mirror of https://gitee.com/openkylin/linux.git
258 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Heiko Carstens | 55adc1d05d |
mm: add private lock to serialize memory hotplug operations
Commit |
|
Ingo Molnar | 174cd4b1e5 |
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Nathan Fontenot | dc18d706a4 |
memory-hotplug: use dev_online for memhp_auto_online
Commit
|
|
zhong jiang | d6d8c8a482 |
mm/memory_hotplug.c: fix overflow in test_pages_in_a_zone()
When mainline introduced commit |
|
Yisheng Xie | 0efadf48bc |
mm/hotplug: enable memory hotplug for non-lru movable pages
We had considered all of the non-lru pages as unmovable before commit
|
|
Andrew Morton | 997126bbc5 |
mm/memory_hotplug.c: unexport __remove_pages()
It has no modular callers. Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Dan Williams | 3fc2192410 |
mm: validate device_hotplug is held for memory hotplug
mem_hotplug_begin() assumes that it can set mem_hotplug.active_writer and run the hotplug process without racing another thread. Validate this assumption with a lockdep assertion. Link: http://lkml.kernel.org/r/148693886229.16345.1770484669403334689.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Ben Hutchings <ben@decadent.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yasuaki Ishimatsu | ddffe98d16 |
mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next
To identify that pages of page table are allocated from bootmem
allocator, magic number sets to page->lru.next.
But page->lru list is initialized in reserve_bootmem_region(). So when
calling free_pagetable(), the function cannot find the magic number of
pages. And free_pagetable() frees the pages by free_reserved_page() not
put_page_bootmem().
But if the pages are allocated from bootmem allocator and used as page
table, the pages have private flag. So before freeing the pages, we
should clear the private flag by put_page_bootmem().
Before applying the commit
|
|
Toshi Kani | a96dfddbcc |
base/memory, hotplug: fix a kernel oops in show_valid_zones()
Reading a sysfs "memoryN/valid_zones" file leads to the following oops
when the first page of a range is not backed by struct page.
show_valid_zones() assumes that 'start_pfn' is always valid for
page_zone().
BUG: unable to handle kernel paging request at ffffea017a000000
IP: show_valid_zones+0x6f/0x160
This issue may happen on x86-64 systems with 64GiB or more memory since
their memory block size is bumped up to 2GiB. [1] An example of such
systems is desribed below. 0x3240000000 is only aligned by 1GiB and
this memory block starts from 0x3200000000, which is not backed by
struct page.
BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable
Since test_pages_in_a_zone() already checks holes, fix this issue by
extending this function to return 'valid_start' and 'valid_end' for a
given range. show_valid_zones() then proceeds with the valid range.
[1] 'Commit
|
|
Toshi Kani | deb88a2a19 |
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone()
Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit |
|
Yasuaki Ishimatsu | 8a1f780e7f |
memory_hotplug: make zone_can_shift() return a boolean value
online_{kernel|movable} is used to change the memory zone to
ZONE_{NORMAL|MOVABLE} and online the memory.
To check that memory zone can be changed, zone_can_shift() is used.
Currently the function returns minus integer value, plus integer
value and 0. When the function returns minus or plus integer value,
it means that the memory zone can be changed to ZONE_{NORNAL|MOVABLE}.
But when the function returns 0, there are two meanings.
One of the meanings is that the memory zone does not need to be changed.
For example, when memory is in ZONE_NORMAL and onlined by online_kernel
the memory zone does not need to be changed.
Another meaning is that the memory zone cannot be changed. When memory
is in ZONE_NORMAL and onlined by online_movable, the memory zone may
not be changed to ZONE_MOVALBE due to memory online limitation(see
Documentation/memory-hotplug.txt). In this case, memory must not be
onlined.
The patch changes the return type of zone_can_shift() so that memory
online operation fails when memory zone cannot be changed as follows:
Before applying patch:
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
# echo online_movable > memory4097/state
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 8388608
managed 8388608
online_movable operation succeeded. But memory is onlined as
ZONE_NORMAL, not ZONE_MOVABLE.
After applying patch:
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
# echo online_movable > memory4097/state
bash: echo: write error: Invalid argument
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
online_movable operation failed because of failure of changing
the memory zone from ZONE_NORMAL to ZONE_MOVABLE
Fixes:
|
|
Reza Arbab | 39fa104d5b |
mm: remove x86-only restriction of movable_node
In commit
|
|
Linus Torvalds | 9db4f36e82 |
mm: remove unused variable in memory hotplug
When I removed the per-zone bitlock hashed waitqueues in commit
|
|
Linus Torvalds | 9dcb8b685f |
mm: remove per-zone hashtable of bitlock waitqueues
The per-zone waitqueues exist because of a scalability issue with the page waitqueues on some NUMA machines, but it turns out that they hurt normal loads, and now with the vmalloced stacks they also end up breaking gfs2 that uses a bit_wait on a stack object: wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE) where 'gh' can be a reference to the local variable 'mount_gh' on the stack of fill_super(). The reason the per-zone hash table breaks for this case is that there is no "zone" for virtual allocations, and trying to look up the physical page to get at it will fail (with a BUG_ON()). It turns out that I actually complained to the mm people about the per-zone hash table for another reason just a month ago: the zone lookup also hurts the regular use of "unlock_page()" a lot, because the zone lookup ends up forcing several unnecessary cache misses and generates horrible code. As part of that earlier discussion, we had a much better solution for the NUMA scalability issue - by just making the page lock have a separate contention bit, the waitqueue doesn't even have to be looked at for the normal case. Peter Zijlstra already has a patch for that, but let's see if anybody even notices. In the meantime, let's fix the actual gfs2 breakage by simplifying the bitlock waitqueues and removing the per-zone issue. Reported-by: Andreas Gruenbacher <agruenba@redhat.com> Tested-by: Bob Peterson <rpeterso@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Gerald Schaefer | 082d5b6b60 |
mm/hugetlb: check for reserved hugepages during memory offline
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.
Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs. h->resv_huge_pages. Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.
Fixes:
|
|
Li Zhong | 231e97e2b8 |
mem-hotplug: use nodes that contain memory as mask in new_node_page()
|
|
Li Zhong | 9bb627be47 |
mem-hotplug: don't clear the only node in new_node_page()
Commit |
|
Reza Arbab | 5830169f47 |
mm/memory_hotplug.c: initialize per_cpu_nodestats for hotadded pgdats
The following oops occurs after a pgdat is hotadded: Unable to handle kernel paging request for data at address 0x00c30001 Faulting instruction address: 0xc00000000022f8f4 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries Modules linked in: ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter nls_utf8 isofs sg virtio_balloon uio_pdrv_genirq uio ip_tables xfs libcrc32c sr_mod cdrom sd_mod virtio_net ibmvscsi scsi_transport_srp virtio_pci virtio_ring virtio dm_mirror dm_region_hash dm_log dm_mod CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 4.8.0-rc1-device #110 task: c000000000ef3080 task.stack: c000000000f6c000 NIP: c00000000022f8f4 LR: c00000000022f948 CTR: 0000000000000000 REGS: c000000000f6fa50 TRAP: 0300 Tainted: G W (4.8.0-rc1-device) MSR: 800000010280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 84002028 XER: 20000000 CFAR: d000000001d2013c DAR: 0000000000c30001 DSISR: 40000000 SOFTE: 0 NIP refresh_cpu_vm_stats+0x1a4/0x2f0 LR refresh_cpu_vm_stats+0x1f8/0x2f0 Call Trace: refresh_cpu_vm_stats+0x1f8/0x2f0 (unreliable) Add per_cpu_nodestats initialization to the hotplug codepath. Link: http://lkml.kernel.org/r/1470931473-7090-1-git-send-email-arbab@linux.vnet.ibm.com Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Xishi Qiu | 394e31d2ce |
mem-hotplug: alloc new page from a nearest neighbor node when mem-offline
If we offline a node, alloc the new page from a nearest neighbor node instead of the current node or other remote nodes, because re-migrate is a waste of time and the distance of the remote nodes is often very large. Also use GFP_HIGHUSER_MOVABLE to alloc new page if the zone is movable zone or highmem zone. Link: http://lkml.kernel.org/r/5795E18B.5060302@huawei.com Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 38087d9b03 |
mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should stay awake based on the classzone_idx and the requested order. It is unnecessarily complex and passes in an invalid classzone_idx to balance_pgdat(). What matters most of all is whether a larger order has been requsted and whether kswapd successfully reclaimed at the previous order. This patch irons out the logic to check just that and the end result is less headache inducing. Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | 599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Reza Arbab | df429ac039 |
memory-hotplug: more general validation of zone during online
When memory is onlined, we are only able to rezone from ZONE_MOVABLE to ZONE_KERNEL, or from (ZONE_MOVABLE - 1) to ZONE_MOVABLE. To be more flexible, use the following criteria instead; to online memory from zone X into zone Y, * Any zones between X and Y must be unused. * If X is lower than Y, the onlined memory must lie at the end of X. * If X is higher than Y, the onlined memory must lie at the start of X. Add zone_can_shift() to make this determination. Link: http://lkml.kernel.org/r/1462816419-4479-3-git-send-email-arbab@linux.vnet.ibm.com Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com> Reviewd-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Chen Yucong <slaoub@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Reza Arbab | e51e6c8f80 |
memory-hotplug: add move_pfn_range()
Add move_pfn_range(), a wrapper to call move_pfn_range_left() or move_pfn_range_right(). No functional change. This will be utilized by a later patch. Link: http://lkml.kernel.org/r/1462816419-4479-2-git-send-email-arbab@linux.vnet.ibm.com Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Chen Yucong <slaoub@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Linus Torvalds | 7ded384a12 |
mm: fix section mismatch warning
The register_page_bootmem_info_node() function needs to be marked __init
in order to avoid a new warning introduced by commit
|
|
Yang Shi | f65e91df25 |
mm: use early_pfn_to_nid in register_page_bootmem_info_node
register_page_bootmem_info_node() is invoked in mem_init(), so it will be called before page_alloc_init_late() if DEFERRED_STRUCT_PAGE_INIT is enabled. But, pfn_to_nid() depends on memmap which won't be fully setup until page_alloc_init_late() is done, so replace pfn_to_nid() by early_pfn_to_nid(). Link: http://lkml.kernel.org/r/1464210007-30930-1-git-send-email-yang.shi@linaro.org Signed-off-by: Yang Shi <yang.shi@linaro.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Kuznetsov | 86dd995d63 |
memory_hotplug: introduce memhp_default_state= command line parameter
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE specifies the default value for the memory hotplug onlining policy. Add a command line parameter to make it possible to override the default. It may come handy for debug and testing purposes. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Lennart Poettering <lennart@poettering.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Kuznetsov | 8604d9e534 |
memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
This patchset continues the work I started with commit
|
|
Yaowei Bai | c98940f6fa |
mm/memory_hotplug: is_mem_section_removable() can return bool
Make is_mem_section_removable() return bool to improve readability due to this particular function only using either one or zero as its return value. Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joe Perches | 756a025f00 |
mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is 'user-visible'. Miscellanea: - Add a missing newline - Realign arguments Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Chen Yucong | e33e33b4d1 |
mm, memory hotplug: print debug message in the proper way for online_pages
online_pages() simply returns an error value if memory_notify(MEM_GOING_ONLINE, &arg) return a value that is not what we want for successfully onlining target pages. This patch arms to print more failure information like offline_pages() in online_pages. This patch also converts printk(KERN_<LEVEL>) to pr_<level>(), and moves __offline_pages() to not print failure information with KERN_INFO according to David Rientjes's suggestion[1]. [1] https://lkml.org/lkml/2016/2/24/1094 Signed-off-by: Chen Yucong <slaoub@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | fe896d1878 |
mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | e888ca3545 |
mm, memory hotplug: small cleanup in online_pages()
We can reuse the nid we've determined instead of repeated pfn_to_nid() usages. Also zone_to_nid() should be a bit cheaper in general than pfn_to_nid(). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vlastimil Babka | 698b1b3064 |
mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Joonsoo Kim | 7cf91a98e6 |
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Kuznetsov | 31bc3858ea |
memory-hotplug: add automatic onlining policy for the newly added memory
Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Toshi Kani | 782b86641e |
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
Set IORESOURCE_SYSTEM_RAM in struct resource.flags of "System RAM" entries. Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: David Vrabel <david.vrabel@citrix.com> # xen Cc: Andrew Banman <abanman@sgi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-arch@vger.kernel.org Cc: linux-mm <linux-mm@kvack.org> Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/1453841853-11383-9-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dan Williams | 4b94ffdc41 |
x86, mm: introduce vmem_altmap to augment vmemmap_populate()
In support of providing struct page for large persistent memory capacities, use struct vmem_altmap to change the default policy for allocating memory for the memmap array. The default vmemmap_populate() allocates page table storage area from the page allocator. Given persistent memory capacities relative to DRAM it may not be feasible to store the memmap in 'System Memory'. Instead vmem_altmap represents pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf() requests. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: kbuild test robot <lkp@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Vitaly Kuznetsov | 6f754ba4cf |
memory-hotplug: don't BUG() in register_memory_resource()
Out of memory condition is not a bug and while we can't add new memory in such case crashing the system seems wrong. Propagating the return value from register_memory_resource() requires interface change. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Sheng Yong <shengyong1@huawei.com> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Vrabel <david.vrabel@citrix.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Andrew Banman | 5f0f2887f4 |
mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()
test_pages_in_a_zone() does not account for the possibility of missing sections in the given pfn range. pfn_valid_within always returns 1 when CONFIG_HOLES_IN_ZONE is not set, allowing invalid pfns from missing sections to pass the test, leading to a kernel oops. Wrap an additional pfn loop with PAGES_PER_SECTION granularity to check for missing sections before proceeding into the zone-check code. This also prevents a crash from offlining memory devices with missing sections. Despite this, it may be a good idea to keep the related patch '[PATCH 3/3] drivers: memory: prohibit offlining of memory blocks with missing sections' because missing sections in a memory block may lead to other problems not covered by the scope of this fix. Signed-off-by: Andrew Banman <abanman@sgi.com> Acked-by: Alex Thorlton <athorlton@sgi.com> Cc: Russ Anderson <rja@sgi.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Greg KH <greg@kroah.com> Cc: Seth Jennings <sjennings@variantweb.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Yaowei Bai | b171e40930 |
mm/page_alloc: remove unused parameter in init_currently_empty_zone()
Commit
|
|
David Vrabel | 62cedb9f13 |
mm: memory hotplug with an existing resource
Add add_memory_resource() to add memory using an existing "System RAM" resource. This is useful if the memory region is being located by finding a free resource slot with allocate_resource(). Xen guests will make use of this in their balloon driver to hotplug arbitrary amounts of memory in response to toolstack requests. Signed-off-by: David Vrabel <david.vrabel@citrix.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Reviewed-by: Tang Chen <tangchen@cn.fujitsu.com> |
|
Linus Torvalds | 12f03ee606 |
libnvdimm for 4.3:
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic mechanism for adding device-driver-discovered memory regions to the kernel's direct map. This facility is used by the pmem driver to enable pfn_to_page() operations on the page frames returned by DAX ('direct_access' in 'struct block_device_operations'). For now, the 'memmap' allocation for these "device" pages comes from "System RAM". Support for allocating the memmap from device memory will arrive in a later kernel. 2/ Introduce memremap() to replace usages of ioremap_cache() and ioremap_wt(). memremap() drops the __iomem annotation for these mappings to memory that do not have i/o side effects. The replacement of ioremap_cache() with memremap() is limited to the pmem driver to ease merging the api change in v4.3. Completion of the conversion is targeted for v4.4. 3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem driver, update the VFS DAX implementation and PMEM api to provide persistence guarantees for kernel operations on a DAX mapping. 4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as cacheable to improve performance. 5/ Miscellaneous updates and fixes to libnvdimm including support for issuing "address range scrub" commands, clarifying the optimal 'sector size' of pmem devices, a clarification of the usage of the ACPI '_STA' (status) property for DIMM devices, and other minor fixes. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5 JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR 1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1 o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn slsw6DkrWT60CRE42nbK =o57/ -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: "This update has successfully completed a 0day-kbuild run and has appeared in a linux-next release. The changes outside of the typical drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and the introduction of ZONE_DEVICE + devm_memremap_pages(). Summary: - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic mechanism for adding device-driver-discovered memory regions to the kernel's direct map. This facility is used by the pmem driver to enable pfn_to_page() operations on the page frames returned by DAX ('direct_access' in 'struct block_device_operations'). For now, the 'memmap' allocation for these "device" pages comes from "System RAM". Support for allocating the memmap from device memory will arrive in a later kernel. - Introduce memremap() to replace usages of ioremap_cache() and ioremap_wt(). memremap() drops the __iomem annotation for these mappings to memory that do not have i/o side effects. The replacement of ioremap_cache() with memremap() is limited to the pmem driver to ease merging the api change in v4.3. Completion of the conversion is targeted for v4.4. - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem driver, update the VFS DAX implementation and PMEM api to provide persistence guarantees for kernel operations on a DAX mapping. - Convert the ACPI NFIT 'BLK' driver to map the block apertures as cacheable to improve performance. - Miscellaneous updates and fixes to libnvdimm including support for issuing "address range scrub" commands, clarifying the optimal 'sector size' of pmem devices, a clarification of the usage of the ACPI '_STA' (status) property for DIMM devices, and other minor fixes" * tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits) libnvdimm, pmem: direct map legacy pmem by default libnvdimm, pmem: 'struct page' for pmem libnvdimm, pfn: 'struct page' provider infrastructure x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB add devm_memremap_pages mm: ZONE_DEVICE for "device memory" mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h dax: drop size parameter to ->direct_access() nd_blk: change aperture mapping from WC to WB nvdimm: change to use generic kvfree() pmem, dax: have direct_access use __pmem annotation dax: update I/O path to do proper PMEM flushing pmem: add copy_from_iter_pmem() and clear_pmem() pmem, x86: clean up conditional pmem includes pmem: remove layer when calling arch_has_wmb_pmem() pmem, x86: move x86 PMEM API to new pmem.h header libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option pmem: switch to devm_ allocations devres: add devm_memremap libnvdimm, btt: write and validate parent_uuid ... |
|
Tang Chen | 7f36e3e56d |
memory-hotplug: add hot-added memory ranges to memblock before allocate node_data for a node.
Commit
|
|
Dan Williams | 033fbae988 |
mm: ZONE_DEVICE for "device memory"
While pmem is usable as a block device or via DAX mappings to userspace there are several usage scenarios that can not target pmem due to its lack of struct page coverage. In preparation for "hot plugging" pmem into the vmemmap add ZONE_DEVICE as a new zone to tag these pages separately from the ones that are subject to standard page allocations. Importantly "device memory" can be removed at will by userspace unbinding the driver of the device. Having a separate zone prevents allocation and otherwise marks these pages that are distinct from typical uniform memory. Device memory has different lifetime and performance characteristics than RAM. However, since we have run out of ZONES_SHIFT bits this functionality currently depends on sacrificing ZONE_DMA. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Jerome Glisse <j.glisse@gmail.com> [hch: various simplifications in the arch interface] Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
|
Xishi Qiu | f9126ab924 |
memory-hotplug: fix wrong edge when hot add a new node
When we add a new node, the edge of memory may be wrong. e.g. system has 4 nodes, and node3 is movable, node3 mem:[24G-32G], 1. hotremove the node3, 2. then hotadd node3 with a part of memory, mem:[26G-30G], 3. call hotadd_new_pgdat() free_area_init_node() get_pfn_range_for_nid() 4. it will return wrong start_pfn and end_pfn, because we have not update the memblock. This patch also fixes a BUG_ON during hot-addition, please see http://marc.info/?l=linux-kernel&m=142961156129456&w=2 Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mel Gorman | e298ff75f1 |
mm: initialize hotplugged pages as reserved
Commit
|
|
Zhu Guihua | c435a39057 |
mm/memory hotplug: print the last vmemmap region at the end of hot add memory
When hot add two nodes continuously, we found the vmemmap region info is a bit messed. The last region of node 2 is printed when node 3 hot added, like the following: Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff] On node 2 totalpages: 0 Built 2 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x40000000000-0x407ffffffff] [mem 0x40000000000-0x407ffffffff] page 1G [ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2 [ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2 ... [ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2 [ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2 Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff] On node 3 totalpages: 0 Built 3 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] [mem 0x60000000000-0x607ffffffff] page 1G [ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ??? [ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3 [ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3 [ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3 ... The cause is the last region was missed at the and of hot add memory, and p_start, p_end, node_start were not reset, so when hot add memory to a new node, it will consider they are not contiguous blocks and print the previous one. So we print the last vmemmap region at the end of hot add memory to avoid the confusion. Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Gu Zheng | 85bd839983 |
mm/memory_hotplug.c: set zone->wait_table to null after freeing it
Izumi found the following oops when hot re-adding a node: BUG: unable to handle kernel paging request at ffffc90008963690 IP: __wake_up_bit+0x20/0x70 Oops: 0000 [#1] SMP CPU: 68 PID: 1237 Comm: rs:main Q:Reg Not tainted 4.1.0-rc5 #80 Hardware name: FUJITSU PRIMEQUEST2800E/SB, BIOS PRIMEQUEST 2000 Series BIOS Version 1.87 04/28/2015 task: ffff880838df8000 ti: ffff880017b94000 task.ti: ffff880017b94000 RIP: 0010:[<ffffffff810dff80>] [<ffffffff810dff80>] __wake_up_bit+0x20/0x70 RSP: 0018:ffff880017b97be8 EFLAGS: 00010246 RAX: ffffc90008963690 RBX: 00000000003c0000 RCX: 000000000000a4c9 RDX: 0000000000000000 RSI: ffffea101bffd500 RDI: ffffc90008963648 RBP: ffff880017b97c08 R08: 0000000002000020 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8a0797c73800 R13: ffffea101bffd500 R14: 0000000000000001 R15: 00000000003c0000 FS: 00007fcc7ffff700(0000) GS:ffff880874800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc90008963690 CR3: 0000000836761000 CR4: 00000000001407e0 Call Trace: unlock_page+0x6d/0x70 generic_write_end+0x53/0xb0 xfs_vm_write_end+0x29/0x80 [xfs] generic_perform_write+0x10a/0x1e0 xfs_file_buffered_aio_write+0x14d/0x3e0 [xfs] xfs_file_write_iter+0x79/0x120 [xfs] __vfs_write+0xd4/0x110 vfs_write+0xac/0x1c0 SyS_write+0x58/0xd0 system_call_fastpath+0x12/0x76 Code: 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 45 f8 31 c0 48 8d 47 48 <48> 39 47 48 48 c7 45 e8 00 00 00 00 48 c7 45 f0 00 00 00 00 48 RIP [<ffffffff810dff80>] __wake_up_bit+0x20/0x70 RSP <ffff880017b97be8> CR2: ffffc90008963690 Reproduce method (re-add a node):: Hot-add nodeA --> remove nodeA --> hot-add nodeA (panic) This seems an use-after-free problem, and the root cause is zone->wait_table was not set to *NULL* after free it in try_offline_node. When hot re-add a node, we will reuse the pgdat of it, so does the zone struct, and when add pages to the target zone, it will init the zone first (including the wait_table) if the zone is not initialized. The judgement of zone initialized is based on zone->wait_table: static inline bool zone_is_initialized(struct zone *zone) { return !!zone->wait_table; } so if we do not set the zone->wait_table to *NULL* after free it, the memory hotplug routine will skip the init of new zone when hot re-add the node, and the wait_table still points to the freed memory, then we will access the invalid address when trying to wake up the waiting people after the i/o operation with the page is done, such as mentioned above. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Reported-by: Taku Izumi <izumi.taku@jp.fujitsu.com> Reviewed by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Naoya Horiguchi | 7e1f049efb |
mm: hugetlb: cleanup using paeg_huge_active()
Now we have an easy access to hugepages' activeness, so existing helpers to get the information can be cleaned up. [akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
David Rientjes | 30467e0b3b |
mm, hotplug: fix concurrent memory hot-add deadlock
There's a deadlock when concurrently hot-adding memory through the probe interface and switching a memory block from offline to online. When hot-adding memory via the probe interface, add_memory() first takes mem_hotplug_begin() and then device_lock() is later taken when registering the newly initialized memory block. This creates a lock dependency of (1) mem_hotplug.lock (2) dev->mutex. When switching a memory block from offline to online, dev->mutex is first grabbed in device_online() when the write(2) transitions an existing memory block from offline to online, and then online_pages() will take mem_hotplug_begin(). This creates a lock inversion between mem_hotplug.lock and dev->mutex. Vitaly reports that this deadlock can happen when kworker handling a probe event races with systemd-udevd switching a memory block's state. This patch requires the state transition to take mem_hotplug_begin() before dev->mutex. Hot-adding memory via the probe interface creates a memory block while holding mem_hotplug_begin(), there is no way to take dev->mutex first in this case. online_pages() and offline_pages() are only called when transitioning memory block state. We now require that mem_hotplug_begin() is taken before calling them -- this requires exporting the mem_hotplug_begin() and mem_hotplug_done() to generic code. In all hot-add and hot-remove cases, mem_hotplug_begin() is done prior to device_online(). This is all that is needed to avoid the deadlock. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |