-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEjSMCCC7+cjo3nszSa3kkZrA+cVoFAl+GX1oUHHpvaGFyQGxp
bnV4LmlibS5jb20ACgkQa3kkZrA+cVpACRAAqkLjZZioCl8SB2PgtOvfNGmK8b70
j4RIWKVFnzZVq6cjzc6OY/ujjOg1Psuyr48g//5fLAZVpqD7RLv0s12npZ/Q+Pim
8uInUh4G4TKZlcPmsMA2uC31NmK6xwVz2+rQjQUB8XP0ZWq392M+nrcjg2nPU1r0
ozXg0zefY/NAJwpgJlZfjxCs2YhLYe6ooqBF5Hw6kiBgWEW7O3cgBCeW3zXv9CDA
TTh7bL8Y3tLiB9DYat6alfT/IU9tb9GLCgWMxmzb+MeAiSjKLWG/9wMvsAW/7M69
ECARmf28zBNjRU8OZaf615q6hXp3JghYJNpirob3B8MX6galA5oux6sOecrXxduR
yEexPR2HWiCgazcN/a1NkE9nGxICsrOmLoiYdAs4pz7Csqlj4hY0HQkL8HLQzD7U
MTXvdZMAd35cFDb2zMGWSnOvJrX7RlvulkgAkFpM5y3WjddY1R0hdf4fs5dYrfxb
CVi+40ZCO/Xt4c689Jnga/nwFABgMhU3XCYHgZz5tBv/3YW41xgM7HwK0WskunFM
xQ3zNHnj9ZmjVfwuVH+yQU16FgSjJ7rdrMj1NucH8xColPnfr8erSBIc3UWoMGPb
zq0E9y8LXebI8HVmymDiWLSjH0CQ86VtSGfmtJWB0oE3ad8DZ0HW9rydoYFzgc6+
VZISjEfZN5t7xws=
=qyUG
-----END PGP SIGNATURE-----
Merge tag 'integrity-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity
Pull integrity updates from Mimi Zohar:
"Continuing IMA policy rule cleanup and validation in particular for
measuring keys, adding/removing/updating informational and error
messages (e.g. "ima_appraise" boot command line option), and other bug
fixes (e.g. minimal data size validation before use, return code and
NULL pointer checking)"
* tag 'integrity-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
ima: Fix NULL pointer dereference in ima_file_hash
evm: Check size of security.evm before using it
ima: Remove semicolon at the end of ima_get_binary_runtime_size()
ima: Don't ignore errors from crypto_shash_update()
ima: Use kmemdup rather than kmalloc+memcpy
integrity: include keyring name for unknown key request
ima: limit secure boot feedback scope for appraise
integrity: invalid kernel parameters feedback
ima: add check for enforced appraise option
integrity: Use current_uid() in integrity_audit_message()
ima: Fail rule parsing when asymmetric key measurement isn't supportable
ima: Pre-parse the list of keyrings in a KEY_CHECK rule
Depending on the IMA policy rule a key may be searched for in multiple
keyrings (e.g. .ima and .platform) and possibly not found. This patch
improves feedback by including the keyring "description" (name) in the
error message.
Signed-off-by: Bruno Meneguele <bmeneg@redhat.com>
[zohar@linux.ibm.com: updated commit message]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
The variable ret is being initialized with a value that is never read
and it is being updated later with a new value. The initialization is
redundant and can be removed.
Fixes: eb5798f2e2 ("integrity: convert digsig to akcipher api")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Addresses-Coverity: ("Unused value")
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
The #define for formatting log messages, pr_fmt, is duplicated in the
files under security/integrity.
This change moves the definition to security/integrity/integrity.h and
removes the duplicate definitions in the other files under
security/integrity.
With this change, the messages in the following files will be prefixed
with 'integrity'.
security/integrity/platform_certs/platform_keyring.c
security/integrity/platform_certs/load_powerpc.c
security/integrity/platform_certs/load_uefi.c
security/integrity/iint.c
e.g. "integrity: Error adding keys to platform keyring %s\n"
And the messages in the following file will be prefixed with 'ima'.
security/integrity/ima/ima_mok.c
e.g. "ima: Allocating IMA blacklist keyring.\n"
For the rest of the files under security/integrity, there will be no
change in the message format.
Suggested-by: Shuah Khan <skhan@linuxfoundation.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Tushar Sugandhi <tusharsu@linux.microsoft.com>
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRyyVvu3V2unywtrAQL3xQ//eifjlELkRAPm2EReWwwahdM+9QL/0bAy
e8eAzP9EaphQGUhpIzM9Y7Cx+a8XW2xACljY8hEFGyxXhDMoLa35oSoJOeay6vQt
QcgWnDYsET8Z7HOsFCP3ZQqlbbqfsB6CbIKtZoEkZ8ib7eXpYcy1qTydu7wqrl4A
AaJalAhlUKKUx9hkGGJTh2xvgmxgSJkxx3cNEWJQ2uGgY/ustBpqqT4iwFDsgA/q
fcYTQFfNQBsC8/SmvQgxJSc+reUdQdp0z1vd8qjpSdFFcTq1qOtK0qDdz1Bbyl24
hAxvNM1KKav83C8aF7oHhEwLrkD+XiYKixdEiCJJp+A2i+vy2v8JnfgtFTpTgLNK
5xu2VmaiWmee9SLCiDIBKE4Ghtkr8DQ/5cKFCwthT8GXgQUtdsdwAaT3bWdCNfRm
DqgU/AyyXhoHXrUM25tPeF3hZuDn2yy6b1TbKA9GCpu5TtznZIHju40Px/XMIpQH
8d6s/pg+u/SnkhjYWaTvTcvsQ2FB/vZY/UzAVyosnoMBkVfL4UtAHGbb8FBVj1nf
Dv5VjSjl4vFjgOr3jygEAeD2cJ7L6jyKbtC/jo4dnOmPrSRShIjvfSU04L3z7FZS
XFjMmGb2Jj8a7vAGFmsJdwmIXZ1uoTwX56DbpNL88eCgZWFPGKU7TisdIWAmJj8U
N9wholjHJgw=
=E3bF
-----END PGP SIGNATURE-----
Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring ACL support from David Howells:
"This changes the permissions model used by keys and keyrings to be
based on an internal ACL by the following means:
- Replace the permissions mask internally with an ACL that contains a
list of ACEs, each with a specific subject with a permissions mask.
Potted default ACLs are available for new keys and keyrings.
ACE subjects can be macroised to indicate the UID and GID specified
on the key (which remain). Future commits will be able to add
additional subject types, such as specific UIDs or domain
tags/namespaces.
Also split a number of permissions to give finer control. Examples
include splitting the revocation permit from the change-attributes
permit, thereby allowing someone to be granted permission to revoke
a key without allowing them to change the owner; also the ability
to join a keyring is split from the ability to link to it, thereby
stopping a process accessing a keyring by joining it and thus
acquiring use of possessor permits.
- Provide a keyctl to allow the granting or denial of one or more
permits to a specific subject. Direct access to the ACL is not
granted, and the ACL cannot be viewed"
* tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Provide KEYCTL_GRANT_PERMISSION
keys: Replace uid/gid/perm permissions checking with an ACL
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRU89Pu3V2unywtrAQIdBBAAmMBsrfv+LUN4Vru/D6KdUO4zdYGcNK6m
S56bcNfP6oIDEj6HrNNnzKkWIZpdZ61Odv1zle96+v4WZ/6rnLCTpcsdaFNTzaoO
YT2jk7jplss0ImrMv1DSoykGqO3f0ThMIpGCxHKZADGSu0HMbjSEh+zLPV4BaMtT
BVuF7P3eZtDRLdDtMtYcgvf5UlbdoBEY8w1FUjReQx8hKGxVopGmCo5vAeiY8W9S
ybFSZhPS5ka33ynVrLJH2dqDo5A8pDhY8I4bdlcxmNtRhnPCYZnuvTqeAzyUKKdI
YN9zJeDu1yHs9mi8dp45NPJiKy6xLzWmUwqH8AvR8MWEkrwzqbzNZCEHZ41j74hO
YZWI0JXi72cboszFvOwqJERvITKxrQQyVQLPRQE2vVbG0bIZPl8i7oslFVhitsl+
evWqHb4lXY91rI9cC6JIXR1OiUjp68zXPv7DAnxv08O+PGcioU1IeOvPivx8QSx4
5aUeCkYIIAti/GISzv7xvcYh8mfO76kBjZSB35fX+R9DkeQpxsHmmpWe+UCykzWn
EwhHQn86+VeBFP6RAXp8CgNCLbrwkEhjzXQl/70s1eYbwvK81VcpDAQ6+cjpf4Hb
QUmrUJ9iE0wCNl7oqvJZoJvWVGlArvPmzpkTJk3N070X2R0T7x1WCsMlPDMJGhQ2
fVHvA3QdgWs=
=Push
-----END PGP SIGNATURE-----
Merge tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring namespacing from David Howells:
"These patches help make keys and keyrings more namespace aware.
Firstly some miscellaneous patches to make the process easier:
- Simplify key index_key handling so that the word-sized chunks
assoc_array requires don't have to be shifted about, making it
easier to add more bits into the key.
- Cache the hash value in the key so that we don't have to calculate
on every key we examine during a search (it involves a bunch of
multiplications).
- Allow keying_search() to search non-recursively.
Then the main patches:
- Make it so that keyring names are per-user_namespace from the point
of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not
accessible cross-user_namespace.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this.
- Move the user and user-session keyrings to the user_namespace
rather than the user_struct. This prevents them propagating
directly across user_namespaces boundaries (ie. the KEY_SPEC_*
flags will only pick from the current user_namespace).
- Make it possible to include the target namespace in which the key
shall operate in the index_key. This will allow the possibility of
multiple keys with the same description, but different target
domains to be held in the same keyring.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this.
- Make it so that keys are implicitly invalidated by removal of a
domain tag, causing them to be garbage collected.
- Institute a network namespace domain tag that allows keys to be
differentiated by the network namespace in which they operate. New
keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned
the network domain in force when they are created.
- Make it so that the desired network namespace can be handed down
into the request_key() mechanism. This allows AFS, NFS, etc. to
request keys specific to the network namespace of the superblock.
This also means that the keys in the DNS record cache are
thenceforth namespaced, provided network filesystems pass the
appropriate network namespace down into dns_query().
For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other
cache keyrings, such as idmapper keyrings, also need to set the
domain tag - for which they need access to the network namespace of
the superblock"
* tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Pass the network namespace into request_key mechanism
keys: Network namespace domain tag
keys: Garbage collect keys for which the domain has been removed
keys: Include target namespace in match criteria
keys: Move the user and user-session keyrings to the user_namespace
keys: Namespace keyring names
keys: Add a 'recurse' flag for keyring searches
keys: Cache the hash value to avoid lots of recalculation
keys: Simplify key description management
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split. This will also allow a
greater range of subjects to represented.
============
WHY DO THIS?
============
The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.
For SETATTR, this includes actions that are about controlling access to a
key:
(1) Changing a key's ownership.
(2) Changing a key's security information.
(3) Setting a keyring's restriction.
And actions that are about managing a key's lifetime:
(4) Setting an expiry time.
(5) Revoking a key.
and (proposed) managing a key as part of a cache:
(6) Invalidating a key.
Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.
Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission. It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.
As for SEARCH permission, that currently covers:
(1) Finding keys in a keyring tree during a search.
(2) Permitting keyrings to be joined.
(3) Invalidation.
But these don't really belong together either, since these actions really
need to be controlled separately.
Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.
===============
WHAT IS CHANGED
===============
The SETATTR permission is split to create two new permissions:
(1) SET_SECURITY - which allows the key's owner, group and ACL to be
changed and a restriction to be placed on a keyring.
(2) REVOKE - which allows a key to be revoked.
The SEARCH permission is split to create:
(1) SEARCH - which allows a keyring to be search and a key to be found.
(2) JOIN - which allows a keyring to be joined as a session keyring.
(3) INVAL - which allows a key to be invalidated.
The WRITE permission is also split to create:
(1) WRITE - which allows a key's content to be altered and links to be
added, removed and replaced in a keyring.
(2) CLEAR - which allows a keyring to be cleared completely. This is
split out to make it possible to give just this to an administrator.
(3) REVOKE - see above.
Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together. An ACE specifies a subject, such as:
(*) Possessor - permitted to anyone who 'possesses' a key
(*) Owner - permitted to the key owner
(*) Group - permitted to the key group
(*) Everyone - permitted to everyone
Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.
Further subjects may be made available by later patches.
The ACE also specifies a permissions mask. The set of permissions is now:
VIEW Can view the key metadata
READ Can read the key content
WRITE Can update/modify the key content
SEARCH Can find the key by searching/requesting
LINK Can make a link to the key
SET_SECURITY Can change owner, ACL, expiry
INVAL Can invalidate
REVOKE Can revoke
JOIN Can join this keyring
CLEAR Can clear this keyring
The KEYCTL_SETPERM function is then deprecated.
The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.
The KEYCTL_INVALIDATE function then requires INVAL.
The KEYCTL_REVOKE function then requires REVOKE.
The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.
The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.
======================
BACKWARD COMPATIBILITY
======================
To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.
It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.
SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned
on if a keyring is being altered.
The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.
It will make the following mappings:
(1) INVAL, JOIN -> SEARCH
(2) SET_SECURITY -> SETATTR
(3) REVOKE -> WRITE if SETATTR isn't already set
(4) CLEAR -> WRITE
Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.
=======
TESTING
=======
This passes the keyutils testsuite for all but a couple of tests:
(1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
if the type doesn't have ->read(). You still can't actually read the
key.
(2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
work as Other has been replaced with Everyone in the ACL.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a 'recurse' flag for keyring searches so that the flag can be omitted
and recursion disabled, thereby allowing just the nominated keyring to be
searched and none of the children.
Signed-off-by: David Howells <dhowells@redhat.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 315 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allow to use EC-RDSA signatures for IMA by determining signature type by
the hash algorithm name. This works good for EC-RDSA since Streebog and
EC-RDSA should always be used together.
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: linux-integrity@vger.kernel.org
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On systems with IMA-appraisal enabled with a policy requiring file
signatures, the "good" signature values are stored on the filesystem as
extended attributes (security.ima). Signature verification failure
would normally be limited to just a particular file (eg. executable),
but during boot signature verification failure could result in a system
hang.
Defining and requiring a new public_key_signature field requires all
callers of asymmetric signature verification to be updated to reflect
the change. This patch updates the integrity asymmetric_verify()
caller.
Fixes: 82f94f2447 ("KEYS: Provide software public key query function [ver #2]")
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
This patch aimed to prevent deadlock during digsig verification.The point
of issue - user space utility modprobe and/or it's dependencies (ld-*.so,
libz.so.*, libc-*.so and /lib/modules/ files) that could be used for
kernel modules load during digsig verification and could be signed by
digsig in the same time.
First at all, look at crypto_alloc_tfm() work algorithm:
crypto_alloc_tfm() will first attempt to locate an already loaded
algorithm. If that fails and the kernel supports dynamically loadable
modules, it will then attempt to load a module of the same name or alias.
If that fails it will send a query to any loaded crypto manager to
construct an algorithm on the fly.
We have situation, when public_key_verify_signature() in case of RSA
algorithm use alg_name to store internal information in order to construct
an algorithm on the fly, but crypto_larval_lookup() will try to use
alg_name in order to load kernel module with same name.
1) we can't do anything with crypto module work, since it designed to work
exactly in this way;
2) we can't globally filter module requests for modprobe, since it
designed to work with any requests.
In this patch, I propose add an exception for "crypto-pkcs1pad(rsa,*)"
module requests only in case of enabled integrity asymmetric keys support.
Since we don't have any real "crypto-pkcs1pad(rsa,*)" kernel modules for
sure, we are safe to fail such module request from crypto_larval_lookup().
In this way we prevent modprobe execution during digsig verification and
avoid possible deadlock if modprobe and/or it's dependencies also signed
with digsig.
Requested "crypto-pkcs1pad(rsa,*)" kernel module name formed by:
1) "pkcs1pad(rsa,%s)" in public_key_verify_signature();
2) "crypto-%s" / "crypto-%s-all" in crypto_larval_lookup().
"crypto-pkcs1pad(rsa," part of request is a constant and unique and could
be used as filter.
Signed-off-by: Mikhail Kurinnoi <viewizard@viewizard.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
include/linux/integrity.h | 13 +++++++++++++
security/integrity/digsig_asymmetric.c | 23 +++++++++++++++++++++++
security/security.c | 7 ++++++-
3 files changed, 42 insertions(+), 1 deletion(-)
These changes are too small to warrant their own patches:
The keyid and sig_size members of struct signature_v2_hdr are in BE format,
so use a type that makes this assumption explicit. Also, use beXX_to_cpu
instead of __beXX_to_cpu to read them.
Change integrity_kernel_read to take a void * buffer instead of char *
buffer, so that callers don't have to use a cast if they provide a buffer
that isn't a char *.
Add missing #endif comment in ima.h pointing out which macro it refers to.
Add missing fall through comment in ima_appraise.c.
Constify mask_tokens and func_tokens arrays.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Make the identifier public key and digest algorithm fields text instead of
enum.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Move the RSA EMSA-PKCS1-v1_5 encoding from the asymmetric-key public_key
subtype to the rsa crypto module's pkcs1pad template. This means that the
public_key subtype no longer has any dependencies on public key type.
To make this work, the following changes have been made:
(1) The rsa pkcs1pad template is now used for RSA keys. This strips off the
padding and returns just the message hash.
(2) In a previous patch, the pkcs1pad template gained an optional second
parameter that, if given, specifies the hash used. We now give this,
and pkcs1pad checks the encoded message E(M) for the EMSA-PKCS1-v1_5
encoding and verifies that the correct digest OID is present.
(3) The crypto driver in crypto/asymmetric_keys/rsa.c is now reduced to
something that doesn't care about what the encryption actually does
and and has been merged into public_key.c.
(4) CONFIG_PUBLIC_KEY_ALGO_RSA is gone. Module signing must set
CONFIG_CRYPTO_RSA=y instead.
Thoughts:
(*) Should the encoding style (eg. raw, EMSA-PKCS1-v1_5) also be passed to
the padding template? Should there be multiple padding templates
registered that share most of the code?
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Convert asymmetric_verify to akcipher api.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David Howells <dhowells@redhat.com>
This option creates IMA MOK and blacklist keyrings. IMA MOK is an
intermediate keyring that sits between .system and .ima keyrings,
effectively forming a simple CA hierarchy. To successfully import a key
into .ima_mok it must be signed by a key which CA is in .system keyring.
On turn any key that needs to go in .ima keyring must be signed by CA in
either .system or .ima_mok keyrings. IMA MOK is empty at kernel boot.
IMA blacklist keyring contains all revoked IMA keys. It is consulted
before any other keyring. If the search is successful the requested
operation is rejected and error is returned to the caller.
Signed-off-by: Petko Manolov <petkan@mip-labs.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
If file has IMA signature, IMA in enforce mode, but key is missing
then file access is blocked and single error message is printed.
If IMA appraisal is enabled in fix mode, then system runs as usual
but might produce tons of 'Request for unknown key' messages.
This patch switches 'pr_warn' to 'pr_err_ratelimited'.
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
All files on the filesystem, currently, are hashed using the same hash
algorithm. In preparation for files from different packages being
signed using different hash algorithms, this patch adds support for
reading the signature hash algorithm from the 'security.ima' extended
attribute and calculates the appropriate file data hash based on it.
Changelog:
- fix scripts Lindent and checkpatch msgs - Mimi
- fix md5 support for older version, which occupied 20 bytes in the
xattr, not the expected 16 bytes. Fix the comparison to compare
only the first 16 bytes.
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Asymmetric keys were introduced in linux-3.7 to verify the signature on
signed kernel modules. The asymmetric keys infrastructure abstracts the
signature verification from the crypto details. This patch adds IMA/EVM
signature verification using asymmetric keys. Support for additional
signature verification methods can now be delegated to the asymmetric
key infrastructure.
Although the module signature header and the IMA/EVM signature header
could use the same format, to minimize the signature length and save
space in the extended attribute, this patch defines a new IMA/EVM
header format. The main difference is that the key identifier is a
sha1[12 - 19] hash of the key modulus and exponent, similar to the
current implementation. The only purpose of the key identifier is to
identify the corresponding key in the kernel keyring. ima-evm-utils
was updated to support the new signature format.
While asymmetric signature verification functionality supports many
different hash algorithms, the hash used in this patch is calculated
during the IMA collection phase, based on the configured algorithm.
The default algorithm is sha1, but for backwards compatibility md5
is supported. Due to this current limitation, signatures should be
generated using a sha1 hash algorithm.
Changes in this patch:
- Functionality has been moved to separate source file in order to get rid of
in source #ifdefs.
- keyid is derived according to the RFC 3280. It does not require to assign
IMA/EVM specific "description" when loading X509 certificate. Kernel
asymmetric key subsystem automatically generate the description. Also
loading a certificate does not require using of ima-evm-utils and can be
done using keyctl only.
- keyid size is reduced to 32 bits to save xattr space. Key search is done
using partial match functionality of asymmetric_key_match().
- Kconfig option title was changed
Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>