Takashi Iwai <tiwai@suse.de> says:
> The letter 'X' has been already used for SUSE kernels for very long
> time, to indicate the external supported modules. Can the new flag be
> changed to another letter for avoiding conflict...?
> (BTW, we also use 'N' for "no support", too.)
Note: this code should be cleaned up, so we don't have such maps in
three places!
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rename TAINT_UNSAFE_SMP to TAINT_CPU_OUT_OF_SPEC, so we can repurpose
the flag to encompass a wider range of pushing the CPU beyond its
warrany.
Signed-off-by: Dave Jones <davej@fedoraproject.org>
Link: http://lkml.kernel.org/r/20140226154949.GA770@redhat.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Users have reported being unable to trace non-signed modules loaded
within a kernel supporting module signature.
This is caused by tracepoint.c:tracepoint_module_coming() refusing to
take into account tracepoints sitting within force-loaded modules
(TAINT_FORCED_MODULE). The reason for this check, in the first place, is
that a force-loaded module may have a struct module incompatible with
the layout expected by the kernel, and can thus cause a kernel crash
upon forced load of that module on a kernel with CONFIG_TRACEPOINTS=y.
Tracepoints, however, specifically accept TAINT_OOT_MODULE and
TAINT_CRAP, since those modules do not lead to the "very likely system
crash" issue cited above for force-loaded modules.
With kernels having CONFIG_MODULE_SIG=y (signed modules), a non-signed
module is tainted re-using the TAINT_FORCED_MODULE taint flag.
Unfortunately, this means that Tracepoints treat that module as a
force-loaded module, and thus silently refuse to consider any tracepoint
within this module.
Since an unsigned module does not fit within the "very likely system
crash" category of tainting, add a new TAINT_UNSIGNED_MODULE taint flag
to specifically address this taint behavior, and accept those modules
within Tracepoints. We use the letter 'X' as a taint flag character for
a module being loaded that doesn't know how to sign its name (proposed
by Steven Rostedt).
Also add the missing 'O' entry to trace event show_module_flags() list
for the sake of completeness.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
NAKed-by: Ingo Molnar <mingo@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: David Howells <dhowells@redhat.com>
CC: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
In LTO symbols implicitely referenced by the compiler need
to be visible. Earlier these symbols were visible implicitely
from being exported, but we disabled implicit visibility fo
EXPORTs when modules are disabled to improve code size. So
now these symbols have to be marked visible explicitely.
Do this for __stack_chk_fail (with stack protector)
and memcmp.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1391845930-28580-10-git-send-email-ak@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The panic_timeout value can be set via the command line option
'panic=x', or via /proc/sys/kernel/panic, however that is not
sufficient when the panic occurs before we are able to set up
these values. Thus, add a CONFIG_PANIC_TIMEOUT so that we can
set the desired value from the .config.
The default panic_timeout value continues to be 0 - wait
forever. Also adds set_arch_panic_timeout(new_timeout,
arch_default_timeout), which is intended to be used by arches in
arch_setup(). The idea being that the new_timeout is only set if
the user hasn't changed from the arch_default_timeout.
Signed-off-by: Jason Baron <jbaron@akamai.com>
Cc: benh@kernel.crashing.org
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: mpe@ellerman.id.au
Cc: felipe.contreras@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1a1674daec27c534df409697025ac568ebcee91e.1385418410.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sizeof("Tainted: ") already counts '\0', and after first sprintf(), 's'
will start from the current string end (its' value is '\0').
So need not add additional 1 byte for maximized usage of 'buf' in
print_tainted().
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the panic handlers may produce additional information (via printk)
for the kernel log, it should be reported as part of the panic output
saved by kmsg_dump(). Without this re-ordering, nothing that adds
information to a panic will show up in pstore's view when kmsg_dump runs,
and is therefore not visible to crash reporting tools that examine pstore
output.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
were added to 3.10, which includes several bug fixes that have been
marked for stable.
As for new features, there were a few, but nothing to write to LWN about.
These include:
New function trigger called "dump" and "cpudump" that will cause
ftrace to dump its buffer to the console when the function is called.
The difference between "dump" and "cpudump" is that "dump" will dump
the entire contents of the ftrace buffer, where as "cpudump" will only
dump the contents of the ftrace buffer for the CPU that called the function.
Another small enhancement is a new sysctl switch called "traceoff_on_warning"
which, when enabled, will disable tracing if any WARN_ON() is triggered.
This is useful if you want to debug what caused a warning and do not
want to risk losing your trace data by the ring buffer overwriting the
data before you can disable it. There's also a kernel command line
option that will make this enabled at boot up called the same thing.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJR1uF2AAoJEOdOSU1xswtMJ1IH/2LSiZAKTA2QaRgGQC/5Bb9c
XSOI1HfD/78lmUvTyb0AX8sLpkzZlvIONEQ/WaZUFo1Zjbrl45zJUwMkTE9uImEg
ZqI5x8OiiN6j4XrRbfYn3Ti060H/Jq41pZXa+shh961Vv51ilv/1yyLkoRmnjzuO
JTloPdXDV7icOqqiSdgxSdtUSv59Ef1ZdHgvvsb3aqzMC5btVQPi4kIys0ST1Tr1
pMWBY+UgvH0xYm3gvTR+W6jjDlkVZEH2alkmcinfr+uC1tm9DDqK2HA17Pd5yZ5z
HNdT76lCzf9iqRF5F8HUvUt+PIp76dNNxAt2qpB6APqAuJTojyguxXHDbY/0kzs=
=UvLi
-----END PGP SIGNATURE-----
Merge tag 'trace-3.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing changes from Steven Rostedt:
"The majority of the changes here are cleanups for the large changes
that were added to 3.10, which includes several bug fixes that have
been marked for stable.
As for new features, there were a few, but nothing to write to LWN
about. These include:
New function trigger called "dump" and "cpudump" that will cause
ftrace to dump its buffer to the console when the function is called.
The difference between "dump" and "cpudump" is that "dump" will dump
the entire contents of the ftrace buffer, where as "cpudump" will only
dump the contents of the ftrace buffer for the CPU that called the
function.
Another small enhancement is a new sysctl switch called
"traceoff_on_warning" which, when enabled, will disable tracing if any
WARN_ON() is triggered. This is useful if you want to debug what
caused a warning and do not want to risk losing your trace data by the
ring buffer overwriting the data before you can disable it. There's
also a kernel command line option that will make this enabled at boot
up called the same thing"
* tag 'trace-3.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (34 commits)
tracing: Make tracing_open_generic_{tr,tc}() static
tracing: Remove ftrace() function
tracing: Remove TRACE_EVENT_TYPE enum definition
tracing: Make tracer_tracing_{off,on,is_on}() static
tracing: Fix irqs-off tag display in syscall tracing
uprobes: Fix return value in error handling path
tracing: Fix race between deleting buffer and setting events
tracing: Add trace_array_get/put() to event handling
tracing: Get trace_array ref counts when accessing trace files
tracing: Add trace_array_get/put() to handle instance refs better
tracing: Protect ftrace_trace_arrays list in trace_events.c
tracing: Make trace_marker use the correct per-instance buffer
ftrace: Do not run selftest if command line parameter is set
tracing/kprobes: Don't pass addr=ip to perf_trace_buf_submit()
tracing: Use flag buffer_disabled for irqsoff tracer
tracing/kprobes: Turn trace_probe->files into list_head
tracing: Fix disabling of soft disable
tracing: Add missing syscall_metadata comment
tracing: Simplify code for showing of soft disabled flag
tracing/kprobes: Kill probe_enable_lock
...
Add the cpu/pid that called WARN() so that the stack traces can be
matched up with the WARNING messages.
[akpm@linux-foundation.org: remove stray quote]
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Reviewed-by: Robin Holt <holt@sgi.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a traceoff_on_warning option in both the kernel command line as well
as a sysctl option. When set, any WARN*() function that is hit will cause
the tracing_on variable to be cleared, which disables writing to the
ring buffer.
This is useful especially when tracing a bug with function tracing. When
a warning is hit, the print caused by the warning can flood the trace with
the functions that producing the output for the warning. This can make the
resulting trace useless by either hiding where the bug happened, or worse,
by overflowing the buffer and losing the trace of the bug totally.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
x86 and ia64 can acquire extra hardware identification information
from DMI and print it along with task dumps; however, the usage isn't
consistent.
* x86 show_regs() collects vendor, product and board strings and print
them out with PID, comm and utsname. Some of the information is
printed again later in the same dump.
* warn_slowpath_common() explicitly accesses the DMI board and prints
it out with "Hardware name:" label. This applies to both x86 and
ia64 but is irrelevant on all other archs.
* ia64 doesn't show DMI information on other non-WARN dumps.
This patch introduces arch-specific hardware description used by
dump_stack(). It can be set by calling dump_stack_set_arch_desc()
during boot and, if exists, printed out in a separate line with
"Hardware name:" label.
dmi_set_dump_stack_arch_desc() is added which sets arch-specific
description from DMI data. It uses dmi_ids_string[] which is set from
dmi_present() used for DMI debug message. It is superset of the
information x86 show_regs() is using. The function is called from x86
and ia64 boot code right after dmi_scan_machine().
This makes the explicit DMI handling in warn_slowpath_common()
unnecessary. Removed.
show_regs() isn't yet converted to use generic debug information
printing and this patch doesn't remove the duplicate DMI handling in
x86 show_regs(). The next patch will unify show_regs() handling and
remove the duplication.
An example WARN dump follows.
WARNING: at kernel/workqueue.c:4841 init_workqueues+0x35/0x505()
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.9.0-rc1-work+ #3
Hardware name: empty empty/S3992, BIOS 080011 10/26/2007
0000000000000009 ffff88007c861e08 ffffffff81c614dc ffff88007c861e48
ffffffff8108f500 ffffffff82228240 0000000000000040 ffffffff8234a08e
0000000000000000 0000000000000000 0000000000000000 ffff88007c861e58
Call Trace:
[<ffffffff81c614dc>] dump_stack+0x19/0x1b
[<ffffffff8108f500>] warn_slowpath_common+0x70/0xa0
[<ffffffff8108f54a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8234a0c3>] init_workqueues+0x35/0x505
...
v2: Use the same string as the debug message from dmi_present() which
also contains BIOS information. Move hardware name into its own
line as warn_slowpath_common() did. This change was suggested by
Bjorn Helgaas.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up all callers as they were before, with make one change: an
unsigned module taints the kernel, but doesn't turn off lockdep.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
panic_lock is meant to ensure that panic processing takes place only on
one cpu; if any of the other cpus encounter a panic, they will spin
waiting to be shut down.
However, this causes a regression in this scenario:
1. Cpu 0 encounters a panic and acquires the panic_lock
and proceeds with the panic processing.
2. There is an interrupt on cpu 0 that also encounters
an error condition and invokes panic.
3. This second invocation fails to acquire the panic_lock
and enters the infinite while loop in panic_smp_self_stop.
Thus all panic processing is stopped, and the cpu is stuck for eternity
in the while(1) inside panic_smp_self_stop.
To address this, disable local interrupts with local_irq_disable before
acquiring the panic_lock. This will prevent interrupt handlers from
executing during the panic processing, thus avoiding this particular
problem.
Signed-off-by: Vikram Mulukutla <markivx@codeaurora.org>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves kmsg_dump(KMSG_DUMP_PANIC) below smp_send_stop(),
to serialize the crash-logging process via smp_send_stop() and to
thus retrieve a more stable crash image of all CPUs stopped.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: dle-develop@lists.sourceforge.net <dle-develop@lists.sourceforge.net>
Cc: Satoru Moriya <satoru.moriya@hds.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: a.p.zijlstra@chello.nl <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/5C4C569E8A4B9B42A84A977CF070A35B2E4D7A5CE2@USINDEVS01.corp.hds.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several distros set this by default by patching panic_on_oops.
It seems to fit with the BOOTPARAM_{HARD,SOFT}_PANIC options
though, so let's add a Kconfig entry and reduce some more
upstream delta.
Signed-off-by: Kyle McMartin <kyle@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120411121529.GH26688@redacted.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 6e6f0a1f0f ("panic: don't print redundant backtraces on oops")
causes a regression where no stack trace will be printed at all for the
case where kernel code calls panic() directly while not processing an
oops, and of course there are 100's of instances of this type of call.
The original commit executed the check (!oops_in_progress), but this will
always be false because just before the dump_stack() there is a call to
bust_spinlocks(1), which does the following:
void __attribute__((weak)) bust_spinlocks(int yes)
{
if (yes) {
++oops_in_progress;
The proper way to resolve the problem that original commit tried to
solve is to avoid printing a stack dump from panic() when the either of
the following conditions is true:
1) TAINT_DIE has been set (this is done by oops_end())
This indicates and oops has already been printed.
2) oops_in_progress > 1
This guards against the rare case where panic() is invoked
a second time, or in between oops_begin() and oops_end()
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an oops causes a panic and panic prints another backtrace it's pretty
common to have the original oops data be scrolled away on a 80x50 screen.
The second backtrace is quite redundant and not needed anyways.
So don't print the panic backtrace when oops_in_progress is true.
[akpm@linux-foundation.org: add comment]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When two CPUs call panic at the same time there is a possible race
condition that can stop kdump. The first CPU calls crash_kexec() and the
second CPU calls smp_send_stop() in panic() before crash_kexec() finished
on the first CPU. So the second CPU stops the first CPU and therefore
kdump fails:
1st CPU:
panic()->crash_kexec()->mutex_trylock(&kexec_mutex)-> do kdump
2nd CPU:
panic()->crash_kexec()->kexec_mutex already held by 1st CPU
->smp_send_stop()-> stop 1st CPU (stop kdump)
This patch fixes the problem by introducing a spinlock in panic that
allows only one CPU to process crash_kexec() and the subsequent panic
code.
All other CPUs call the weak function panic_smp_self_stop() that stops the
CPU itself. This function can be overloaded by architecture code. For
example "tile" can use their lower-power "nap" instruction for that.
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We do want to allow lock debugging for GPL-compatible modules
that are not (yet) built in-tree. This was disabled as a
side-effect of commit 2449b8ba07
('module,bug: Add TAINT_OOT_MODULE flag for modules not built
in-tree'). Lock debug warnings now include taint flags, so
kernel developers should still be able to deflect warnings
caused by out-of-tree modules.
The TAINT_PROPRIETARY_MODULE flag for non-GPL-compatible modules
will still disable lock debugging.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Greg KH <greg@kroah.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Debian kernel maintainers <debian-kernel@lists.debian.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/r/1323268258.18450.11.camel@deadeye
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's unlikely that TAINT_FIRMWARE_WORKAROUND causes false
lockdep messages, so do not disable lockdep in that case.
We still want to keep lockdep disabled in the
TAINT_OOT_MODULE case:
- bin-only modules can cause various instabilities in
their and in unrelated kernel code
- they are impossible to debug for kernel developers
- they also typically do not have the copyright license
permission to link to the GPL-ed lockdep code.
Suggested-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-xopopjjens57r0i13qnyh2yo@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use of the GPL or a compatible licence doesn't necessarily make the code
any good. We already consider staging modules to be suspect, and this
should also be true for out-of-tree modules which may receive very
little review.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Reviewed-by: Dave Jones <davej@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (patched oops-tracing.txt)
When a kernel BUG or oops occurs, ChromeOS intends to panic and
immediately reboot, with stacktrace and other messages preserved in RAM
across reboot.
But the longer we delay, the more likely the user is to poweroff and
lose the info.
panic_timeout (seconds before rebooting) is set by panic= boot option or
sysctl or /proc/sys/kernel/panic; but 0 means wait forever, so at
present we have to delay at least 1 second.
Let a negative number mean reboot immediately (with the small cosmetic
benefit of suppressing that newline-less "Rebooting in %d seconds.."
message).
Signed-off-by: Hugh Dickins <hughd@chromium.org>
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oops=panic cmdline option is not x86 specific, move it to generic code.
Update documentation.
Signed-off-by: Olaf Hering <olaf@aepfle.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
This patch adds POLL/IRQ/NMI notification types support.
Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.
Known issue:
- Error information can not be printed for recoverable errors notified
via NMI, because printk is not NMI-safe. Will fix this via delay
printing to IRQ context via irq_work or make printk NMI-safe.
v2:
- adjust printk format per comments.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We are missing the oops end marker for the exception based WARN implementation
in lib/bug.c. This is useful for logfile analysis tools.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To keep panic_timeout accuracy when running under a hypervisor, the
current implementation only spins on long time (1 second) calls to mdelay.
That brings a good effect, but the problem is the keyboard LEDs don't
blink at all on that situation.
This patch changes to call to panic_blink_enter() between every mdelay and
keeps blinking in spite of long spin timer mode.
The time to call to mdelay is now 100ms. Even this change will keep
panic_timeout accuracy enough when running under a hypervisor.
Signed-off-by: TAMUKI Shoichi <tamuki@linet.gr.jp>
Cc: Ben Dooks <ben-linux@fluff.org>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most distros turn the console verbosity down and that means a backtrace
after a panic never makes it to the console. I assume we haven't seen
this because a panic is often preceeded by an oops which will have called
console_verbose. There are however a lot of places we call panic
directly, and they are broken.
Use console_verbose like we do in the oops path to ensure a directly
called panic will print a backtrace.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This taint flag will initially be used when warning about invalid ACPI
DMAR tables.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
WARN() is used in some places to report firmware or hardware bugs that
are then worked-around. These bugs do not affect the stability of the
kernel and should not set the flag for TAINT_WARN. To allow for this,
add WARN_TAINT() and WARN_TAINT_ONCE() macros that take a taint number
as argument.
Architectures that implement warnings using trap instructions instead
of calls to warn_slowpath_*() now implement __WARN_TAINT(taint)
instead of __WARN().
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Helge Deller <deller@gmx.de>
Tested-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
I've had some complaints about panic_timeout being wildly innacurate on
shared processor PowerPC partitions (a 3 minute panic_timeout taking 30
minutes).
The problem is we loop on mdelay(1) and with a 1ms in 10ms hypervisor
timeslice each of these will take 10ms (ie 10x) longer. I expect other
platforms with shared processor hypervisors will see the same issue.
This patch keeps the old behaviour if we have a panic_blink (only keyboard
LEDs right now) and does 1 second mdelays if we don't.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
crash_kexec gets called before kmsg_dump(KMSG_DUMP_OOPS) if
panic_on_oops is set, so the kernel log buffer is not stored
for this case.
This patch adds a KMSG_DUMP_KEXEC dump type which gets called
when crash_kexec() is invoked. To avoid getting double dumps,
the old KMSG_DUMP_PANIC is moved below crash_kexec(). The
mtdoops driver is modified to handle KMSG_DUMP_KEXEC in the
same way as a panic.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Simon Kagstrom <simon.kagstrom@netinsight.net>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
* git://git.infradead.org/mtd-2.6: (90 commits)
jffs2: Fix long-standing bug with symlink garbage collection.
mtd: OneNAND: Fix test of unsigned in onenand_otp_walk()
mtd: cfi_cmdset_0002, fix lock imbalance
Revert "mtd: move mxcnd_remove to .exit.text"
mtd: m25p80: add support for Macronix MX25L4005A
kmsg_dump: fix build for CONFIG_PRINTK=n
mtd: nandsim: add support for 4KiB pages
mtd: mtdoops: refactor as a kmsg_dumper
mtd: mtdoops: make record size configurable
mtd: mtdoops: limit the maximum mtd partition size
mtd: mtdoops: keep track of used/unused pages in an array
mtd: mtdoops: several minor cleanups
core: Add kernel message dumper to call on oopses and panics
mtd: add ARM pismo support
mtd: pxa3xx_nand: Fix PIO data transfer
mtd: nand: fix multi-chip suspend problem
mtd: add support for switching old SST chips into QRY mode
mtd: fix M29W800D dev_id and uaddr
mtd: don't use PF_MEMALLOC
mtd: Add bad block table overrides to Davinci NAND driver
...
Fixed up conflicts (mostly trivial) in
drivers/mtd/devices/m25p80.c
drivers/mtd/maps/pcmciamtd.c
drivers/mtd/nand/pxa3xx_nand.c
kernel/printk.c
The core functionality is implemented as per Linus suggestion from
http://lists.infradead.org/pipermail/linux-mtd/2009-October/027620.html
(with the kmsg_dump implementation by Linus). A struct kmsg_dumper has
been added which contains a callback to dump the kernel log buffers on
crashes. The kmsg_dump function gets called from oops_exit() and panic()
and invokes this callbacks with the crash reason.
[dwmw2: Fix log_end handling]
Signed-off-by: Simon Kagstrom <simon.kagstrom@netinsight.net>
Reviewed-by: Anders Grafstrom <anders.grafstrom@netinsight.net>
Reviewed-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
futex: fix requeue_pi key imbalance
futex: Fix typo in FUTEX_WAIT/WAKE_BITSET_PRIVATE definitions
rcu: Place root rcu_node structure in separate lockdep class
rcu: Make hot-unplugged CPU relinquish its own RCU callbacks
rcu: Move rcu_barrier() to rcutree
futex: Move exit_pi_state() call to release_mm()
futex: Nullify robust lists after cleanup
futex: Fix locking imbalance
panic: Fix panic message visibility by calling bust_spinlocks(0) before dying
rcu: Replace the rcu_barrier enum with pointer to call_rcu*() function
rcu: Clean up code based on review feedback from Josh Triplett, part 4
rcu: Clean up code based on review feedback from Josh Triplett, part 3
rcu: Fix rcu_lock_map build failure on CONFIG_PROVE_LOCKING=y
rcu: Clean up code to address Ingo's checkpatch feedback
rcu: Clean up code based on review feedback from Josh Triplett, part 2
rcu: Clean up code based on review feedback from Josh Triplett
Commit ffd71da4e3 ("panic: decrease oops_in_progress only after
having done the panic") moved bust_spinlocks(0) to the end of the
function, which in practice is never reached.
As a result console_unblank() is not called, and on some systems
the user may not see the panic message.
Move it back up to before the unblanking.
Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1254483680-25578-1-git-send-email-aaro.koskinen@nokia.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If trace_printk_on_oops is set we lose interesting trace information
when the tracer is enabled across oops handling and printing. We want
the trace which might give us information _WHY_ we oopsed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Ian Campbell noticed that since "Eliminate thousands of warnings with
gcc 3.2 build" (commit 57adc4d2db) all
WARN_ON()'s currently appear to come from warn_slowpath_null(), eg:
WARNING: at kernel/softirq.c:143 warn_slowpath_null+0x1c/0x20()
because now that warn_slowpath_null() is in the call path, the
__builtin_return_address(0) returns that, rather than the place that
caused the warning.
Fix this by splitting up the warn_slowpath_null/fmt cases differently,
using a common helper function, and getting the return address in the
right place. This also happens to avoid the unnecessary stack usage for
the non-stdargs case, and just generally cleans things up.
Make the function name printout use %pS while at it.
Cc: Ian Campbell <ian.campbell@citrix.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When building with gcc 3.2 I get thousands of warnings such as
include/linux/gfp.h: In function `allocflags_to_migratetype':
include/linux/gfp.h:105: warning: null format string
due to passing a NULL format string to warn_slowpath() in
#define __WARN() warn_slowpath(__FILE__, __LINE__, NULL)
Split this case out into a separate call. This also shrinks the kernel
slightly:
text data bss dec hex filename
4802274 707668 712704 6222646 5ef336 vmlinux
text data bss dec hex filename
4799027 703572 712704 6215303 5ed687 vmlinux
due to removeing one argument from the commonly-called __WARN().
[akpm@linux-foundation.org: reduce scope of `empty']
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andi Kleen reported this message triggering on non-lockdep kernels:
Disabling lockdep due to kernel taint
Clarify the message to say 'lock debugging' - debug_locks_off()
turns off all things lock debugging, not just lockdep.
[ Impact: change kernel warning message text ]
Reported-by: Andi Kleen <andi@firstfloor.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: broaden lockdep checks
Lockdep is disabled after any kernel taints. This might be convenient
to ignore bad locking issues which sources come from outside the kernel
tree. Nevertheless, it might be a frustrating experience for the
staging developers or those who experience a warning but are focused
on another things that require lockdep.
The v2 of this patch simply don't disable anymore lockdep in case
of TAINT_CRAP and TAINT_WARN events.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: LTP <ltp-list@lists.sourceforge.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg KH <gregkh@suse.de>
LKML-Reference: <1239412638-6739-2-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: provide useful missing info for developers
Kernel taint can occur in several situations such as warnings,
load of prorietary or staging modules, bad page, etc...
But when such taint happens, a developer might still be working on
the kernel, expecting that lockdep is still enabled. But a taint
disables lockdep without ever warning about it.
Such a kernel behaviour doesn't really help for kernel development.
This patch adds this missing warning.
Since the taint is done most of the time after the main message that
explain the real source issue, it seems safe to warn about it inside
add_taint() so that it appears at last, without hurting the main
information.
v2: Use a generic helper to disable lockdep instead of an
open coded xchg().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1239412638-6739-1-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no code changed
Clean up kernel/panic.c some more and make it more consistent.
LKML-Reference: <49B91A7E.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no code changed
Remove an ugly #ifdef CONFIG_SMP from panic(), by providing
an smp_send_stop() wrapper on UP too.
LKML-Reference: <49B91A7E.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: eliminate secondary warnings during panic()
We can panic() in a number of difficult, atomic contexts, hence
we use bust_spinlocks(1) in panic() to increase oops_in_progress,
which prevents various debug checks we have in place.
But in practice this protection only covers the first few printk's
done by panic() - it does not cover the later attempt to stop all
other CPUs and kexec(). If a secondary warning triggers in one of
those facilities that can make the panic message scroll off.
So do bust_spinlocks(0) only much later in panic(). (which code
is only reached if panic policy is relaxed that it can return
after a warning message)
Reported-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B91A7E.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: no default -fno-stack-protector if stackp is enabled, cleanup
Stackprotector make rules had the following problems.
* cc support test and warning are scattered across makefile and
kernel/panic.c.
* -fno-stack-protector was always added regardless of configuration.
Update such that cc support test and warning are contained in makefile
and -fno-stack-protector is added iff stackp is turned off. While at
it, prepare for 32bit support.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
... because we do want repeated same-oops to be seen by automated
tools like kerneloops.org
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The description for 'D' was missing in the comment... (causing me a
minute of WTF followed by looking at more of the code)
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: cleanup, eliminate code
now that warn_on_slowpath() uses warn_slowpath(...,NULL), we can
eliminate warn_on_slowpath() altogether and use warn_slowpath().
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: extend WARN_ON() output with DMI_PRODUCT_NAME
It's very useful for many low level WARN_ON's to find out which
motherboard has the broken BIOS etc... this patch adds a printk
to the WARN_ON code for this.
On architectures without DMI, gcc should optimize the code out.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, code reduction
warn_slowpath is a superset of warn_on_slowpath; just have
warn_on_slowpath call warn_slowpath with a NULL 3rd argument.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This allows them to be examined and set after boot, plus means they
actually give errors if they are misused (eg. panic=yes).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's somewhat unlikely that it happens, but right now a race window
between interrupts or machine checks or oopses could corrupt the tainted
bitmap because it is modified in a non atomic fashion.
Convert the taint variable to an unsigned long and use only atomic bit
operations on it.
Unfortunately this means the intvec sysctl functions cannot be used on it
anymore.
It turned out the taint sysctl handler could actually be simplified a bit
(since it only increases capabilities) so this patch actually removes
code.
[akpm@linux-foundation.org: remove unneeded include]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to add a flag for all code that is in the drivers/staging/
directory to prevent all other kernel developers from worrying about
issues here, and to notify users that the drivers might not be as good
as they are normally used to.
Based on code from Andreas Gruenbacher and Jeff Mahoney to provide a
TAINT flag for the support level of a kernel module in the Novell
enterprise kernel release.
This is the kernel portion of this feature, the ability for the flag to
be set needs to be done in the build process and will happen in a
follow-up patch.
Cc: Andreas Gruenbacher <agruen@suse.de>
Cc: Jeff Mahoney <jeffm@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add a WARN() macro that acts like WARN_ON(), with the added feature that it
takes a printk like argument that is printed as part of the warning message.
[akpm@linux-foundation.org: fix printk arguments]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg KH <greg@kroah.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
turns out gcc generates such stackprotector-failure sequences
in certain circumstances:
movq -8(%rbp), %rax # D.16032,
xorq %gs:40, %rax #,
jne .L17 #,
leave
ret
.L17:
call __stack_chk_fail #
.size __stack_chk_test_func, .-__stack_chk_test_func
.section .init.text,"ax",@progbits
.type panic_setup, @function
panic_setup:
pushq %rbp #
note that there's no jump back to the failing context after the
call to __stack_chk_fail - i.e. it has a ((noreturn)) attribute.
Which is fair enough in the normal case but kills the self-test.
(as we cannot reliably return in the self-test)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up the code by removing no longer needed code;
make sure the pda is updated and kept in sync
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
check stackprotector functionality by manipulating the canary briefly
during bootup.
far more robust than trying to overflow the stack. (which is architecture
dependent, etc.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If the user selects the stack-protector config option, but does not have
a gcc that has the right bits enabled (for example because it isn't build
with a glibc that supports TLS, as is common for cross-compilers, but also
because it may be too old), then the runtime test fails right now.
This patch adds a warning message for this scenario. This warning accomplishes
two goals
1) the user is informed that the security option he selective isn't available
2) the user is suggested to turn of the CONFIG option that won't work for him,
and would make the runtime test fail anyway.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a simple self-test capability to the stackprotector
feature. The test deliberately overflows a stack buffer and then
checks if the canary trap function gets called.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
if CONFIG_DEBUG_BUGVERBOSE is set then the user most definitely wanted
to see as much information about kernel crashes as possible - so give
them at least a stack dump.
this is particularly useful for stackprotector related panics, where
the stacktrace can give us the exact location of the (attempted)
attack.
Pointed out by pageexec@freemail.hu in the stackprotector breakage
threads.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
pointed out by pageexec@freemail.hu:
we just simply panic() when there's a stackprotector attack - giving
the attacked person no information about what kernel code the attack went
against.
print out the attacked function.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel is sent to tainted within the warn_on_slowpath() function, and
whenever a warning occurs the new taint flag 'W' is set. This is useful to
know if a warning occurred before a BUG by preserving the warning as a flag
in the taint state.
This does not work on architectures where WARN_ON has its own definition.
These archs are:
1. s390
2. superh
3. avr32
4. parisc
The maintainers of these architectures have been added in the Cc: list
in this email to alert them to the situation.
The documentation in oops-tracing.txt has been updated to include the
new flag.
Signed-off-by: Nur Hussein <nurhussein@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When an ACPI table is overridden (for now this can happen only for DSDT)
display a big warning and taint the kernel with flag A.
Signed-off-by: Eric Piel <eric.piel@tremplin-utc.net>
Signed-off-by: Len Brown <len.brown@intel.com>
Unlike oopses, WARN_ON() currently does't print the loaded modules list.
This makes it harder to take action on certain bug reports. For example,
recently there were a set of WARN_ON()s reported in the mac80211 stack,
which were just signalling a driver bug. It takes then anther round trip
to the bug reporter (if he responds at all) to find out which driver
is at fault.
Another issue is that, unlike oopses, WARN_ON() doesn't currently printk
the helpful "cut here" line, nor the "end of trace" marker.
Now that WARN_ON() is out of line, the size increase due to this is
minimal and it's worth adding.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A quick grep shows that there are currently 1145 instances of WARN_ON
in the kernel. Currently, WARN_ON is pretty much entirely inlined,
which makes it hard to enhance it without growing the size of the kernel
(and getting Andrew unhappy).
This patch build on top of Olof's patch that introduces __WARN,
and places the slowpath out of line. It also uses Ingo's suggestion
to not use __FUNCTION__ but to use kallsyms to do the lookup;
this saves a ton of extra space since gcc doesn't need to store the function
string twice now:
3936367 833603 624736 5394706 525112 vmlinux.before
3917508 833603 624736 5375847 520767 vmlinux-slowpath
15Kb savings...
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Olof Johansson <olof@lixom.net>
Acked-by: Matt Meckall <mpm@selenic.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Right now it's nearly impossible for parsers that collect kernel crashes
from logs or emails (such as www.kerneloops.org) to detect the
end-of-oops condition. In addition, it's not currently possible to
detect whether or not 2 oopses that look alike are actually the same
oops reported twice, or are truly two unique oopses.
This patch adds an end-of-oops marker, and makes the end marker include
a very simple 64-bit random ID to be able to detect duplicate reports.
Normally, this ID is calculated as a late_initcall() (in the hope that
at that time there is enough entropy to get a unique enough ID); however
for early oopses the oops_exit() function needs to generate the ID on
the fly.
We do this all at the _end_ of an oops printout, so this does not impact
our ability to get the most important portions of a crash out to the
console first.
[ Sidenote: the already existing oopses-since-bootup counter we print
during crashes serves as the differentiator between multiple oopses
that trigger during the same bootup. ]
Tested on 32-bit and 64-bit x86. Artificially injected very early
crashes as well, as expected they result in this constant ID after
multiple bootups:
---[ end trace ca143223eefdc828 ]---
---[ end trace ca143223eefdc828 ]---
because the random pools are still all zero. But it all still works
fine and causes no additional problems (which is the main goal of
instrumentation code).
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If the kernel OOPSed or BUGed then it probably should be considered as
tainted. Thus, all subsequent OOPSes and SysRq dumps will report the
tainted kernel. This saves a lot of time explaining oddities in the
calltraces.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Added parisc patch from Matthew Wilson -Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow taint flags to be set from userspace by writing to
/proc/sys/kernel/tainted, and add a new taint flag, TAINT_USER, to be used
when userspace has potentially done something dangerous that might
compromise the kernel. This will allow support personnel to ask further
questions about what may have caused the user taint flag to have been set.
For example, they might examine the logs of the realtime JVM to see if the
Java program has used the really silly, stupid, dangerous, and
completely-non-portable direct access to physical memory feature which MUST
be implemented according to the Real-Time Specification for Java (RTSJ).
Sigh. What were those silly people at Sun thinking?
[akpm@osdl.org: build fix]
[bunk@stusta.de: cleanup]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GCC emits a call to a __stack_chk_fail() function when the stack canary is
not matching the expected value.
Since this is a bad security issue; lets panic the kernel rather than limping
along; the kernel really can't be trusted anymore when this happens.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andi Kleen <ak@suse.de>
CC: Andi Kleen <ak@suse.de>
To quote Alan Cox:
The default Linux behaviour on an NMI of either memory or unknown is to
continue operation. For many environments such as scientific computing
it is preferable that the box is taken out and the error dealt with than
an uncorrected parity/ECC error get propogated.
A small number of systems do generate NMI's for bizarre random reasons
such as power management so the default is unchanged. In other respects
the new proc/sys entry works like the existing panic controls already in
that directory.
This is separate to the edac support - EDAC allows supported chipsets to
handle ECC errors well, this change allows unsupported cases to at least
panic rather than cause problems further down the line.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
kernel/panic.c: In function 'add_taint':
kernel/panic.c:176: warning: implicit declaration of function 'debug_locks_off'
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Disable lockdep debugging in two situations where the integrity of the
kernel no longer is guaranteed: when oopsing and when hitting a
tainting-condition. The goal is to not get weird lockdep traces that don't
make sense or are otherwise undebuggable, to not waste time.
Lockdep assumes that the previous state it knows about is valid to operate,
which is why lockdep turns itself off after the first violation it reports,
after that point it can no longer make that assumption.
A kernel oops means that the integrity of the kernel compromised; in
addition anything lockdep would report is of lesser importance than the
oops.
All the tainting conditions are of similar integrity-violating nature and
also make debugging/diagnosing more difficult.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Implement the scheduled unexport of panic_timeout.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The kernel's implementation of notifier chains is unsafe. There is no
protection against entries being added to or removed from a chain while the
chain is in use. The issues were discussed in this thread:
http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2
We noticed that notifier chains in the kernel fall into two basic usage
classes:
"Blocking" chains are always called from a process context
and the callout routines are allowed to sleep;
"Atomic" chains can be called from an atomic context and
the callout routines are not allowed to sleep.
We decided to codify this distinction and make it part of the API. Therefore
this set of patches introduces three new, parallel APIs: one for blocking
notifiers, one for atomic notifiers, and one for "raw" notifiers (which is
really just the old API under a new name). New kinds of data structures are
used for the heads of the chains, and new routines are defined for
registration, unregistration, and calling a chain. The three APIs are
explained in include/linux/notifier.h and their implementation is in
kernel/sys.c.
With atomic and blocking chains, the implementation guarantees that the chain
links will not be corrupted and that chain callers will not get messed up by
entries being added or removed. For raw chains the implementation provides no
guarantees at all; users of this API must provide their own protections. (The
idea was that situations may come up where the assumptions of the atomic and
blocking APIs are not appropriate, so it should be possible for users to
handle these things in their own way.)
There are some limitations, which should not be too hard to live with. For
atomic/blocking chains, registration and unregistration must always be done in
a process context since the chain is protected by a mutex/rwsem. Also, a
callout routine for a non-raw chain must not try to register or unregister
entries on its own chain. (This did happen in a couple of places and the code
had to be changed to avoid it.)
Since atomic chains may be called from within an NMI handler, they cannot use
spinlocks for synchronization. Instead we use RCU. The overhead falls almost
entirely in the unregister routine, which is okay since unregistration is much
less frequent that calling a chain.
Here is the list of chains that we adjusted and their classifications. None
of them use the raw API, so for the moment it is only a placeholder.
ATOMIC CHAINS
-------------
arch/i386/kernel/traps.c: i386die_chain
arch/ia64/kernel/traps.c: ia64die_chain
arch/powerpc/kernel/traps.c: powerpc_die_chain
arch/sparc64/kernel/traps.c: sparc64die_chain
arch/x86_64/kernel/traps.c: die_chain
drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list
kernel/panic.c: panic_notifier_list
kernel/profile.c: task_free_notifier
net/bluetooth/hci_core.c: hci_notifier
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain
net/ipv6/addrconf.c: inet6addr_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain
net/netlink/af_netlink.c: netlink_chain
BLOCKING CHAINS
---------------
arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain
arch/s390/kernel/process.c: idle_chain
arch/x86_64/kernel/process.c idle_notifier
drivers/base/memory.c: memory_chain
drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list
drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list
drivers/macintosh/adb.c: adb_client_list
drivers/macintosh/via-pmu.c sleep_notifier_list
drivers/macintosh/via-pmu68k.c sleep_notifier_list
drivers/macintosh/windfarm_core.c wf_client_list
drivers/usb/core/notify.c usb_notifier_list
drivers/video/fbmem.c fb_notifier_list
kernel/cpu.c cpu_chain
kernel/module.c module_notify_list
kernel/profile.c munmap_notifier
kernel/profile.c task_exit_notifier
kernel/sys.c reboot_notifier_list
net/core/dev.c netdev_chain
net/decnet/dn_dev.c: dnaddr_chain
net/ipv4/devinet.c: inetaddr_chain
It's possible that some of these classifications are wrong. If they are,
please let us know or submit a patch to fix them. Note that any chain that
gets called very frequently should be atomic, because the rwsem read-locking
used for blocking chains is very likely to incur cache misses on SMP systems.
(However, if the chain's callout routines may sleep then the chain cannot be
atomic.)
The patch set was written by Alan Stern and Chandra Seetharaman, incorporating
material written by Keith Owens and suggestions from Paul McKenney and Andrew
Morton.
[jes@sgi.com: restructure the notifier chain initialization macros]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Attempt to fix the problem wherein people's oops reports scroll off the screen
due to repeated oopsing or to oopses on other CPUs.
If this happens the user can reboot with the `pause_on_oops=<seconds>' option.
It will allow the first oopsing CPU to print an oops record just a single
time. Second oopsing attempts, or oopses on other CPUs will cause those CPUs
to enter a tight loop until the specified number of seconds have elapsed.
The patch implements the infrastructure generically in the expectation that
architectures other than x86 will find it useful.
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When panic_timeout is zero, suppress triggering a nested panic due to soft
lockup detection.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Sanitize some s390 Kconfig options. We have ARCH_S390, ARCH_S390X,
ARCH_S390_31, 64BIT, S390_SUPPORT and COMPAT. Replace these 6 options by
S390, 64BIT and COMPAT.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We know the system is in trouble so there is no question if this
is an emergecy :)
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Makes kexec_crashdump() take a pt_regs * as an argument. This allows to
get exact register state at the point of the crash. If we come from direct
panic assertion NULL will be passed and the current registers saved before
crashdump.
This hooks into two places:
die(): check the conditions under which we will panic when calling
do_exit and go there directly with the pt_regs that caused the fatal
fault.
die_nmi(): If we receive an NMI lockup while in the kernel use the
pt_regs and go directly to crash_kexec(). We're probably nested up badly
at this point so this might be the only chance to escape with proper
information.
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch introduces the architecture independent implementation the
sys_kexec_load, the compat_sys_kexec_load system calls.
Kexec on panic support has been integrated into the core patch and is
relatively clean.
In addition the hopefully architecture independent option
crashkernel=size@location has been docuemented. It's purpose is to reserve
space for the panic kernel to live, and where no DMA transfer will ever be
setup to access.
Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch is incredibly trivial, but it does resolve some of the user
confusion as to what "L1-A" actually is.
Clarify printk message to refer to Stop-A (L1-A).
Gentoo has a virtually identical patch in their kernel sources.
Signed-off-by: Tom 'spot' Callaway <tcallawa@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!