The sketch file is a file to mark checkpoints with user data. It was
experimentally introduced in the original implementation, and now
obsolete. The file was handled differently with regular files; the file
size got truncated when a checkpoint was created.
This stops the special treatment and will treat it as a regular file.
Most users are not affected because mkfs.nilfs2 no longer makes this file.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a missing endian conversion of checksum field in the super
block. This fixes compatibility issue on big endian machines which will
come to surface after supporting recovery of super block.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pekka Enberg advised me:
> It would be nice if BUG(), BUG_ON(), and panic() calls would be
> converted to proper error handling using WARN_ON() calls. The BUG()
> call in nilfs_cpfile_delete_checkpoints(), for example, looks to be
> triggerable from user-space via the ioctl() system call.
This will follow the comment and keep them to a minimum.
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a new argument to the nilfs_sustat structure.
The extended field allows to delete volatile active state of segments,
which was needed to protect freshly-created segments from garbage
collection but has confused code dealing with segments. This
extension alleviates the mess and gives room for further
simplifications.
The volatile active flag is not persistent, so it's eliminable on this
occasion without affecting compatibility other than the ioctl change.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pekka Enberg suggested converting ->ioctl operations to use
->unlocked_ioctl to avoid BKL.
The conversion was verified to be safe, so I will take it on this
occasion.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes compat code from the nilfs ioctls and applies the same
function for both .ioctl and .compat_ioctl file operations.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nilfs ioctl had structures not having fixed sized types such as:
struct nilfs_argv {
void *v_base;
size_t v_nmembs;
size_t v_size;
int v_index;
int v_flags;
};
Further, some of them are wrongly aligned:
e.g.
struct nilfs_cpmode {
__u64 cm_cno;
int cm_mode;
};
The size of wrongly aligned structures varies depending on
architectures, and it breaks the identity of ioctl commands, which
leads to arch dependent errors.
Previously, these are compensated by using compat_ioctl.
This fixes these problems and allows removal of compat ioctl.
Since this will change sizes of those structures, binary compatibility
for the past utilities will once break; new utilities have to be used
instead. However, it would be helpful to avoid platform dependent
problems in the long term.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes NILFS_IOCTL_TIMEDWAIT command from ioctl interface along
with the related flags and wait queue.
The command is terrible because it just sleeps in the ioctl. I prefer
to avoid this by devising means of event polling in userland program.
By reconsidering the userland GC daemon, I found this is possible
without changing behaviour of the daemon and sacrificing efficiency.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will fix the weird behavior of lscp command in listing continuously
created checkpoints; the output of lscp is rewinded regularly for the
recent nilfs. As a result of debugging, a defect was found in
nilfs_cpfile_do_get_cpinfo() function.
Though the function can be repeatedly called to enumerate checkpoints and
it can skip invalid checkpoint entries, the index value was not carried
between successive calls.
The bug has long been present, and came to surface after applying a bugfix
nilfs2-fix-problems-of-memory-allocation-in-ioctl.patch, which increased
frequency of calling the function. The similar bugfix was already applied
for ``snapshots'' by
nilfs2-fix-gc-failure-on-volumes-keeping-numerous-snapshots.patch.
This fixes the problem by making the index argument bidirectional on the
function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This cleans up the strange indirect function calling convention used in
nilfs to follow the normal kernel coding style.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A few tool developers gave me requests for fixing inconvenient return
value of nilfs_get_cpinfo() ioctl; if the requested mode is NILFS_SNAPSHOT
and the specified start entry is not a snapshot, the ioctl unnaturally
returns one as the number of acquired snapshot item.
In addition, the ioctl function returns an ENOENT error for checkpoints
within blocks deleted by garbage collection.
These behaviors require corrections for programs which enumerate
snapshots. This resolves the inconvenience by changing the return values
to zero for the above cases.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This resolves the following failure of nilfs2 cleaner daemon:
nilfs_cleanerd[20670]: cannot clean segments: No such file or directory
nilfs_cleanerd[20670]: shutdown
When creating thousands of snapshots, the cleaner daemon had rarely died
as above due to an error returned from the kernel code.
After applying the recent patch which fixed memory allocation problems in
ioctl (Message-Id: <20081215.155840.105124170.ryusuke@osrg.net>), the
problem gets more frequent.
It turned out to be a bug of nilfs_ioctl_wrap_copy function and one of its
callback routines to read out information of snapshots; if the
nilfs_ioctl_wrap_copy function divided a large read request into multiple
requests, the second and later requests have failed since a restart
position on snapshot meta data was not properly set forward.
It's a deficiency of the callback interface that cannot pass the restart
position among multiple requests. This patch fixes the issue by allowing
nilfs_ioctl_wrap_copy and snapshot read functions to exchange a position
argument.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The file gcinode.c gives buffer cache functions for on-disk blocks
moved in garbage collection. Joern Engel has suggested inserting its
explanations in the source file (Message-ID:
<20080917144146.GD8750@logfs.org> and
<20080917224953.GB14644@logfs.org>).
This follows the comment.
Cc: Joern Engel <joern@logfs.org>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pekka Enberg pointed out that double error handlings found after
nilfs_transaction_end() can be avoided by separating abort operation:
OK, I don't understand this. The only way nilfs_transaction_end() can
fail is if we have NILFS_TI_SYNC set and we fail to construct the
segment. But why do we want to construct a segment if we don't commit?
I guess what I'm asking is why don't we have a separate
nilfs_transaction_abort() function that can't fail for the erroneous
case to avoid this double error value tracking thing?
This does the separation and renames nilfs_transaction_end() to
nilfs_transaction_commit() for clarification.
Since, some calls of these functions were used just for exclusion control
against the segment constructor, they are replaced with semaphore
operations.
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will remove the following unnecessary locks and cleanup code in
nilfs_clear_inode():
- unnecessary protection using nilfs_transaction_begin() and
nilfs_transaction_end().
- cleanup code of i_dirty list field which is never chained
when this function is called.
- spinlock used when releasing i_bh field.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is another patch for fixing the following problems of a memory
copy function in nilfs2 ioctl:
(1) It tries to allocate 128KB size of memory even for small objects.
(2) Though the function repeatedly tries large memory allocations
while reducing the size, GFP_NOWAIT flag is not specified.
This increases the possibility of system memory shortage.
(3) During the retries of (2), verbose warnings are printed
because _GFP_NOWARN flag is not used for the kmalloc calls.
The first patch was still doing large allocations by kmalloc which are
repeatedly tried while reducing the size.
Andi Kleen told me that using copy_from_user for large memory is not
good from the viewpoint of preempt latency:
On Fri, 12 Dec 2008 21:24:11 +0100, Andi Kleen <andi@firstfloor.org> wrote:
> > In the current interface, each data item is copied twice: one is to
> > the allocated memory from user space (via copy_from_user), and another
>
> For such large copies it is better to use multiple smaller (e.g. 4K)
> copy user, that gives better real time preempt latencies. Each cfu has a
> cond_resched(), but only one, not multiple times in the inner loop.
He also advised me that:
On Sun, 14 Dec 2008 16:13:27 +0100, Andi Kleen <andi@firstfloor.org> wrote:
> Better would be if you could go to PAGE_SIZE. order 0 allocations
> are typically the fastest / least likely to stall.
>
> Also in this case it's a good idea to use __get_free_pages()
> directly, kmalloc tends to be become less efficient at larger
> sizes.
For the function in question, the size of buffer memory can be reduced
since the buffer is repeatedly used for a number of small objects. On
the other hand, it may incur large preempt latencies for larger buffer
because a copy_from_user (and a copy_to_user) was applied only once
each cycle.
With that, this revision uses the order 0 allocations with
__get_free_pages() to fix the original problems.
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a Makefile for the nilfs2 file system, and updates the
makefile and Kconfig file in the file system directory.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds userland interface implemented with ioctl.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the cache of on-disk blocks to be moved in garbage
collection. The disk blocks are held with dummy inodes (called
gcinodes), and this file provides lookup function of the dummy inodes,
and their buffer read function.
Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NILFS2 uses another DAT inode during garbage collection to ensure
atomicity and consistency of the DAT in the transient state. This
twin inode is called GCDAT.
This adds functions to initialize the GCDAT and to switch page caches
and B-tree node caches between these two inodes.
Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds recovery function on mount.
Usually the recovery is achieved by just finding the latest super
root. When logs without checkpoints were appended for data sync
operations after the latest super root, the recovery function will
perform roll forwarding and reconstruct new log(s) with a super root.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chris Mason pointed out that there is a missed sync issue in
nilfs_writepages():
On Wed, 17 Dec 2008 21:52:55 -0500, Chris Mason wrote:
> It looks like nilfs_writepage ignores WB_SYNC_NONE, which is used by
> do_sync_mapping_range().
where WB_SYNC_NONE in do_sync_mapping_range() was replaced with
WB_SYNC_ALL by Nick's patch (commit:
ee53a891f4).
This fixes the problem by letting nilfs_writepages() write out the log of
file data within the range if sync_mode is WB_SYNC_ALL.
This involves removal of nilfs_file_aio_write() which was previously
needed to ensure O_SYNC sync writes.
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the segment constructor (also called log writer).
The segment constructor collects dirty buffers for every dirty inode,
makes summaries of the buffers, assigns disk block addresses to the
buffers, and then submits BIOs for the buffers.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the segment buffer which is used to constuct logs.
[akpm@linux-foundation.org: BIO_RW_SYNC got removed]
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds super block operations for the nilfs2 file system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds functions on the_nilfs object, which keeps shared resources and
states among a read/write mount and snapshots mounts going individually.
the_nilfs is allocated per block device; it is created when user first
mount a snapshot or a read/write mount on the device, then it is reused
for successive mounts. It will be freed when all mount instances on the
device are detached.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds pathname operations, most of which comes from the ext2 file
system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds directory handling functions, most of which comes from the ext2
file system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds primitives for regular file handling.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which stores the allocation state of segments.
[konishi.ryusuke@lab.ntt.co.jp: fix wrong counting of checkpoints and dirty segments]
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which holds checkpoint entries in its data
blocks.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a meta data file which stores on-disk inodes in its data blocks.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the disk address translation file (DAT) whose primary function
is to convert virtual disk block numbers to actual disk block numbers.
The virtual block numbers of NILFS are associated with checkpoint
generation numbers, and this file also provides functions to manage the
lifetime information of each virtual block number.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds common functions to allocate or deallocate entries with bitmaps
on a meta data file. This feature is used by the DAT and ifile.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Yoshiji Amagai <amagai.yoshiji@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the meta data file, which serves common buffer functions to the
DAT, sufile, cpfile, ifile, and so forth.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds common routines for buffer/page operations used in B-tree
node caches, meta data files, or segment constructor (log writer).
NILFS uses copy functions for buffers and pages due to the following
reasons:
1) Relocation required for COW
Since NILFS changes address of on-disk blocks, moving buffers
in page cache is needed for the buffers which are not addressed
by a file offset. If buffer size is smaller than page size,
this involves partial copy of pages.
2) Freezing mmapped pages
NILFS calculates checksums for each log to ensure its validity.
If page data changes after the checksum calculation, this validity
check will not work correctly. To avoid this failure for mmaped
pages, NILFS freezes their data by copying.
3) Copy-on-write for DAT pages
NILFS makes clones of DAT page caches in a copy-on-write manner
during GC processes, and this ensures atomicity and consistency
of the DAT in the transient state.
In addition, NILFS uses two obsolete functions, nilfs_mark_buffer_dirty()
and nilfs_clear_page_dirty() respectively.
* nilfs_mark_buffer_dirty() was required to avoid NULL pointer
dereference faults:
Since the page cache of B-tree node pages or data page cache of pseudo
inodes does not have a valid mapping->host, calling mark_buffer_dirty()
for their buffers causes the fault; it calls __mark_inode_dirty(NULL)
through __set_page_dirty().
* nilfs_clear_page_dirty() was needed in the two cases:
1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
page dirty flags when it copies back pages from the cloned cache
(gcdat->{i_mapping,i_btnode_cache}) to its original cache
(dat->{i_mapping,i_btnode_cache}).
2) Some B-tree operations like insertion or deletion may dispose buffers
in dirty state, and this needs to cancel the dirty state of their
pages. clear_page_dirty_for_io() caused faults because it does not
clear the dirty tag on the page cache.
Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds block mappings using direct pointers which are stored in the
i_bmap array of inode.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds declarations and functions of NILFS2 B-tree.
Two variants are integrated in the NILFS2 B-tree. The B-tree for the most
files points to the child nodes or data blocks with virtual block
addresses, whereas the B-tree of the DAT uses actual block addresses.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds structures and operations for the block mapping (bmap for
short). NILFS2 uses direct mappings for short files or B-tree based
mappings for longer files.
Every on-disk data block is held with inodes and managed through this
block mapping. The nilfs_bmap structure and a set of functions here
provide this capability to the NILFS2 inode.
[penberg@cs.helsinki.fi: remove a bunch of bmap wrapper macros]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the following common structures of the NILFS2 file system.
* nilfs_inode_info structure:
gives on-memory inode.
* nilfs_sb_info structure:
keeps per-mount state and a special inode for the ifile.
This structure is attached to the super_block structure.
* the_nilfs structure:
keeps shared state and locks among a read/write mount and snapshot
mounts. This keeps special inodes for the sufile, cpfile, dat, and
another dat inode used during GC (gcdat). This also has a hash table
of dummy inodes to cache disk blocks during GC (gcinodes).
* nilfs_transaction_info structure:
keeps per task state while nilfs is writing logs or doing indivisible
inode or namespace operations. This structure is used to identify
context during log making and store nest level of the lock which
ensures atomicity of file system operations.
Signed-off-by: Koji Sato <sato.koji@lab.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>