Commit Graph

109 Commits

Author SHA1 Message Date
Josef Bacik 81e75ac74e btrfs: account for new extents being deleted in total_bytes_pinned
My recent patch set "A variety of lock contention fixes", found here

https://lore.kernel.org/linux-btrfs/cover.1608319304.git.josef@toxicpanda.com/
(Tracked in https://github.com/btrfs/linux/issues/86)

that reduce lock contention on the extent root by running delayed refs
less often resulted in a regression in generic/371.  This test
fallocate()'s the fs until it's full, deletes all the files, and then
tries to fallocate() until full again.

Before these patches we would run all of the delayed refs during
flushing, and then would commit the transaction because we had plenty of
pinned space to recover in order to allocate.  However my patches made
it so we weren't running the delayed refs as aggressively, which meant
that we appeared to have less pinned space when we were deciding to
commit the transaction.

We use the space_info->total_bytes_pinned to approximate how much space
we have pinned.  It's approximate because if we remove a reference to an
extent we may free it, but there may be more references to it than we
know of at that point, but we account it as pinned at the creation time,
and then it's properly accounted when the delayed ref runs.

The way we account for pinned space is if the
delayed_ref_head->total_ref_mod is < 0, because that is clearly a
freeing option.  However there is another case, and that is where
->total_ref_mod == 0 && ->must_insert_reserved == 1.

When we allocate a new extent, we have ->total_ref_mod == 1 and we have
->must_insert_reserved == 1.  This is used to indicate that it is a
brand new extent and will need to have its extent entry added before we
modify any references on the delayed ref head.  But if we subsequently
remove that extent reference, our ->total_ref_mod will be 0, and that
space will be pinned and freed.  Accounting for this case properly
allows for generic/371 to pass with my delayed refs patches applied.

It's important to note that this problem exists without the referenced
patches, it just was uncovered by them.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Josef Bacik 2187374f35 btrfs: handle space_info::total_bytes_pinned inside the delayed ref itself
Currently we pass things around to figure out if we maybe freeing data
based on the state of the delayed refs head.  This makes the accounting
sort of confusing and hard to follow, as it's distinctly separate from
the delayed ref heads stuff, but also depends on it entirely.

Fix this by explicitly adjusting the space_info->total_bytes_pinned in
the delayed refs code.  We now have two places where we modify this
counter, once where we create the delayed and destroy the delayed refs,
and once when we pin and unpin the extents.  This means there is a
slight overlap between delayed refs and the pin/unpin mechanisms, but
this is simply used by the ENOSPC infrastructure to determine if we need
to commit the transaction, so there's no adverse affect from this, we
might simply commit thinking it will give us enough space when it might
not.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Nikolay Borisov 696eb22b67 btrfs: fix parameter description in delayed-ref.c functions
This fixes the following warnings:

fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_release'
fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'nr' not described in 'btrfs_delayed_refs_rsv_release'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'fs_info' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'src' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'num_bytes' not described in 'btrfs_migrate_to_delayed_refs_rsv'
fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_refill'
fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'flush' not described in 'btrfs_delayed_refs_rsv_refill'

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:53 +01:00
Nikolay Borisov 63f018be57 btrfs: Remove __ prefix from btrfs_block_rsv_release
Currently the non-prefixed version is a simple wrapper used to hide
the 4th argument of the prefixed version. This doesn't bring much value
in practice and only makes the code harder to follow by adding another
level of indirection. Rectify this by removing the __ prefix and
have only one public function to release bytes from a block reservation.
No semantic changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:55 +01:00
Filipe Manana 7227ff4de5 Btrfs: fix race between adding and putting tree mod seq elements and nodes
There is a race between adding and removing elements to the tree mod log
list and rbtree that can lead to use-after-free problems.

Consider the following example that explains how/why the problems happens:

1) Task A has mod log element with sequence number 200. It currently is
   the only element in the mod log list;

2) Task A calls btrfs_put_tree_mod_seq() because it no longer needs to
   access the tree mod log. When it enters the function, it initializes
   'min_seq' to (u64)-1. Then it acquires the lock 'tree_mod_seq_lock'
   before checking if there are other elements in the mod seq list.
   Since the list it empty, 'min_seq' remains set to (u64)-1. Then it
   unlocks the lock 'tree_mod_seq_lock';

3) Before task A acquires the lock 'tree_mod_log_lock', task B adds
   itself to the mod seq list through btrfs_get_tree_mod_seq() and gets a
   sequence number of 201;

4) Some other task, name it task C, modifies a btree and because there
   elements in the mod seq list, it adds a tree mod elem to the tree
   mod log rbtree. That node added to the mod log rbtree is assigned
   a sequence number of 202;

5) Task B, which is doing fiemap and resolving indirect back references,
   calls btrfs get_old_root(), with 'time_seq' == 201, which in turn
   calls tree_mod_log_search() - the search returns the mod log node
   from the rbtree with sequence number 202, created by task C;

6) Task A now acquires the lock 'tree_mod_log_lock', starts iterating
   the mod log rbtree and finds the node with sequence number 202. Since
   202 is less than the previously computed 'min_seq', (u64)-1, it
   removes the node and frees it;

7) Task B still has a pointer to the node with sequence number 202, and
   it dereferences the pointer itself and through the call to
   __tree_mod_log_rewind(), resulting in a use-after-free problem.

This issue can be triggered sporadically with the test case generic/561
from fstests, and it happens more frequently with a higher number of
duperemove processes. When it happens to me, it either freezes the VM or
it produces a trace like the following before crashing:

  [ 1245.321140] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  [ 1245.321200] CPU: 1 PID: 26997 Comm: pool Not tainted 5.5.0-rc6-btrfs-next-52 #1
  [ 1245.321235] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
  [ 1245.321287] RIP: 0010:rb_next+0x16/0x50
  [ 1245.321307] Code: ....
  [ 1245.321372] RSP: 0018:ffffa151c4d039b0 EFLAGS: 00010202
  [ 1245.321388] RAX: 6b6b6b6b6b6b6b6b RBX: ffff8ae221363c80 RCX: 6b6b6b6b6b6b6b6b
  [ 1245.321409] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff8ae221363c80
  [ 1245.321439] RBP: ffff8ae20fcc4688 R08: 0000000000000002 R09: 0000000000000000
  [ 1245.321475] R10: ffff8ae20b120910 R11: 00000000243f8bb1 R12: 0000000000000038
  [ 1245.321506] R13: ffff8ae221363c80 R14: 000000000000075f R15: ffff8ae223f762b8
  [ 1245.321539] FS:  00007fdee1ec7700(0000) GS:ffff8ae236c80000(0000) knlGS:0000000000000000
  [ 1245.321591] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 1245.321614] CR2: 00007fded4030c48 CR3: 000000021da16003 CR4: 00000000003606e0
  [ 1245.321642] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [ 1245.321668] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [ 1245.321706] Call Trace:
  [ 1245.321798]  __tree_mod_log_rewind+0xbf/0x280 [btrfs]
  [ 1245.321841]  btrfs_search_old_slot+0x105/0xd00 [btrfs]
  [ 1245.321877]  resolve_indirect_refs+0x1eb/0xc60 [btrfs]
  [ 1245.321912]  find_parent_nodes+0x3dc/0x11b0 [btrfs]
  [ 1245.321947]  btrfs_check_shared+0x115/0x1c0 [btrfs]
  [ 1245.321980]  ? extent_fiemap+0x59d/0x6d0 [btrfs]
  [ 1245.322029]  extent_fiemap+0x59d/0x6d0 [btrfs]
  [ 1245.322066]  do_vfs_ioctl+0x45a/0x750
  [ 1245.322081]  ksys_ioctl+0x70/0x80
  [ 1245.322092]  ? trace_hardirqs_off_thunk+0x1a/0x1c
  [ 1245.322113]  __x64_sys_ioctl+0x16/0x20
  [ 1245.322126]  do_syscall_64+0x5c/0x280
  [ 1245.322139]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [ 1245.322155] RIP: 0033:0x7fdee3942dd7
  [ 1245.322177] Code: ....
  [ 1245.322258] RSP: 002b:00007fdee1ec6c88 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [ 1245.322294] RAX: ffffffffffffffda RBX: 00007fded40210d8 RCX: 00007fdee3942dd7
  [ 1245.322314] RDX: 00007fded40210d8 RSI: 00000000c020660b RDI: 0000000000000004
  [ 1245.322337] RBP: 0000562aa89e7510 R08: 0000000000000000 R09: 00007fdee1ec6d44
  [ 1245.322369] R10: 0000000000000073 R11: 0000000000000246 R12: 00007fdee1ec6d48
  [ 1245.322390] R13: 00007fdee1ec6d40 R14: 00007fded40210d0 R15: 00007fdee1ec6d50
  [ 1245.322423] Modules linked in: ....
  [ 1245.323443] ---[ end trace 01de1e9ec5dff3cd ]---

Fix this by ensuring that btrfs_put_tree_mod_seq() computes the minimum
sequence number and iterates the rbtree while holding the lock
'tree_mod_log_lock' in write mode. Also get rid of the 'tree_mod_seq_lock'
lock, since it is now redundant.

Fixes: bd989ba359 ("Btrfs: add tree modification log functions")
Fixes: 097b8a7c9e ("Btrfs: join tree mod log code with the code holding back delayed refs")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-31 14:01:20 +01:00
Josef Bacik d05e46497f btrfs: rename btrfs_space_info_add_old_bytes
This name doesn't really fit with how the space reservation stuff works
now, rename it to btrfs_space_info_free_bytes_may_use so it's clear what
the function is doing.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:18 +02:00
Josef Bacik 2bd36e7b4f btrfs: rename the btrfs_calc_*_metadata_size helpers
btrfs_calc_trunc_metadata_size differs from trans_metadata_size in that
it doesn't take into account any splitting at the levels, because
truncate will never split nodes.  However truncate _and_ changing will
never split nodes, so rename btrfs_calc_trunc_metadata_size to
btrfs_calc_metadata_size.  Also btrfs_calc_trans_metadata_size is purely
for inserting items, so rename this to btrfs_calc_insert_metadata_size.
Making these clearer will help when I start using them differently in
upcoming patches.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:13 +02:00
Josef Bacik 6ef03debdb btrfs: migrate the delayed refs rsv code
These belong with the delayed refs related code, not in extent-tree.c.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04 17:26:17 +02:00
David Sterba 38e9372e39 btrfs: assert delayed ref lock in btrfs_find_delayed_ref_head
Turn the comment about required lock into an assertion.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02 12:30:47 +02:00
David Sterba c6e340bc1c btrfs: remove unused parameter fs_info from btrfs_add_delayed_extent_op
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:51 +02:00
Qu Wenruo 76675593b6 btrfs: delayed-ref: Use btrfs_ref to refactor btrfs_add_delayed_data_ref()
Just like btrfs_add_delayed_tree_ref(), use btrfs_ref to refactor
btrfs_add_delayed_data_ref().

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:49 +02:00
Qu Wenruo ed4f255b9b btrfs: delayed-ref: Use btrfs_ref to refactor btrfs_add_delayed_tree_ref()
btrfs_add_delayed_tree_ref() has a longer and longer parameter list, and
some callers like btrfs_inc_extent_ref() are using @owner as level for
delayed tree ref.

Instead of making the parameter list longer, use btrfs_ref to refactor
it, so each parameter assignment should be self-explaining without dirty
level/owner trick, and provides the basis for later refactoring.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:48 +02:00
Qu Wenruo 1418bae1c2 btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record
[BUG]
Btrfs/139 will fail with a high probability if the testing machine (VM)
has only 2G RAM.

Resulting the final write success while it should fail due to EDQUOT,
and the fs will have quota exceeding the limit by 16K.

The simplified reproducer will be: (needs a 2G ram VM)

  $ mkfs.btrfs -f $dev
  $ mount $dev $mnt

  $ btrfs subv create $mnt/subv
  $ btrfs quota enable $mnt
  $ btrfs quota rescan -w $mnt
  $ btrfs qgroup limit -e 1G $mnt/subv

  $ for i in $(seq -w  1 8); do
  	xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null
  	echo "file $i written" > /dev/kmsg
    done
  $ sync
  $ btrfs qgroup show -pcre --raw $mnt

The last pwrite will not trigger EDQUOT and final 'qgroup show' will
show something like:

  qgroupid         rfer         excl     max_rfer     max_excl parent  child
  --------         ----         ----     --------     -------- ------  -----
  0/5             16384        16384         none         none ---     ---
  0/256      1073758208   1073758208         none   1073741824 ---     ---

And 1073758208 is larger than
  > 1073741824.

[CAUSE]
It's a bug in btrfs qgroup data reserved space management.

For quota limit, we must ensure that:
  reserved (data + metadata) + rfer/excl <= limit

Since rfer/excl is only updated at transaction commmit time, reserved
space needs to be taken special care.

One important part of reserved space is data, and for a new data extent
written to disk, we still need to take the reserved space until
rfer/excl numbers get updated.

Originally when an ordered extent finishes, we migrate the reserved
qgroup data space from extent_io tree to delayed ref head of the data
extent, expecting delayed ref will only be cleaned up at commit
transaction time.

However for small RAM machine, due to memory pressure dirty pages can be
flushed back to disk without committing a transaction.

The related events will be something like:

  file 1 written
  btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840
  btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096
  btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344
  btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192
  btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344
  cleanup_ref_head: num_bytes=54947840
  cleanup_ref_head: num_bytes=5636096
  cleanup_ref_head: num_bytes=569344
  cleanup_ref_head: num_bytes=57344
  cleanup_ref_head: num_bytes=8192
  ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space
  file 2 written
  ...
  file 8 written
  cleanup_ref_head: num_bytes=8192
  ...
  btrfs_commit_transaction  <<< the only transaction committed during
				the test

When file 2 is written, we have already freed 128M reserved qgroup data
space for ino 258. Thus later write won't trigger EDQUOT.

This allows us to write more data beyond qgroup limit.

In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT.

[FIX]
By moving reserved qgroup data space from btrfs_delayed_ref_head to
btrfs_qgroup_extent_record, we can ensure that reserved qgroup data
space won't be freed half way before commit transaction, thus fix the
problem.

Fixes: f64d5ca868 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 14:13:39 +01:00
Josef Bacik ba2c4d4e3b btrfs: introduce delayed_refs_rsv
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv.  This works most
of the time, except when it doesn't.  We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction.  Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.

So instead give them their own block_rsv.  This way we can always know
exactly how much outstanding space we need for delayed refs.  This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system.  Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.

For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums.  We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.

Historical background:

The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit.  A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.

Thus the delayed refs rsv.  We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation.  This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:46 +01:00
Josef Bacik 158ffa364b btrfs: only track ref_heads in delayed_ref_updates
We use this number to figure out how many delayed refs to run, but
__btrfs_run_delayed_refs really only checks every time we need a new
delayed ref head, so we always run at least one ref head completely no
matter what the number of items on it.  Fix the accounting to only be
adjusted when we add/remove a ref head.

In addition to using this number to limit the number of delayed refs
run, a future patch is also going to use it to calculate the amount of
space required for delayed refs space reservation.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:46 +01:00
Josef Bacik d7baffdaf9 btrfs: add btrfs_delete_ref_head helper
We do this dance in cleanup_ref_head and check_ref_cleanup, unify it
into a helper and cleanup the calling functions.

Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:46 +01:00
Lu Fengqi 0a9df0df17 btrfs: delayed-ref: extract find_first_ref_head from find_ref_head
The find_ref_head shouldn't return the first entry even if no exact match
is found. So move the hidden behavior to higher level.

Besides, remove the useless local variables in the btrfs_select_ref_head.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-17 19:21:00 +02:00
Lu Fengqi d9352794da btrfs: switch return_bigger to bool in find_ref_head
Using bool is more suitable than int here, and add the comment about the
return_bigger.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:41 +02:00
Lu Fengqi 9e920a6f03 btrfs: delayed-ref: pass delayed_refs directly to btrfs_delayed_ref_lock
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_delayed_ref_lock().

No functional change.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:41 +02:00
Lu Fengqi 5637c74b01 btrfs: delayed-ref: pass delayed_refs directly to btrfs_select_ref_head
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_select_ref_head().  No
functional change.

Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:40 +02:00
Liu Bo e3d0396563 Btrfs: delayed-refs: use rb_first_cached for ref_tree
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).

Functions manipulating href->ref_tree need to get the first entry, this
converts href->ref_tree to use rb_first_cached().

For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".

Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:33 +02:00
Liu Bo 5c9d028b3b Btrfs: delayed-refs: use rb_first_cached for href_root
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).

Functions manipulating href_root need to get the first entry, this
converts href_root to use rb_first_cached().

This patch is first in the sequenct of similar updates to other rbtrees
and this is analysis of the expected behaviour and improvements.

There's a common pattern:

while (node = rb_first) {
        entry = rb_entry(node)
        next = rb_next(node)
        rb_erase(node)
        cleanup(entry)
}

rb_first needs to traverse the tree up to logN depth, rb_erase can
completely reshuffle the tree. With the caching we'll skip the traversal
in rb_first.  That's a cached memory access vs looped pointer
dereference trade-off that IMHO has a clear winner.

Measurements show there's not much difference in a sample tree with
10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of
caching and pointer chasing are unpredictable though.

Further optimzations can be done to avoid the expensive rb_erase step.
In some cases it's ok to process the nodes in any order, so the tree can
be traversed in post-order, not rebalancing the children nodes and just
calling free. Care must be taken regarding the next node.

Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog from mail discussions ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 17:23:33 +02:00
Nikolay Borisov 7b4284de93 btrfs: Streamline memory allocation failure handling in btrfs_add_delayed_tree_ref
Currently the function uses 2 goto labels to properly handle allocation
failures. This could be simplified by simply re-arranging the code so
that allocations are the in the beginning of the function. This allows
to use simple return statements. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:39 +02:00
Nikolay Borisov 88a979c615 btrfs: Remove fs_info from btrfs_add_delayed_data_ref
This function is always called with a valid transaction handle from
where fs_info can be referenced. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:34 +02:00
Nikolay Borisov 44e1c47d5c btrfs: Remove fs_info from btrfs_add_delayed_tree_ref
This function is always called with a valid transaction handle from
where fs_info can be referenced. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:33 +02:00
Nikolay Borisov 2335efafa6 btrfs: split delayed ref head initialization and addition
add_delayed_ref_head really performed 2 independent operations -
initialisting the ref head and adding it to a list. Now that the init
part is in a separate function let's complete the separation between
both operations. This results in a lot simpler interface for
add_delayed_ref_head since the function now deals solely with either
adding the newly initialised delayed ref head or merging it into an
existing delayed ref head. This results in vastly simplified function
signature since 5 arguments are dropped. The only other thing worth
mentioning is that due to this split the WARN_ON catching reinit of
existing. In this patch the condition is extended such that:

  qrecord && head_ref->qgroup_ref_root && head_ref->qgroup_reserved

is added. This is done because the two qgroup_* prefixed member are
set only if both ref_root and reserved are passed. So functionally
it's equivalent to the old WARN_ON and allows to remove the two args
from add_delayed_ref_head.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:32 +02:00
Nikolay Borisov eb86ec73b9 btrfs: Use init_delayed_ref_head in add_delayed_ref_head
Use the newly introduced function when initialising the head_ref in
add_delayed_ref_head. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:31 +02:00
Nikolay Borisov a2e569b3f2 btrfs: Introduce init_delayed_ref_head
add_delayed_ref_head implements the logic to both initialize a head_ref
structure as well as perform the necessary operations to add it to the
delayed ref machinery. This has resulted in a very cumebrsome interface
with loads of parameters and code, which at first glance, looks very
unwieldy. Begin untangling it by first extracting the initialization
only code in its own function. It's more or less verbatim copy of the
first part of add_delayed_ref_head.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:31 +02:00
Nikolay Borisov cd7f9699b1 btrfs: Open-code add_delayed_data_ref
Now that the initialization part and the critical section code have been
split it's a lot easier to open code add_delayed_data_ref. Do so in the
following manner:

1. The common init function is put immediately after memory-to-be-initialized
   is allocated, followed by the specific data ref initialization.

2. The only piece of code that remains in the critical section is
   insert_delayed_ref call.

3. Tracing and memory freeing code is moved outside of the critical
   section.

No functional changes, just an overall shorter critical section.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:31 +02:00
Nikolay Borisov 70d640004a btrfs: Open-code add_delayed_tree_ref
Now that the initialization part and the critical section code have been
split it's a lot easier to open code add_delayed_tree_ref. Do so in the
following manner:

1. The comming init code is put immediately after memory-to-be-initialized
   is allocated, followed by the ref-specific member initialization.

2. The only piece of code that remains in the critical section is
   insert_delayed_ref call.

3. Tracing and memory freeing code is put outside of the critical
   section as well.

The only real change here is an overall shorter critical section when
dealing with delayed tree refs. From functional point of view - the code
is unchanged.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:31 +02:00
Nikolay Borisov c812c8a857 btrfs: Use init_delayed_ref_common in add_delayed_data_ref
Use the newly introduced helper and remove the duplicate code.  No
functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:31 +02:00
Nikolay Borisov 646f4dd76f btrfs: Use init_delayed_ref_common in add_delayed_tree_ref
Use the newly introduced common helper.  No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:30 +02:00
Nikolay Borisov cb49a87b2a btrfs: Factor out common delayed refs init code
THe majority of the init code for struct btrfs_delayed_ref_node is
duplicated in add_delayed_data_ref and add_delayed_tree_ref. Factor out
the common bits in init_delayed_ref_common. This function is going to be
used in future patches to clean that up. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:30 +02:00
Nikolay Borisov be97f133b3 btrfs: Drop fs_info parameter from btrfs_merge_delayed_refs
It's provided by the transaction handle.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:20 +02:00
Nikolay Borisov f033798d12 btrfs: Drop fs_info parameter from add_delayed_data_ref
It's provided by the transaction handle.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:20 +02:00
Nikolay Borisov 1acda0c289 btrfs: Drop add_delayed_ref_head fs_info parameter
It's provided by the transaction handle.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 18:07:20 +02:00
Nikolay Borisov 41d0bd3b5e btrfs: Drop delayed_refs argument from btrfs_check_delayed_seq
It's used to print its pointer in a debug statement but doesn't really
bring any useful information to the error message.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-28 13:12:11 +02:00
Nikolay Borisov 5e388e9581 btrfs: Fix race condition between delayed refs and blockgroup removal
When the delayed refs for a head are all run, eventually
cleanup_ref_head is called which (in case of deletion) obtains a
reference for the relevant btrfs_space_info struct by querying the bg
for the range. This is problematic because when the last extent of a
bg is deleted a race window emerges between removal of that bg and the
subsequent invocation of cleanup_ref_head. This can result in cache being null
and either a null pointer dereference or assertion failure.

	task: ffff8d04d31ed080 task.stack: ffff9e5dc10cc000
	RIP: 0010:assfail.constprop.78+0x18/0x1a [btrfs]
	RSP: 0018:ffff9e5dc10cfbe8 EFLAGS: 00010292
	RAX: 0000000000000044 RBX: 0000000000000000 RCX: 0000000000000000
	RDX: ffff8d04ffc1f868 RSI: ffff8d04ffc178c8 RDI: ffff8d04ffc178c8
	RBP: ffff8d04d29e5ea0 R08: 00000000000001f0 R09: 0000000000000001
	R10: ffff9e5dc0507d58 R11: 0000000000000001 R12: ffff8d04d29e5ea0
	R13: ffff8d04d29e5f08 R14: ffff8d04efe29b40 R15: ffff8d04efe203e0
	FS:  00007fbf58ead500(0000) GS:ffff8d04ffc00000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	CR2: 00007fe6c6975648 CR3: 0000000013b2a000 CR4: 00000000000006f0
	DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
	DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
	Call Trace:
	 __btrfs_run_delayed_refs+0x10e7/0x12c0 [btrfs]
	 btrfs_run_delayed_refs+0x68/0x250 [btrfs]
	 btrfs_should_end_transaction+0x42/0x60 [btrfs]
	 btrfs_truncate_inode_items+0xaac/0xfc0 [btrfs]
	 btrfs_evict_inode+0x4c6/0x5c0 [btrfs]
	 evict+0xc6/0x190
	 do_unlinkat+0x19c/0x300
	 do_syscall_64+0x74/0x140
	 entry_SYSCALL_64_after_hwframe+0x3d/0xa2
	RIP: 0033:0x7fbf589c57a7

To fix this, introduce a new flag "is_system" to head_ref structs,
which is populated at insertion time. This allows to decouple the
querying for the spaceinfo from querying the possibly deleted bg.

Fixes: d7eae3403f ("Btrfs: rework delayed ref total_bytes_pinned accounting")
CC: stable@vger.kernel.org # 4.14+
Suggested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-20 19:17:25 +02:00
David Sterba c1d7c514f7 btrfs: replace GPL boilerplate by SPDX -- sources
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12 16:29:51 +02:00
David Sterba a4666e688f btrfs: use lockdep_assert_held for spinlocks
Using lockdep_assert_held is preferred, replace assert_spin_locked.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31 02:01:06 +02:00
David Sterba e67c718b5b btrfs: add more __cold annotations
The __cold functions are placed to a special section, as they're
expected to be called rarely. This could help i-cache prefetches or help
compiler to decide which branches are more/less likely to be taken
without any other annotations needed.

Though we can't add more __exit annotations, it's still possible to add
__cold (that's also added with __exit). That way the following function
categories are tagged:

- printf wrappers, error messages
- exit helpers

Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26 15:09:39 +02:00
Nikolay Borisov 952bd3db0d btrfs: Ignore errors from btrfs_qgroup_trace_extent_post
Running generic/019 with qgroups on the scratch device enabled is almost
guaranteed to trigger the BUG_ON in btrfs_free_tree_block. It's supposed
to trigger only on -ENOMEM, in reality, however, it's possible to get
-EIO from btrfs_qgroup_trace_extent_post. This function just finds the
roots of the extent being tracked and sets the qrecord->old_roots list.
If this operation fails nothing critical happens except the quota
accounting can be considered wrong. In such case just set the
INCONSISTENT flag for the quota and print a warning, rather than killing
off the system. Additionally, it's possible to trigger a BUG_ON in
btrfs_truncate_inode_items as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
[ error message adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-02-02 16:25:14 +01:00
Liu Bo f5c29bd9db Btrfs: add __init macro to btrfs init functions
Adding __init macro gives kernel a hint that this function is only used
during the initialization phase and its memory resources can be freed up
after.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:11 +01:00
Josef Bacik 0e0adbcfdc btrfs: track refs in a rb_tree instead of a list
If we get a significant amount of delayed refs for a single block (think
modifying multiple snapshots) we can end up spending an ungodly amount
of time looping through all of the entries trying to see if they can be
merged.  This is because we only add them to a list, so we have O(2n)
for every ref head.  This doesn't make any sense as we likely have refs
for different roots, and so they cannot be merged.  Tracking in a tree
will allow us to break as soon as we hit an entry that doesn't match,
making our worst case O(n).

With this we can also merge entries more easily.  Before we had to hope
that matching refs were on the ends of our list, but with the tree we
can search down to exact matches and merge them at insert time.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01 20:45:35 +01:00
Josef Bacik 1d148e5939 btrfs: add a comp_refs() helper
Instead of open-coding the delayed ref comparisons, add a helper to do
the comparisons generically and use that everywhere.  We compare
sequence numbers last for following patches.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01 20:45:35 +01:00
Josef Bacik c7ad7c8439 btrfs: switch args for comp_*_refs
Make it more consistent, we want the inserted ref to be compared against
what's already in there.  This will make the order go from lowest seq ->
highest seq, which will make us more likely to make forward progress if
there's a seqlock currently held.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01 20:45:35 +01:00
Josef Bacik 3b60d436a1 btrfs: remove type argument from comp_tree_refs
We can get this from the ref we've passed in.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-10-30 12:28:00 +01:00
Josef Bacik d278850eff btrfs: remove delayed_ref_node from ref_head
This is just excessive information in the ref_head, and makes the code
complicated.  It is a relic from when we had the heads and the refs in
the same tree, which is no longer the case.  With this removal I've
cleaned up a bunch of the cruft around this old assumption as well.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-10-30 12:28:00 +01:00
Omar Sandoval 7be07912b3 Btrfs: return old and new total ref mods when adding delayed refs
We need this to decide when to account pinned bytes.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-29 20:17:01 +02:00
Elena Reshetova 6df8cdf5bd btrfs: convert btrfs_delayed_ref_node.refs from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:23 +02:00