4: do not try to grab the s_umount semaphore in ext4_quota_off
ext4: fix potential race when freeing ext4_io_page structures
ext4: handle writeback of inodes which are being freed
ext4: initialize the percpu counters before replaying the journal
ext4: "ret" may be used uninitialized in ext4_lazyinit_thread()
ext4: fix lazyinit hang after removing request
Linus noted, and complained to me, that doing while lots of "git diff"'s
of kernel sources, these spinlocks were responsible for 27% of the
spinlock cost on his two-processor system as reported by perf.
Git was doing lots of parallel stats, and this was putting a lot of
pressure on ext4_getattr(). A spinlock to protect a single
memory-to-memory copy is pointless, so remove it.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to make check if a page does not have buffes by checking
page_has_buffers(page) before calling page_buffers(page) in
ext4_writepage(). Otherwise page_buffers() could throw a BUG_ON.
Thanks also to Markus Trippelsdorf and Avinash Kurup who also reported
the problem.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Sedat Dilek <sedat.dilek@googlemail.com>
Tested-by: Sedat Dilek <sedat.dilek@googlemail.com>
Surprisingly chown() on ext4 is not SMP scalable operation.
Due to unconditional orphan_del(NULL, inode) in ext4_setattr()
result in significant performance overhead because of global orphan
mutex, especially in no-journal mode (where orphan_add() is noop).
It is possible to skip explicit orphan_del if possible.
Results of fchown() micro-benchmark in no-journal mode
while (1) {
iteration++;
fchown(fd, uid, gid);
fchown(fd, uid + 1, gid + 1)
}
measured: iterations per millisecond
| nr_tasks | w/o patch | with patch |
| 1 | 142 | 185 |
| 4 | 109 | 642 |
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
These functions have no need to be exported beyond file context.
No functions needed to be moved for this commit; just some function
declarations changed to be static and removed from header files.
(A similar patch was submitted by Eric Sandeen, but I wanted to handle
code movement in separate patches to make sure code changes didn't
accidentally get dropped.)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
As pointed out in a prior patch, updating the mapping's
writeback_index based on pages written isn't quite right;
what the writeback index is really supposed to reflect is
the next page which should be scanned for writeback during
periodic flush.
As in write_cache_pages(), write_cache_pages_da() does
this scanning for us as we assemble the mpd for later
writeout. If we keep track of the next page after the
current scan, we can easily update writeback_index without
worrying about pages written vs. pages skipped, etc.
Without this, an fsync will reset writeback_index to
0 (its starting index) + however many pages it wrote, which
can mess up the progress of periodic flush.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This is analogous to Jan Kara's commit,
f446daaea9
mm: implement writeback livelock avoidance using page tagging
but since we forked write_cache_pages, we need to reimplement
it there (and in ext4_da_writepages, since range_cyclic handling
was moved to there)
If you start a large buffered IO to a file, and then set
fsync after it, you'll find that fsync does not complete
until the other IO stops.
If you continue re-dirtying the file (say, putting dd
with conv=notrunc in a loop), when fsync finally completes
(after all IO is done), it reports via tracing that
it has written many more pages than the file contains;
in other words it has synced and re-synced pages in
the file multiple times.
This then leads to problems with our writeback_index
update, since it advances it by pages written, and
essentially sets writeback_index off the end of the
file...
With the following patch, we only sync as much as was
dirty at the time of the sync.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This doesn't fix anything at all, it just removes a vestige
of prior use from __mpage_da_writepage()
__mpage_da_writepage() had a *void argument leftover from
its previous life as a callback; make it reflect the actual type.
Fixing this up makes it slightly more obvious to read, and
enables proper typechecking.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fail block allocation if sb_getblk() returns NULL. In that case,
sb_find_get_block() also likely to fail so that it should skip
calling ext4_forget().
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Call the block I/O layer directly instad of going through the buffer
layer. This should give us much better performance and scalability,
as well as lowering our CPU utilization when doing buffered writeback.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This massively simplifies the ext4_da_writepages() code path by
completely removing mpage_put_bnr_bhs(), which is almost 100 lines of
code iterating over a set of pages using pagevec_lookup(), and folds
that functionality into mpage_da_submit_io()'s existing
pagevec_lookup() loop.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Expand the call:
if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
ext4_bh_delay_or_unwritten))
goto redirty_page
into mpage_da_submit_io().
This will allow us to merge in mpage_put_bnr_to_bhs() in the next
patch.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
As a prepratory step to switching to bio_submit, inline
ext4_writepage() into mpage_da_submit() and then simplify things a
bit. This makes it clearer what mpage_da_submit needs to do.
Also, move the ClearPageChecked(page) call into
__ext4_journalled_writepage(), as a minor bit of cleanup refactoring.
This also allows us to pull i_size_read() and
ext4_should_journal_data() out of the loop, which should be a very
minor CPU savings.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The actual code in ext4_writepage() is unnecessarily convoluted.
Simplify it so it is easier to understand, but otherwise logically
equivalent.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Eventually we need to completely reorganize the ext4 writepage
callpath, but for now, we simplify things a little by calling
mpage_da_submit_io() from mpage_da_map_blocks(), since all of the
places where we call mpage_da_map_blocks() it is followed up by a call
to mpage_da_submit_io().
We're also a wee bit better with respect to error handling, but there
are still a number of issues where it's not clear what the right thing
is to do with ext4 functions deep in the writeback codepath fails.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
By queuing the io end on the unwritten workqueue before adding it
to our inode's list of completed IOs, I think we run the risk
of the work getting completed, and the IO freed, before we try
to add it to the inode's i_completed_io_list.
It should be safe to add it to the inode's list of completed
IOs, and -then- queue it for completion, I think.
Thanks to Dave Chinner for pointing out the race.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
On linux-2.6.36-rc2, if we execute the following script, we can hang
the system when the /bin/sync command is executed:
========================================================================
#!/bin/sh
echo -n "HANG UP TEST: "
/bin/dd if=/dev/zero of=/tmp/img bs=1k count=1 seek=1M 2> /dev/null
/sbin/mkfs.ext4 -Fq /tmp/img
/bin/mount -o loop -t ext4 /tmp/img /mnt
/bin/dd if=/dev/zero of=/mnt/file bs=1 count=1 \
seek=$((16*1024*1024*1024*1024-4096)) 2> /dev/null
/bin/sync
/bin/umount /mnt
echo "DONE"
exit 0
========================================================================
We can see the following backtrace if we get the kdump when this
hangup occurs:
======================================================================
kthread()
=> bdi_writeback_thread()
=> wb_do_writeback()
=> wb_writeback()
=> writeback_inodes_wb()
=> writeback_sb_inodes()
=> writeback_single_inode()
=> ext4_da_writepages() ---+
^ infinite |
| loop |
+-------------+
======================================================================
The reason why this hangup happens is described as follows:
1) We write the last extent block of the file whose size is the filesystem
maximum size.
2) "BH_Delay" flag is set on the buffer_head of its block.
3) - the member, "m_lblk" of struct mpage_da_data is 4294967295 (UINT_MAX)
- the member, "m_len" of struct mpage_da_data is 1
mpage_put_bnr_to_bhs() which is called via ext4_da_writepages()
cannot clear "BH_Delay" flag of the buffer_head because the type of
m_lblk is ext4_lblk_t and then m_lblk + m_len is overflow.
Therefore an infinite loop occurs because ext4_da_writepages()
cannot write the page (which corresponds to the block) since
"BH_Delay" flag isn't cleared.
----------------------------------------------------------------------
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
struct ext4_map_blocks *map)
{
...
int blocks = map->m_len;
...
do {
// cur_logical = 4294967295
// map->m_lblk = 4294967295
// blocks = 1
// *** map->m_lblk + blocks == 0 (OVERFLOW!) ***
// (cur_logical >= map->m_lblk + blocks) => true
if (cur_logical >= map->m_lblk + blocks)
break;
----------------------------------------------------------------------
NOTE: Mounting with the nodelalloc option will avoid this codepath,
and thus, avoid this hang
Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
I'm uneasy with lots of stuff going on in ext4_da_writepages(),
but bumping nr_to_write from LLONG_MAX to -8 clearly isn't
making anything better, so avoid the multiplier in that case.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Today we simply break out of the inner loop when we have accumulated
max_pages; this keeps scanning forwad and doing pagevec_lookup_tag()
in the while (!done) loop, this does potentially a lot of work
with no net effect.
When we have accumulated max_pages, just clean up and return.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
__block_write_begin and block_prepare_write are identical except for slightly
different calling conventions. Convert all callers to the __block_write_begin
calling conventions and drop block_prepare_write.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (96 commits)
no need for list_for_each_entry_safe()/resetting with superblock list
Fix sget() race with failing mount
vfs: don't hold s_umount over close_bdev_exclusive() call
sysv: do not mark superblock dirty on remount
sysv: do not mark superblock dirty on mount
btrfs: remove junk sb_dirt change
BFS: clean up the superblock usage
AFFS: wait for sb synchronization when needed
AFFS: clean up dirty flag usage
cifs: truncate fallout
mbcache: fix shrinker function return value
mbcache: Remove unused features
add f_flags to struct statfs(64)
pass a struct path to vfs_statfs
update VFS documentation for method changes.
All filesystems that need invalidate_inode_buffers() are doing that explicitly
convert remaining ->clear_inode() to ->evict_inode()
Make ->drop_inode() just return whether inode needs to be dropped
fs/inode.c:clear_inode() is gone
fs/inode.c:evict() doesn't care about delete vs. non-delete paths now
...
Fix up trivial conflicts in fs/nilfs2/super.c
Replace inode_setattr with opencoded variants of it in all callers. This
moves the remaining call to vmtruncate into the filesystem methods where it
can be replaced with the proper truncate sequence.
In a few cases it was obvious that we would never end up calling vmtruncate
so it was left out in the opencoded variant:
spufs: explicitly checks for ATTR_SIZE earlier
btrfs,hugetlbfs,logfs,dlmfs: explicitly clears ATTR_SIZE earlier
ufs: contains an opencoded simple_seattr + truncate that sets the filesize just above
In addition to that ncpfs called inode_setattr with handcrafted iattrs,
which allowed to trim down the opencoded variant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Split up the block_write_begin implementation - __block_write_begin is a new
trivial wrapper for block_prepare_write that always takes an already
allocated page and can be either called from block_write_begin or filesystem
code that already has a page allocated. Remove the handling of already
allocated pages from block_write_begin after switching all callers that
do it to __block_write_begin.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move the call to vmtruncate to get rid of accessive blocks to the callers
in prepearation of the new truncate calling sequence. This was only done
for DIO_LOCKING filesystems, so the __blockdev_direct_IO_newtrunc variant
was not needed anyway. Get rid of blockdev_direct_IO_no_locking and
its _newtrunc variant while at it as just opencoding the two additional
paramters is shorted than the name suffix.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In data=journal mode, we still use block_write_begin() to prepare
page for writing. This function can occasionally mark buffer dirty
which violates journalling assumptions - when a buffer is part of
a transaction, it should be dirty and a buffer can be already part
of a forget list of some transaction when block_write_begin()
gets called. This violation of journalling assumptions then results
in "JBD: Spotted dirty metadata buffer..." warnings.
In fact, temporary dirtying the buffer while the page is still locked
does not really cause problems to the journalling because we won't write
the buffer until the page gets unlocked. So we just have to make sure
to clear dirty bits before unlocking the page.
Signed-off-by: Jan Kara <jack@suse.cz>
Lockstat reports have shown that j_state_lock is a major source of
lock contention, especially on systems with more than 4 CPU cores. So
change it to be a read/write spinlock.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There were some error paths in ext4_delete_inode() which was not
dropping the inode from the orphan list. This could lead to a BUG_ON
on umount when the orphan list is discovered to be non-empty.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
I often get emails containing the "This should not happen!!" message,
conveniently trimmed to remove things like:
sd 0:0:0:0: [sda] Unhandled error code
sd 0:0:0:0: [sda] Result: hostbyte=DID_OK driverbyte=DRIVER_TIMEOUT
sd 0:0:0:0: [sda] CDB: Write(10): 2a 00 03 13 c9 70 00 00 28 00
end_request: I/O error, dev sda, sector 51628400
Aborting journal on device dm-0-8.
EXT4-fs error (device dm-0): ext4_journal_start_sb: Detected aborted journal
EXT4-fs (dm-0): Remounting filesystem read-only
I don't think there is any value to the verbosity if the reason is
due to a filesystem abort; it just obfuscates the root cause.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_get_blocks got renamed to ext4_map_blocks, but left stale
comments and a prototype littered around.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
If the user attempts to make a non-extent-mapped file to be too large,
return EFBIG, but don't call ext4_std_err() which will end up marking
the file system as containing an error.
Thanks to Toshiyuki Okajima-san at Fujitsu for pointing this out.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch is to be applied upon Christoph's "direct-io: move aio_complete
into ->end_io" patch. It adds iocb and result fields to struct ext4_io_end_t,
so that we can call aio_complete from ext4_end_io_nolock() after the extent
conversion has finished.
I have verified with Christoph's aio-dio test that used to fail after a few
runs on an original kernel but now succeeds on the patched kernel.
See http://thread.gmane.org/gmane.comp.file-systems.ext4/19659 for details.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Filesystems with unwritten extent support must not complete an AIO request
until the transaction to convert the extent has been commited. That means
the aio_complete calls needs to be moved into the ->end_io callback so
that the filesystem can control when to call it exactly.
This makes a bit of a mess out of dio_complete and the ->end_io callback
prototype even more complicated.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We have experienced bitmap inconsistencies after crash during file
delete under heavy load. The crash is not file system related and I
the following patch in ext4_free_branches() fixes the recovery
problem.
If the transaction is restarted and there is a crash before the new
transaction is committed, then after recovery, the blocks that this
indirect block points to have been freed, but the indirect block
itself has not been freed and may still point to some of the free
blocks (because of the ext4_forget()).
So ext4_forget() should be called inside ext4_free_blocks() to avoid
this problem.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Save number of file system errors, and the time function name, line
number, block number, and inode number of the first and most recent
errors reported on the file system in the superblock.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Filesystems with unwritten extent support must not complete an AIO request
until the transaction to convert the extent has been commited. That means
the aio_complete calls needs to be moved into the ->end_io callback so
that the filesystem can control when to call it exactly.
This makes a bit of a mess out of dio_complete and the ->end_io callback
prototype even more complicated.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Alex Elder <aelder@sgi.com>
The nobh option was only supported for writeback mode, but given that all
write paths actually create buffer heads it effectively was a no-op already.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
No real bugs found, just removed some dead code.
Found by gcc 4.6's new warnings.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
A few functions were still modifying i_flags in a racy manner.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (40 commits)
ext4: Make fsync sync new parent directories in no-journal mode
ext4: Drop whitespace at end of lines
ext4: Fix compat EXT4_IOC_ADD_GROUP
ext4: Conditionally define compat ioctl numbers
tracing: Convert more ext4 events to DEFINE_EVENT
ext4: Add new tracepoints to track mballoc's buddy bitmap loads
ext4: Add a missing trace hook
ext4: restart ext4_ext_remove_space() after transaction restart
ext4: Clear the EXT4_EOFBLOCKS_FL flag only when warranted
ext4: Avoid crashing on NULL ptr dereference on a filesystem error
ext4: Use bitops to read/modify i_flags in struct ext4_inode_info
ext4: Convert calls of ext4_error() to EXT4_ERROR_INODE()
ext4: Convert callers of ext4_get_blocks() to use ext4_map_blocks()
ext4: Add new abstraction ext4_map_blocks() underneath ext4_get_blocks()
ext4: Use our own write_cache_pages()
ext4: Show journal_checksum option
ext4: Fix for ext4_mb_collect_stats()
ext4: check for a good block group before loading buddy pages
ext4: Prevent creation of files larger than RLIMIT_FSIZE using fallocate
ext4: Remove extraneous newlines in ext4_msg() calls
...
Fixed up trivial conflict in fs/ext4/fsync.c
Quota must being initialized if size or uid/git changes requested.
But initialization performed in two different places:
in case of i_size file system is responsible for dquot init
, but in case of uid/gid init will be called internally in
dquot_transfer().
This ambiguity makes code harder to understand.
Let's move this logic to one common helper function.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
At several places we modify EXT4_I(inode)->i_flags without holding
i_mutex (ext4_do_update_inode, ...). These modifications are racy and
we can lose updates to i_flags. So convert handling of i_flags to use
bitops which are atomic.
https://bugzilla.kernel.org/show_bug.cgi?id=15792
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
EXT4_ERROR_INODE() tends to provide better error information and in a
more consistent format. Some errors were not even identifying the inode
or directory which was corrupted, which made them not very useful.
Addresses-Google-Bug: #2507977
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This saves a huge amount of stack space by avoiding unnecesary struct
buffer_head's from being allocated on the stack.
In addition, to make the code easier to understand, collapse and
refactor ext4_get_block(), ext4_get_block_write(),
noalloc_get_block_write(), into a single function.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Jack up ext4_get_blocks() and add a new function, ext4_map_blocks()
which uses a much smaller structure, struct ext4_map_blocks which is
20 bytes, as opposed to a struct buffer_head, which nearly 5 times
bigger on an x86_64 machine. By switching things to use
ext4_map_blocks(), we can save stack space by using ext4_map_blocks()
since we can avoid allocating a struct buffer_head on the stack.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Make a copy of write_cache_pages() for the benefit of
ext4_da_writepages(). This allows us to simplify the code some, and
will allow us to further customize the code in future patches.
There are some nasty hacks in write_cache_pages(), which Linus has
(correctly) characterized as vile. I've just copied it into
write_cache_pages_da(), without trying to clean those bits up lest I
break something in the ext4's delalloc implementation, which is a bit
fragile right now. This will allow Dave Chinner to clean up
write_cache_pages() in mm/page-writeback.c, without worrying about
breaking ext4. Eventually write_cache_pages_da() will go away when I
rewrite ext4's delayed allocation and create a general
ext4_writepages() which is used for all of ext4's writeback. Until
now this is the lowest risk way to clean up the core
write_cache_pages() function.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Dave Chinner <david@fromorbit.com>
Because we can badly over-reserve metadata when we
calculate worst-case, it complicates things for quota, since
we must reserve and then claim later, retry on EDQUOT, etc.
Quota is also a generally smaller pool than fs free blocks,
so this over-reservation hurts more, and more often.
I'm of the opinion that it's not the worst thing to allow
metadata to push a user slightly over quota. This simplifies
the code and avoids the false quota rejections that result
from worst-case speculation.
This patch stops the speculative quota-charging for
worst-case metadata requirements, and just charges quota
when the blocks are allocated at writeout. It also is
able to remove the try-again loop on EDQUOT.
This patch has been tested indirectly by running the xfstests
suite with a hack to mount & enable quota prior to the test.
I also did a more specific test of fragmenting freespace
and then doing a large delalloc write under quota; quota
stopped me at the right amount of file IO, and then the
writeout generated enough metadata (due to the fragmentation)
that it put me slightly over quota, as expected.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There was a bug reported on RHEL5 that a 10G dd on a 12G box
had a very, very slow sync after that.
At issue was the loop in write_cache_pages scanning all the way
to the end of the 10G file, even though the subsequent call
to mpage_da_submit_io would only actually write a smallish amt; then
we went back to the write_cache_pages loop ... wasting tons of time
in calling __mpage_da_writepage for thousands of pages we would
just revisit (many times) later.
Upstream it's not such a big issue for sys_sync because we get
to the loop with a much smaller nr_to_write, which limits the loop.
However, talking with Aneesh he realized that fsync upstream still
gets here with a very large nr_to_write and we face the same problem.
This patch makes mpage_add_bh_to_extent stop the loop after we've
accumulated 2048 pages, by setting mpd->io_done = 1; which ultimately
causes the write_cache_pages loop to break.
Repeating the test with a dirty_ratio of 80 (to leave something for
fsync to do), I don't see huge IO performance gains, but the reduction
in cpu usage is striking: 80% usage with stock, and 2% with the
below patch. Instrumenting the loop in write_cache_pages clearly
shows that we are wasting time here.
Eventually we need to change mpage_da_map_pages() also submit its I/O
to the block layer, subsuming mpage_da_submit_io(), and then change it
call ext4_get_blocks() multiple times.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
allocated_meta_data is already included in 'used' variable.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: Issue the discard operation *before* releasing the blocks to be reused
ext4: Fix buffer head leaks after calls to ext4_get_inode_loc()
ext4: Fix possible lost inode write in no journal mode
Calls to ext4_get_inode_loc() returns with a reference to a buffer
head in iloc->bh. The callers of this function in ext4_write_inode()
when in no journal mode and in ext4_xattr_fiemap() don't release the
buffer head after using it.
Addresses-Google-Bug: #2548165
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In the no-journal case, ext4_write_inode() will fetch the bh and call
sync_dirty_buffer() on it. However, if the bh has already been
written and the bh reclaimed for some other purpose, AND if the inode
is the only one in the inode table block in use, then
ext4_get_inode_loc() will not read the inode table block from disk,
but as an optimization, fill the block with zero's assuming that its
caller will copy in the on-disk version of the inode. This is not
done by ext4_write_inode(), so the contents of the inode can simply
get lost. The fix is to use __ext4_get_inode_loc() with in_mem set to
0, instead of ext4_get_inode_loc(). Long term the API needs to be
fixed so it's obvious why latter is not safe.
Addresses-Google-Bug: #2526446
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6: (33 commits)
quota: stop using QUOTA_OK / NO_QUOTA
dquot: cleanup dquot initialize routine
dquot: move dquot initialization responsibility into the filesystem
dquot: cleanup dquot drop routine
dquot: move dquot drop responsibility into the filesystem
dquot: cleanup dquot transfer routine
dquot: move dquot transfer responsibility into the filesystem
dquot: cleanup inode allocation / freeing routines
dquot: cleanup space allocation / freeing routines
ext3: add writepage sanity checks
ext3: Truncate allocated blocks if direct IO write fails to update i_size
quota: Properly invalidate caches even for filesystems with blocksize < pagesize
quota: generalize quota transfer interface
quota: sb_quota state flags cleanup
jbd: Delay discarding buffers in journal_unmap_buffer
ext3: quota_write cross block boundary behaviour
quota: drop permission checks from xfs_fs_set_xstate/xfs_fs_set_xquota
quota: split out compat_sys_quotactl support from quota.c
quota: split out netlink notification support from quota.c
quota: remove invalid optimization from quota_sync_all
...
Fixed trivial conflicts in fs/namei.c and fs/ufs/inode.c
* 'write_inode2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
pass writeback_control to ->write_inode
make sure data is on disk before calling ->write_inode
This gives the filesystem more information about the writeback that
is happening. Trond requested this for the NFS unstable write handling,
and other filesystems might benefit from this too by beeing able to
distinguish between the different callers in more detail.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Get rid of the initialize dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_initialize helper to __dquot_initialize
and vfs_dq_init to dquot_initialize to have a consistent namespace.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently various places in the VFS call vfs_dq_init directly. This means
we tie the quota code into the VFS. Get rid of that and make the
filesystem responsible for the initialization. For most metadata operations
this is a straight forward move into the methods, but for truncate and
open it's a bit more complicated.
For truncate we currently only call vfs_dq_init for the sys_truncate case
because open already takes care of it for ftruncate and open(O_TRUNC) - the
new code causes an additional vfs_dq_init for those which is harmless.
For open the initialization is moved from do_filp_open into the open method,
which means it happens slightly earlier now, and only for regular files.
The latter is fine because we don't need to initialize it for operations
on special files, and we already do it as part of the namespace operations
for directories.
Add a dquot_file_open helper that filesystems that support generic quotas
can use to fill in ->open.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the transfer dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_transfer helper to __dquot_transfer
and vfs_dq_transfer to dquot_transfer to have a consistent namespace,
and make the new dquot_transfer return a normal negative errno value
which all callers expect.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the alloc_space, free_space, reserve_space, claim_space and
release_rsv dquot operations - they are always called from the filesystem
and if a filesystem really needs their own (which none currently does)
it can just call into it's own routine directly.
Move shared logic into the common __dquot_alloc_space,
dquot_claim_space_nodirty and __dquot_free_space low-level methods,
and rationalize the wrappers around it to move as much as possible
code into the common block for CONFIG_QUOTA vs not. Also rename
all these helpers to be named dquot_* instead of vfs_dq_*.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
We forget to release page references we acquire in
ext4_da_block_invalidatepages. Luckily, this function gets called only if we
are not able to allocate blocks for delay-allocated data so that function
should better never be called.
Also cleanup handling of index variable.
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Convert a bunch of BUG_ONs to emit a ext4_error() message and return
EIO. This is a first pass and most notably does _not_ cover
mballoc.c, which is a morass of void functions.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Allocate uninitialized extent before ext4 buffer write and
convert the extent to initialized after io completes.
The purpose is to make sure an extent can only be marked
initialized after it has been written with new data so
we can safely drop the i_mutex lock in ext4 DIO read without
exposing stale data. This helps to improve multi-thread DIO
read performance on high-speed disks.
Skip the nobh and data=journal mount cases to make things simple for now.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This commit renames some of the direct I/O's block allocation flags,
variables, and functions introduced in Mingming's "Direct IO for holes
and fallocate" patches so that they can be used by ext4's buffered
write path as well. Also changed the related function comments
accordingly to cover both direct write and buffered write cases.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Otherwise non-empty orphan list will be triggered on umount.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
fallocate() may potentially instantiate blocks past EOF, depending
on the flags used when it is called.
e2fsck currently has a test for blocks past i_size, and it
sometimes trips up - noticeably on xfstests 013 which runs fsstress.
This patch from Jiayang does fix it up - it (along with
e2fsprogs updates and other patches recently from Aneesh) has
survived many fsstress runs in a row.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Calls to ext4_handle_dirty_metadata should only pass in an inode
pointer for inode-specific metadata, and not for shared metadata
blocks such as inode table blocks, block group descriptors, the
superblock, etc.
The BUG_ON can get tripped when updating a special device (such as a
block device) that is opened (so that i_mapping is set in
fs/block_dev.c) and the file system is mounted in no journal mode.
Addresses-Google-Bug: #2404870
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Just a pet peeve of mine; we had a mishash of calls with either __func__
or "function_name" and the latter tends to get out of sync.
I think it's easier to just hide the __func__ in a macro, and it'll
be consistent from then on.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
At several places we modify EXT4_I(inode)->i_state without holding
i_mutex (ext4_release_file, ext4_bmap, ext4_journalled_writepage,
ext4_do_update_inode, ...). These modifications are racy and we can
lose updates to i_state. So convert handling of i_state to use bitops
which are atomic.
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We should update reserve space if it is delalloc buffer
and that is indicated by EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
So use EXT4_GET_BLOCKS_DELALLOC_RESERVE in place of
EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
When we fallocate a region of the file which we had recently written,
and which is still in the page cache marked as delayed allocated blocks
we need to make sure we don't do the quota update on writepage path.
This is because the needed quota updated would have already be done
by fallocate.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
We need to release the journal before we do a write_inode. Otherwise
we could deadlock.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
In the past, ext4_calc_metadata_amount(), and its sub-functions
ext4_ext_calc_metadata_amount() and ext4_indirect_calc_metadata_amount()
badly over-estimated the number of metadata blocks that might be
required for delayed allocation blocks. This didn't matter as much
when functions which managed the reserved metadata blocks were more
aggressive about dropping reserved metadata blocks as delayed
allocation blocks were written, but unfortunately they were too
aggressive. This was fixed in commit 0637c6f, but as a result the
over-estimation by ext4_calc_metadata_amount() would lead to reserving
2-3 times the number of pending delayed allocation blocks as
potentially required metadata blocks. So if there are 1 megabytes of
blocks which have been not yet been allocation, up to 3 megabytes of
space would get reserved out of the user's quota and from the file
system free space pool until all of the inode's data blocks have been
allocated.
This commit addresses this problem by much more accurately estimating
the number of metadata blocks that will be required. It will still
somewhat over-estimate the number of blocks needed, since it must make
a worst case estimate not knowing which physical blocks will be
needed, but it is much more accurate than before.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Commit 0637c6f had a typo which caused the reserved metadata blocks to
not be released correctly. Fix this.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
As reported in Kernel Bugzilla #14936, commit d21cd8f triggered a BUG
in the function ext4_da_update_reserve_space() found in
fs/ext4/inode.c. The root cause of this BUG() was caused by the fact
that ext4_calc_metadata_amount() can severely over-estimate how many
metadata blocks will be needed, especially when using direct
block-mapped files.
In addition, it can also badly *under* estimate how much space is
needed, since ext4_calc_metadata_amount() assumes that the blocks are
contiguous, and this is not always true. If the application is
writing blocks to a sparse file, the number of metadata blocks
necessary can be severly underestimated by the functions
ext4_da_reserve_space(), ext4_da_update_reserve_space() and
ext4_da_release_space(). This was the cause of the dq_claim_space
reports found on kerneloops.org.
Unfortunately, doing this right means that we need to massively
over-estimate the amount of free space needed. So in some cases we
may need to force the inode to be written to disk asynchronously in
to avoid spurious quota failures.
http://bugzilla.kernel.org/show_bug.cgi?id=14936
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When ext4_da_writepages increases the nr_to_write in writeback_control
then it must always re-base the return value. Originally there was a
(misguided) attempt prevent wbc.nr_to_write from going negative. In
fact, it's necessary to allow nr_to_write to be negative so that
wb_writeback() can correctly calculate how many pages were actually
written.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Creating many small files in rapid succession on a small
filesystem can lead to spurious ENOSPC; on a 104MB filesystem:
for i in `seq 1 22500`; do
echo -n > $SCRATCH_MNT/$i
echo XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX > $SCRATCH_MNT/$i
done
leads to ENOSPC even though after a sync, 40% of the fs is free
again.
This is because we reserve worst-case metadata for delalloc writes,
and when data is allocated that worst-case reservation is not
usually needed.
When freespace is low, kicking off an async writeback will start
converting that worst-case space usage into something more realistic,
almost always freeing up space to continue.
This resolves the testcase for me, and survives all 4 generic
ENOSPC tests in xfstests.
We'll still need a hard synchronous sync to squeeze out the last bit,
but this fixes things up to a large degree.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Unlock i_block_reservation_lock before vfs_dq_reserve_block().
This patch fixes http://bugzilla.kernel.org/show_bug.cgi?id=14739
CC: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
This patch also fixes write vs chown race condition.
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (47 commits)
ext4: Fix potential fiemap deadlock (mmap_sem vs. i_data_sem)
ext4: Do not override ext2 or ext3 if built they are built as modules
jbd2: Export jbd2_log_start_commit to fix ext4 build
ext4: Fix insufficient checks in EXT4_IOC_MOVE_EXT
ext4: Wait for proper transaction commit on fsync
ext4: fix incorrect block reservation on quota transfer.
ext4: quota macros cleanup
ext4: ext4_get_reserved_space() must return bytes instead of blocks
ext4: remove blocks from inode prealloc list on failure
ext4: wait for log to commit when umounting
ext4: Avoid data / filesystem corruption when write fails to copy data
ext4: Use ext4 file system driver for ext2/ext3 file system mounts
ext4: Return the PTR_ERR of the correct pointer in setup_new_group_blocks()
jbd2: Add ENOMEM checking in and for jbd2_journal_write_metadata_buffer()
ext4: remove unused parameter wbc from __ext4_journalled_writepage()
ext4: remove encountered_congestion trace
ext4: move_extent_per_page() cleanup
ext4: initialize moved_len before calling ext4_move_extents()
ext4: Fix double-free of blocks with EXT4_IOC_MOVE_EXT
ext4: use ext4_data_block_valid() in ext4_free_blocks()
...
Add checks to ext4_free_branches() to make sure a block number found
in an indirect block are valid before trying to free it. If a bad
block number is found, stop freeing the indirect block immediately,
since the file system is corrupt and we will need to run fsck anyway.
This also avoids spamming the logs, and specifically avoids
driver-level "attempt to access beyond end of device" errors obscure
what is really going on.
If you get *really*, *really*, *really* unlucky, without this patch, a
supposed indirect block containing garbage might contain a reference
to a primary block group descriptor, in which case
ext4_free_branches() could end up zero'ing out a block group
descriptor block, and if then one of the block bitmaps for a block
group described by that bg descriptor block is not in memory, and is
read in by ext4_read_block_bitmap(). This function calls
ext4_valid_block_bitmap(), which assumes that bg_inode_table() was
validated at mount time and hasn't been modified since. Since this
assumption is no longer valid, it's possible for the value
(ext4_inode_table(sb, desc) - group_first_block) to go negative, which
will cause ext4_find_next_zero_bit() to trigger a kernel GPF.
Addresses-Google-Bug: #2220436
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The "offset" member in ext4_io_end holds bytes, not blocks, so
ext4_lblk_t is wrong - and too small (u32).
This caused the async i/o writes to sparse files beyond 4GB to fail
when they wrapped around to 0.
Also fix up the type of arguments to ext4_convert_unwritten_extents(),
it gets ssize_t from ext4_end_aio_dio_nolock() and
ext4_ext_direct_IO().
Reported-by: Giel de Nijs <giel@vectorwise.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
We cannot rely on buffer dirty bits during fsync because pdflush can come
before fsync is called and clear dirty bits without forcing a transaction
commit. What we do is that we track which transaction has last changed
the inode and which transaction last changed allocation and force it to
disk on fsync.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Inside ->setattr() call both ATTR_UID and ATTR_GID may be valid
This means that we may end-up with transferring all quotas. Add
we have to reserve QUOTA_DEL_BLOCKS for all quotas, as we do in
case of QUOTA_INIT_BLOCKS.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Reviewed-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Currently all quota block reservation macros contains hard-coded "2"
aka MAXQUOTAS value. This is no good because in some places it is not
obvious to understand what does this digit represent. Let's introduce
new macro with self descriptive name.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Acked-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When ext4_write_begin fails after allocating some blocks or
generic_perform_write fails to copy data to write, we truncate blocks
already instantiated beyond i_size. Although these blocks were never
inside i_size, we have to truncate the pagecache of these blocks so
that corresponding buffers get unmapped. Otherwise subsequent
__block_prepare_write (called because we are retrying the write) will
find the buffers mapped, not call ->get_block, and thus the page will
be backed by already freed blocks leading to filesystem and data
corruption.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Add the facility for ext4_forget() to be called from
ext4_free_blocks(). This simplifies the code in a large number of
places, and centralizes most of the work of calling ext4_forget() into
a single place.
Also fix a bug in the extents migration code; it wasn't calling
ext4_forget() when releasing the indirect blocks during the
conversion. As a result, if the system cashed during or shortly after
the extents migration, and the released indirect blocks get reused as
data blocks, the journal replay would corrupt the data blocks. With
this new patch, fixing this bug was as simple as adding the
EXT4_FREE_BLOCKS_FORGET flags to the call to ext4_free_blocks().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Convert the last two callers of ext4_journal_forget() to use
ext4_forget() instead, and then fold ext4_journal_forget() into
ext4_forget(). This reduces are code complexity and shortens our call
stack.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4_forget() function better belongs in ext4_jbd2.c. This will
allow us to do some cleanup of the ext4_journal_revoke() and
ext4_journal_forget() functions, as well as giving us better error
reporting since we can report the caller of ext4_forget() when things
go wrong.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When an error happened in ext4_splice_branch we failed to notice that
in ext4_ind_get_blocks and mapped the buffer anyway. Fix the problem
by checking for error properly.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
The block validity checks used by ext4_data_block_valid() wasn't
correctly written to check file systems with the meta_bg feature. Fix
this.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
We need to be testing the i_flags field in the ext4 specific portion
of the inode, instead of the (confusingly aliased) i_flags field in
the generic struct inode.
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
When an inode gets unlinked, the functions ext4_clear_blocks() and
ext4_remove_blocks() call ext4_forget() for all the buffer heads
corresponding to the deleted inode's data blocks. If the inode is a
directory or a symlink, the is_metadata parameter must be non-zero so
ext4_forget() will revoke them via jbd2_journal_revoke(). Otherwise,
if these blocks are reused for a data file, and the system crashes
before a journal checkpoint, the journal replay could end up
corrupting these data blocks.
Thanks to Curt Wohlgemuth for pointing out potential problems in this
area.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
One of the invalid error paths in ext4_iget() forgot to brelse() the
inode buffer head. Fix it by adding a brelse() in the common error
return path, which also simplifies function.
Thanks to Andi Kleen <ak@linux.intel.com> reporting the problem.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The ext4_debug() call in ext4_end_io_dio() should be moved after the
check to make sure that io_end is non-NULL.
The comment above ext4_get_block_dio_write() ("Maximum number of
blocks...") is a duplicate; the original and correct comment is above
the #define DIO_MAX_BLOCKS up above.
Based on review comments from Curt Wohlgemuth.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
At the end of direct I/O operation, ext4_ext_direct_IO() always called
ext4_convert_unwritten_extents(), regardless of whether there were any
unwritten extents involved in the I/O or not.
This commit adds a state flag so that ext4_ext_direct_IO() only calls
ext4_convert_unwritten_extents() when necessary.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After a direct I/O request covering an uninitalized extent (i.e.,
created using the fallocate system call) or a hole in a file, ext4
will convert the uninitialized extent so it is marked as initialized
by calling ext4_convert_unwritten_extents(). This function returns
zero on success.
This return value was getting returned by ext4_direct_IO(); however
the file system's direct_IO function is supposed to return the number
of bytes read or written on a success. By returning zero, it confused
the direct I/O code into falling back to buffered I/O unnecessarily.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When restart a transaction during a truncate operation, we drop and
reacquire i_data_sem. After reacquiring i_data_sem, we need to
discard any inode-based preallocation that might have been grabbed
while we released i_data_sem (for example, if pdflush is allocating
blocks and racing against the truncate).
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
On a 256M filesystem, doing this in a loop:
xfs_io -F -f -d -c 'pwrite 0 64m' test
rm -f test
eventually leads to ENOSPC. (the xfs_io command does a
64m direct IO write to the file "test")
As with other block allocation callers, it looks like we need to
potentially retry the allocations on the initial ENOSPC.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This fixes the following warning:
fs/ext4/inode.c: In function 'ext4_dirty_inode':
fs/ext4/inode.c:5615: warning: unused variable 'current_handle'
We remove the jbd_debug() statement which does use current_handle, as
it's not terribly important in the grand scheme of things.
Thanks to Stephen Rothwell for pointing this out.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
In ext4_num_dirty_pages() we were calling page_buffers() before
checking to see if the page actually had pages attached to it; this
would cause a BUG check crash in the inline function page_buffers().
Thanks to Markus Trippelsdorf for reporting this bug.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This patch a problem that ext4_dirty_inode() was not calling
ext4_mark_inode_dirty() if the current_handle is not valid, which it
is the case in no journal mode.
It also removes a test for non-matching transaction which can never
happen.
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This is a cleanup of commit 91ac6f4. Since ext4_mark_inode_dirty()
has already called ext4_mark_iloc_dirty(), which in turn calls
ext4_do_update_inode(), it's not necessary to have ext4_write_inode()
call ext4_do_update_inode() in no journal mode. Indeed, it would be
duplicated work.
Reviewed-by: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
For async direct IO that covers holes or fallocate, the end_io
callback function now queued the convertion work on workqueue but
don't flush the work rightaway as it might take too long to afford.
But when fsync is called after all the data is completed, user expects
the metadata also being updated before fsync returns.
Thus we need to flush the conversion work when fsync() is called.
This patch keep track of a listed of completed async direct io that
has a work queued on workqueue. When fsync() is called, it will go
through the list and do the conversion.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Currently the DIO VFS code passes create = 0 when writing to the
middle of file. It does this to avoid block allocation for holes, so
as not to expose stale data out when there is a parallel buffered read
(which does not hold the i_mutex lock). Direct I/O writes into holes
falls back to buffered IO for this reason.
Since preallocated extents are treated as holes when doing a
get_block() look up (buffer is not mapped), direct IO over fallocate
also falls back to buffered IO. Thus ext4 actually silently falls
back to buffered IO in above two cases, which is undesirable.
To fix this, this patch creates unitialized extents when a direct I/O
write into holes in sparse files, and registering an end_io callback which
converts the uninitialized extent to an initialized extent after the
I/O is completed.
Singed-Off-By: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When writing into an unitialized extent via direct I/O, and the direct
I/O doesn't exactly cover the unitialized extent, split the extent
into uninitialized and initialized extents before submitting the I/O.
This avoids needing to deal with an ENOSPC error in the end_io
callback that gets used for direct I/O.
When the IO is complete, the written extent will be marked as initialized.
Singed-Off-By: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
ext4_da_reserve_space() can reserve quota blocks multiple times if
ext4_claim_free_blocks() fail and we retry the allocation. We should
release the quota reservation before restarting.
Bug found by Jan Kara.
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Work around problems in the writeback code to force out writebacks in
larger chunks than just 4mb, which is just too small. This also works
around limitations in the ext4 block allocator, which can't allocate
more than 2048 blocks at a time. So we need to defeat the round-robin
characteristics of the writeback code and try to write out as many
blocks in one inode before allowing the writeback code to move on to
another inode. We add a a new per-filesystem tunable,
max_writeback_mb_bump, which caps this to a default of 128mb per
inode.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This allows the user to see what filesystem was involved with a
particular ext4_da_writepage() error. Also, use KERN_CRIT which is
more appropriate than KERN_EMERG.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
In an attempt to avoid doing an unneeded flush after opening a
(previously non-existent) file with O_CREAT|O_TRUNC, the code only
triggered the hueristic if ei->disksize was non-zero. Turns out that
the VFS doesn't call ->truncate() if the file doesn't exist, and
ei->disksize is always zero even if the file previously existed. So
remove the test, since it isn't necessary and in fact disabled the
hueristic.
Thanks to Clemens Eisserer that he was seeing problems with files
written using kwrite and eclipse after sudden crashes caused by a
buggy Intel video driver.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
EXT4_EXT_MIGRATE is only intended to be used for an in-memory flag,
and the hex value assigned to it collides with FS_DIRECTIO_FL (which
is also stored in i_flags). There's no reason for the
EXT4_EXT_MIGRATE bit to be stored in i_flags, so we switch it to use
i_state instead.
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Today, the ext4 allocator will happily allocate blocks past
2^32 for indirect-block files, which results in the block
numbers getting truncated, and corruption ensues.
This patch limits such allocations to < 2^32, and adds
BUG_ONs if we do get blocks larger than that.
This should address RH Bug 519471, ext4 bitmap allocator
must limit blocks to < 2^32
* ext4_find_goal() is modified to choose a goal < UINT_MAX,
so that our starting point is in an acceptable range.
* ext4_xattr_block_set() is modified such that the goal block
is < UINT_MAX, as above.
* ext4_mb_regular_allocator() is modified so that the group
search does not continue into groups which are too high
* ext4_mb_use_preallocated() has a check that we don't use
preallocated space which is too far out
* ext4_alloc_blocks() and ext4_xattr_block_set() add some BUG_ONs
No attempt has been made to limit inode locations to < 2^32,
so we may wind up with blocks far from their inodes. Doing
this much already will lead to some odd ENOSPC issues when the
"lower 32" gets full, and further restricting inodes could
make that even weirder.
For high inodes, choosing a goal of the original, % UINT_MAX,
may be a bit odd, but then we're in an odd situation anyway,
and I don't know of a better heuristic.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Enable removing of corrupted pages through truncation
for a bunch of file systems: ext*, xfs, gfs2, ocfs2, ntfs
These should cover most server needs.
I chose the set of migration aware file systems for this
for now, assuming they have been especially audited.
But in general it should be safe for all file systems
on the data area that support read/write and truncate.
Caveat: the hardware error handler does not take i_mutex
for now before calling the truncate function. Is that ok?
Cc: tytso@mit.edu
Cc: hch@infradead.org
Cc: mfasheh@suse.com
Cc: aia21@cantab.net
Cc: hugh.dickins@tiscali.co.uk
Cc: swhiteho@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>