MIPS protection bits are setup during runtime so using defines like
PAGE_SHARED ignores this runtime changes. Using vm_get_page_prot
to get correct page protection fixes this.
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
The 'flags' field of 'struct mmu_notifier_range' is used to indicate
whether invalidate_range_{start,end}() are permitted to block. In the
case of kvm_mmu_notifier_invalidate_range_start(), this field is not
forwarded on to the architecture-specific implementation of
kvm_unmap_hva_range() and therefore the backend cannot sensibly decide
whether or not to block.
Add an extra 'flags' parameter to kvm_unmap_hva_range() so that
architectures are aware as to whether or not they are permitted to block.
Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Message-Id: <20200811102725.7121-2-will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move to the common MMU memory cache implementation now that the common
code and MIPS's existing code are semantically compatible.
No functional change intended.
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-22-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use GFP_KERNEL_ACCOUNT instead of GFP_KERNEL when allocating pages for
the the GPA page tables. The primary motivation for accounting the
allocations is to align with the common KVM memory cache helpers in
preparation for moving to the common implementation in a future patch.
The actual accounting is a bonus side effect.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-21-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the @max param in mmu_topup_memory_cache() and instead use
ARRAY_SIZE() to terminate the loop to fill the cache. This removes a
BUG_ON() and sets the stage for moving MIPS to the common memory cache
implementation.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-20-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All architectures define pte_index() as
(address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)
and all architectures define pte_offset_kernel() as an entry in the array
of PTEs indexed by the pte_index().
For the most architectures the pte_offset_kernel() implementation relies
on the availability of pmd_page_vaddr() that converts a PMD entry value to
the virtual address of the page containing PTEs array.
Let's move x86 definitions of the PTE accessors to the generic place in
<linux/pgtable.h> and then simply drop the respective definitions from the
other architectures.
The architectures that didn't provide pmd_page_vaddr() are updated to have
that defined.
The generic implementation of pte_offset_kernel() can be overridden by an
architecture and alpha makes use of this because it has special ordering
requirements for its version of pte_offset_kernel().
[rppt@linux.ibm.com: v2]
Link: http://lkml.kernel.org/r/20200514170327.31389-11-rppt@kernel.org
[rppt@linux.ibm.com: update]
Link: http://lkml.kernel.org/r/20200514170327.31389-12-rppt@kernel.org
[rppt@linux.ibm.com: update]
Link: http://lkml.kernel.org/r/20200514170327.31389-13-rppt@kernel.org
[akpm@linux-foundation.org: fix x86 warning]
[sfr@canb.auug.org.au: fix powerpc build]
Link: http://lkml.kernel.org/r/20200607153443.GB738695@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-10-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement primitives necessary for the 4th level folding, add walks of p4d
level where appropriate, replace 5leve-fixup.h with pgtable-nop4d.h and
drop usage of __ARCH_USE_5LEVEL_HACK.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Paul Burton <paulburton@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Mike Rapoport <rppt@kernel.org>
The __pXd_offset() macros are identical to the pXd_index() macros and there
is no point to keep both of them. All architectures define and use
pXd_index() so let's keep only those to make mips consistent with the rest
of the kernel.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Paul Burton <paulburton@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Mike Rapoport <rppt@kernel.org>
The patch is to make kvm_set_spte_hva() return int and caller can
check return value to determine flush tlb or not.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to
deal with. Drop the now obsolete code.
Fixes: fb1522e099 ("KVM: update to new mmu_notifier semantic v2")
Cc: James Hogan <jhogan@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Add the main support for the MIPS Virtualization ASE (A.K.A. VZ) to MIPS
KVM. The bulk of this work is in vz.c, with various new state and
definitions elsewhere.
Enough is implemented to be able to run on a minimal VZ core. Further
patches will fill out support for guest features which are optional or
can be disabled.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the
underlying user host virtual address (HVA) mappings to be promptly
reflected in the corresponding guest physical address (GPA) mappings.
This allows for several features to work with guest RAM which require
mappings to be altered or protected, such as copy-on-write, KSM (Kernel
Samepage Merging), idle page tracking, memory swapping, and guest memory
ballooning.
There are two main aspects of this change, described below.
The KVM MMU notifier architecture callbacks are implemented so we can be
notified of changes in the HVA mappings. These arrange for the guest
physical address (GPA) page tables to be modified and possibly for
derived mappings (GVA page tables and TLBs) to be flushed.
- kvm_unmap_hva[_range]() - These deal with HVA mappings being removed,
for example before a copy-on-write takes place, which requires the
corresponding GPA page table mappings to be removed too.
- kvm_set_spte_hva() - These update a GPA page table entry to match the
new HVA entry, but must be careful to respect KVM specific
configuration such as not dirtying a clean guest page which is dirty
to the host, and write protecting writable pages in read only
memslots (which will soon be supported).
- kvm[_test]_age_hva() - These update GPA page table entries to be old
(invalid) so that access can be tracked, making them young again.
The GPA page fault handling (kvm_mips_map_page) is updated to use
gfn_to_pfn_prot() (which may provide read-only pages), to handle
asynchronous page table invalidation from MMU notifier callbacks, and to
handle more cases in the fast path.
- mmu_notifier_seq is used to detect asynchronous page table
invalidations while we're holding a pfn from gfn_to_pfn_prot()
outside of kvm->mmu_lock, retrying if invalidations have taken place,
e.g. a COW or a KSM page merge.
- The fast path (_kvm_mips_map_page_fast) now handles marking old pages
as young / accessed, and disallowing dirtying of clean pages that
aren't actually writable (e.g. shared pages that should COW, and
read-only memory regions when they are enabled in a future patch).
- Due to the use of MMU notifications we no longer need to keep the
page references after we've updated the GPA page tables.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Propagate the GPA PTE protection bits on to the GVA PTEs on a mapped
fault (except _PAGE_WRITE, and filtered by the guest TLB entry), rather
than always overriding the protection. This allows dirty page tracking
to work in mapped guest segments as a clear dirty bit in the GPA PTE
will propagate to the GVA PTEs even when the guest TLB has the dirty bit
set.
Since the filtering of protection bits is now abstracted, if the buddy
GVA PTE is also valid, we obtain the corresponding GPA PTE using a
simple non-allocating walk and load that into the GVA PTE similarly
(which may itself be invalid).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Propagate the GPA PTE protection bits on to the GVA PTEs on a KSeg0
fault (except _PAGE_WRITE), rather than always overriding the
protection. This allows dirty page tracking to work in KSeg0 as a clear
dirty bit in the GPA PTE will propagate to the GVA PTEs.
This makes it simpler to use a single kvm_mips_map_page() to obtain both
the main GPA PTE and its buddy (which may be invalid), which also allows
memory regions to be fully accessible when they don't start and end on a
2*PAGE_SIZE boundary.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Update kvm_mips_map_page() to handle logging of dirty guest physical
pages. Upcoming patches will propagate the dirty bit to the GVA page
tables.
A fast path is added for handling protection bits that can be resolved
without calling into KVM, currently just dirtying of clean pages being
written to.
The slow path marks the GPA page table entry writable only on writes,
and at the same time marks the page dirty in the dirty page logging
bitmask.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
MIPS hasn't up to this point properly supported dirty page logging, as
pages in slots with dirty logging enabled aren't made clean, and tlbmod
exceptions from writes to clean pages have been assumed to be due to
guest TLB protection and unconditionally passed to the guest.
Use the generic dirty logging helper kvm_get_dirty_log_protect() to
properly implement kvm_vm_ioctl_get_dirty_log(), similar to how ARM
does. This uses xchg to clear the dirty bits when reading them, rather
than wiping them out afterwards with a memset, which would potentially
wipe recently set bits that weren't caught by kvm_get_dirty_log(). It
also makes the pages clean again using the
kvm_arch_mmu_enable_log_dirty_pt_masked() architecture callback so that
further writes after the shadow memslot is flushed will trigger tlbmod
exceptions and dirty handling.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add a helper function to make a range of guest physical address (GPA)
mappings in the GPA page table clean so that writes can be caught. This
will be used in a few places to manage dirty page logging.
Note that until the dirty bit is transferred from GPA page table entries
to GVA page table entries in an upcoming patch this won't trigger a TLB
modified exception on write.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Treat unhandled accesses to guest KSeg0 as MMIO, rather than only host
KSeg0 addresses. This will allow read only memory regions (such as the
Malta boot flash as emulated by QEMU) to have writes (before reads)
treated as MMIO, and unallocated physical addresses to have all accesses
treated as MMIO.
The MMIO emulation uses the gva_to_gpa callback, so this is also updated
for trap & emulate to handle guest KSeg0 addresses.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
kvm_mips_map_page() will need to know whether the fault was due to a
read or a write in order to support dirty page tracking,
KVM_CAP_SYNC_MMU, and read only memory regions, so get that information
passed down to it via new bool write_fault arguments to various
functions.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Use the lockless GVA helpers to implement the reading of guest
instructions for emulation. This will allow it to handle asynchronous
TLB flushes when they are implemented.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Add helpers to allow for lockless direct access to the GVA space, by
changing the VCPU mode to READING_SHADOW_PAGE_TABLES for the duration of
the access. This allows asynchronous TLB flush requests in future
patches to safely trigger either a TLB flush before the direct GVA space
access, or a delay until the in-progress lockless direct access is
complete.
The kvm_trap_emul_gva_lockless_begin() and
kvm_trap_emul_gva_lockless_end() helpers take care of guarding the
direct GVA accesses, and kvm_trap_emul_gva_fault() tries to handle a
uaccess fault resulting from a flush having taken place.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Keep the vcpu->mode and vcpu->cpu variables up to date so that
kvm_make_all_cpus_request() has a chance of functioning correctly. This
will soon need to be used for kvm_flush_remote_tlbs().
We can easily update vcpu->cpu when the VCPU context is loaded or saved,
which will happen when accessing guest context and when the guest is
scheduled in and out.
We need to be a little careful with vcpu->mode though, as we will in
future be checking for outstanding VCPU requests, and this must be done
after the value of IN_GUEST_MODE in vcpu->mode is visible to other CPUs.
Otherwise the other CPU could fail to trigger an IPI to wait for
completion dispite the VCPU request not being seen.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Current guest physical memory is mapped to host physical addresses using
a single linear array (guest_pmap of length guest_pmap_npages). This was
only really meant to be temporary, and isn't sparse, so its wasteful of
memory. A small amount of RAM at GPA 0 and a small boot exception vector
at GPA 0x1fc00000 cannot be represented without a full 128KiB guest_pmap
allocation (MIPS32 with 16KiB pages), which is one reason why QEMU
currently runs its boot code at the top of RAM instead of the usual boot
exception vector address.
Instead use the existing infrastructure for host virtual page table
management to allocate a page table for guest physical memory too. This
should be sufficient for now, assuming the size of physical memory
doesn't exceed the size of virtual memory. It may need extending in
future to handle XPA (eXtended Physical Addressing) in 32-bit guests, as
supported by VZ guests on P5600.
Some of this code is based loosely on Cavium's VZ KVM implementation.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Currently kvm_get_inst() returns KVM_INVALID_INST in the event of a
fault reading the guest instruction. This has the rather arbitrary magic
value 0xdeadbeef. This API isn't very robust, and in fact 0xdeadbeef is
a valid MIPS64 instruction encoding, namely "ld t1,-16657(s5)".
Therefore change the kvm_get_inst() API to return 0 or -EFAULT, and to
return the instruction via a u32 *out argument. We can then drop the
KVM_INVALID_INST definition entirely.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
MIPS KVM uses its own variation of get_new_mmu_context() which takes an
extra vcpu pointer (unused) and does exactly the same thing.
Switch to just using get_new_mmu_context() directly and drop KVM's
version of it as it doesn't really serve any purpose.
The nearby declarations of kvm_mips_alloc_new_mmu_context(),
kvm_mips_vcpu_load() and kvm_mips_vcpu_put() are also removed from
kvm_host.h, as no definitions or users exist.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that KVM no longer uses wired entries we can safely use
local_flush_tlb_all() when we need to flush the entire TLB (on the start
of a new ASID cycle). This doesn't flush wired entries, which allows
other code to use them without KVM clobbering them all the time. It also
is more up to date, knowing about the tlbinv architectural feature,
flushing of micro TLB on cores where that is necessary (Loongson I
believe), and knows to stop the HTW while doing so.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that we have GVA page tables, use standard user accesses with page
faults disabled to read & modify guest instructions. This should be more
robust (than the rather dodgy method of accessing guest mapped segments
by just directly addressing them) and will also work with Enhanced
Virtual Addressing (EVA) host kernel configurations where dedicated
instructions are needed for accessing user mode memory.
For simplicity and speed we do this regardless of the guest segment the
address resides in, rather than handling guest KSeg0 specially with
kmap_atomic() as before.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of commpage faults from the guest kernel to
fill the GVA page table and invalidate the TLB entry, rather than
filling the wired TLB entry directly.
For simplicity we no longer use a wired entry for the commpage (refill
should be much cheaper with the fast-path handler anyway). Since we
don't need to manipulate the TLB directly any longer, move the function
from tlb.c to mmu.c. This puts it closer to the similar functions
handling KSeg0 and TLB mapped page faults from the guest.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of page faults in TLB mapped segment from
the guest to fill a single GVA page table entry and invalidate the TLB
entry, rather than filling a TLB entry pair directly.
Also remove the now unused kvm_mips_get_{kernel,user}_asid() functions
in mmu.c and kvm_mips_host_tlb_write() in tlb.c.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of KSeg0 page faults from the guest to fill
the GVA page tables and invalidate the TLB entry, rather than filling a
TLB entry directly.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement invalidation of specific pairs of GVA page table entries in
one or both of the GVA page tables. This is used when existing mappings
are replaced in the guest TLB by emulated TLBWI/TLBWR instructions. Due
to the sharing of page tables in the host kernel range, we should be
careful not to allow host pages to be invalidated.
Add a helper kvm_mips_walk_pgd() which can be used when walking of
either GPA (future patches) or GVA page tables is needed, optionally
with allocation of page tables along the way when they don't exist.
GPA page table walking will need to be protected by the kvm->mmu_lock,
so we also add a small MMU page cache in each KVM VCPU, like that found
for other architectures but smaller. This allows enough pages to be
pre-allocated to handle a single fault without holding the lock,
allowing the helper to run with the lock held without having to handle
allocation failures.
Using the same mechanism for GVA allows the same code to be used, and
allows it to use the same cache of allocated pages if the GPA walk
didn't need to allocate any new tables.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement invalidation of large ranges of virtual addresses from GVA
page tables in response to a guest ASID change (immediately for guest
kernel page table, lazily for guest user page table).
We iterate through a range of page tables invalidating entries and
freeing fully invalidated tables. To minimise overhead the exact ranges
invalidated depends on the flags argument to kvm_mips_flush_gva_pt(),
which also allows it to be used in future KVM_CAP_SYNC_MMU patches in
response to GPA changes, which unlike guest TLB mapping changes affects
guest KSeg0 mappings.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
The kvm_vcpu_arch structure contains both mm_structs for allocating MMU
contexts (primarily the ASID) but it also copies the resulting ASIDs
into guest_{user,kernel}_asid[] arrays which are referenced from uasm
generated code.
This duplication doesn't seem to serve any purpose, and it gets in the
way of generalising the ASID handling across guest kernel/user modes, so
lets just extract the ASID straight out of the mm_struct on demand, and
in fact there are convenient cpu_context() and cpu_asid() macros for
doing so.
To reduce the verbosity of this code we do also add kern_mm and user_mm
local variables where the kernel and user mm_structs are used.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
The MIPS KVM host and guest GVA ASIDs may need regenerating when
scheduling a process in guest context, which is done from the
kvm_arch_vcpu_load() / kvm_arch_vcpu_put() functions in mmu.c.
However this is a fairly implementation specific detail. VZ for example
may use GuestIDs instead of normal ASIDs to distinguish mappings
belonging to different guests, and even on VZ without GuestID the root
TLB will be used differently to trap & emulate.
Trap & emulate GVA ASIDs only relate to the user part of the full
address space, so can be left active during guest exit handling (guest
context) to allow guest instructions to be easily read and translated.
VZ root ASIDs however are for GPA mappings so can't be left active
during normal kernel code. They also aren't useful for accessing guest
virtual memory, and we should have CP0_BadInstr[P] registers available
to provide encodings of trapping guest instructions anyway.
Therefore move the ASID preemption handling into the implementation
callback.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Convert the get_regs() and set_regs() callbacks to vcpu_load() and
vcpu_put(), which provide a cpu argument and more closely match the
kvm_arch_vcpu_load() / kvm_arch_vcpu_put() that they are called by.
This is in preparation for moving ASID management into the
implementations.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
KVM T&E uses an ASID for guest kernel mode and an ASID for guest user
mode. The current ASID is saved when the guest is scheduled out, and
restored when scheduling back in, with checks for whether the ASID needs
to be regenerated.
This isn't really necessary as the ASID can be easily determined by the
current guest mode, so lets simplify it to just read the required ASID
from guest_kernel_asid or guest_user_asid even if the ASID hasn't been
regenerated.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
kvm_mips_check_asids() runs before entering the guest and performs lazy
regeneration of host ASID for guest usermode, using last_user_gasid to
track the last guest ASID in the VCPU that was used by guest usermode on
any host CPU.
last_user_gasid is reset after performing the lazy ASID regeneration on
the current CPU, and by kvm_arch_vcpu_load() if the host ASID for guest
usermode is regenerated due to staleness (to cancel outstanding lazy
ASID regenerations). Unfortunately neither case handles SMP hosts
correctly:
- When the lazy ASID regeneration is performed it should apply to all
CPUs (as last_user_gasid does), so reset the ASID on other CPUs to
zero to trigger regeneration when the VCPU is next loaded on those
CPUs.
- When the ASID is found to be stale on the current CPU, we should not
cancel lazy ASID regenerations globally, so drop the reset of
last_user_gasid altogether here.
Both cases would require a guest ASID change and two host CPU migrations
(and in the latter case one of the CPUs to start a new ASID cycle)
before guest usermode could potentially access stale user pages from a
previously running ASID in the same VCPU.
Fixes: 25b08c7fb0 ("KVM: MIPS: Invalidate TLB by regenerating ASIDs")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invalidate host TLB mappings when the guest ASID is changed by
regenerating ASIDs, rather than flushing the entire host TLB except
entries in the guest KSeg0 range.
For the guest kernel mode ASID we regenerate on the spot when the guest
ASID is changed, as that will always take place while the guest is in
kernel mode.
However when the guest invalidates TLB entries the ASID will often by
changed temporarily as part of writing EntryHi without the guest
returning to user mode in between. We therefore regenerate the user mode
ASID lazily before entering the guest in user mode, if and only if the
guest ASID has actually changed since the last guest user mode entry.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
The host ASIDs for guest kernel and user mode are regenerated together
if the ASID for guest kernel mode is out of date. That is fine as the
ASID for guest kernel mode is always generated first, however it doesn't
allow the ASIDs to be regenerated or invalidated individually instead of
linearly flushing the entire host TLB.
Therefore separate the regeneration code so that the ASIDs are checked
and regenerated separately.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
When mapping a page into the guest we error check using is_error_pfn(),
however this doesn't detect a value of KVM_PFN_NOSLOT, indicating an
error HVA for the page. This can only happen on MIPS right now due to
unusual memslot management (e.g. being moved / removed / resized), or
with an Enhanced Virtual Memory (EVA) configuration where the default
KVM_HVA_ERR_* and kvm_is_error_hva() definitions are unsuitable (fixed
in a later patch). This case will be treated as a pfn of zero, mapping
the first page of physical memory into the guest.
It would appear the MIPS KVM port wasn't updated prior to being merged
(in v3.10) to take commit 81c52c56e2 ("KVM: do not treat noslot pfn as
a error pfn") into account (merged v3.8), which converted a bunch of
is_error_pfn() calls to is_error_noslot_pfn(). Switch to using
is_error_noslot_pfn() instead to catch this case properly.
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.y-
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Propagate errors from kvm_mips_handle_kseg0_tlb_fault() and
kvm_mips_handle_mapped_seg_tlb_fault(), usually triggering an internal
error since they normally indicate the guest accessed bad physical
memory or the commpage in an unexpected way.
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Fixes: e685c689f3 ("KVM/MIPS32: Privileged instruction/target branch emulation.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Two consecutive gfns are loaded into host TLB, so ensure the range check
isn't off by one if guest_pmap_npages is odd.
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_mips_handle_mapped_seg_tlb_fault() calculates the guest frame number
based on the guest TLB EntryLo values, however it is not range checked
to ensure it lies within the guest_pmap. If the physical memory the
guest refers to is out of range then dump the guest TLB and emit an
internal error.
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_mips_handle_mapped_seg_tlb_fault() appears to map the guest page at
virtual address 0 to PFN 0 if the guest has created its own mapping
there. The intention is unclear, but it may have been an attempt to
protect the zero page from being mapped to anything but the comm page in
code paths you wouldn't expect from genuine commpage accesses (guest
kernel mode cache instructions on that address, hitting trapping
instructions when executing from that address with a coincidental TLB
eviction during the KVM handling, and guest user mode accesses to that
address).
Fix this to check for mappings exactly at KVM_GUEST_COMMPAGE_ADDR (it
may not be at address 0 since commit 42aa12e74e ("MIPS: KVM: Move
commpage so 0x0 is unmapped")), and set the corresponding EntryLo to be
interpreted as 0 (invalid).
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
There are several unportable uses of CKSEG0ADDR() in MIPS KVM, which
implicitly assume that a host physical address will be in the low 512MB
of the physical address space (accessible in KSeg0). These assumptions
don't hold for highmem or on 64-bit kernels.
When interpreting the guest physical address when reading or overwriting
a trapping instruction, use kmap_atomic() to get a usable virtual
address to access guest memory, which is portable to 64-bit and highmem
kernels.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM TLB mappings for the guest were being created with a cache coherency
attribute (CCA) of 3, which is cached incoherent. Create them instead
with the default host CCA, which should be the correct one for coherency
on SMP systems.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm_get_inst() fails to find a guest TLB mapping for the guest PC
then dump the guest TLB entries. The contents of the guest TLB is likely
to be more interesting than the host TLB entries.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: kvm@vger.kernel.org
Cc: linux-mips@linux-mips.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Like other functions, make use of a local unsigned long va, for the
virtual address of the PC. This reduces the amount of verbose casting of
the opc pointer to an unsigned long.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert KVM to use the MIPS_ENTRYLO_* definitions from <asm/mipsregs.h>
rather than custom definitions in kvm_host.h
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>