LPCR_PECE1 bit controls whether decrementer interrupts are allowed to
cause exit from power-saving mode. While waking up from winkle, restoring
LPCR with LPCR_PECE1 set (i.e Decrementer interrupts allowed) can cause
issue in the following scenario:
- All the threads in a core are offlined. The core enters deep winkle.
- Spurious interrupt wakes up a thread in the core. Here LPCR is restored
with LPCR_PECE1 bit set.
- Since it was a spurious interrupt on a offline thread, the thread clears
the interrupt and goes back to winkle.
- Here before the thread executes winkle and puts the core into deep winkle,
if a decrementer interrupt occurs on any of the sibling threads in the core
that thread wakes up.
- Since in offline loop we are flushing interrupt only in case of external
interrupt, the decrementer interrupt does not get flushed. So at this stage
the thread is stuck in this is loop of waking up at 0x100 due to decrementer
interrupt, not flushing the interrupt as only external interrupts get flushed,
entering winkle, waking up at 0x100 again.
Fix this by programming PORE to restore LPCR with LPCR_PECE1 bit
cleared when waking up from winkle.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The secondary threads should enter deep idle states so as to gain maximum
powersavings when the entire core is offline. To do so the offline path
must be made aware of the available deepest idle state. Hence probe the
device tree for the possible idle states in powernv core code and
expose the deepest idle state through flags.
Since the device tree is probed by the cpuidle driver as well, move
the parameters required to discover the idle states into an appropriate
common place to both the driver and the powernv core code.
Another point is that fastsleep idle state may require workarounds in
the kernel to function properly. This workaround is introduced in the
subsequent patches. However neither the cpuidle driver or the hotplug
path need be bothered about this workaround.
They will be taken care of by the core powernv code.
Originally-by: Srivatsa S. Bhat <srivatsa@mit.edu>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch implements the OPAL rtc driver that binds with the rtc
driver subsystem. The driver uses the platform device infrastructure
to probe the rtc device and register it to rtc class framework. The
'wakeup' is supported depending upon the property 'has-tpo' present
in the OF node. It provides a way to load the generic rtc driver in
in the absence of an OPAL driver.
The patch also moves the existing OPAL rtc get/set time interfaces to the
new driver and exposes the necessary OPAL calls using EXPORT_SYMBOL_GPL.
Test results:
-------------
Host:
[root@tul169p1 ~]# ls -l /sys/class/rtc/
total 0
lrwxrwxrwx 1 root root 0 Oct 14 03:07 rtc0 -> ../../devices/opal-rtc/rtc/rtc0
[root@tul169p1 ~]# cat /sys/devices/opal-rtc/rtc/rtc0/time
08:10:07
[root@tul169p1 ~]# echo `date '+%s' -d '+ 2 minutes'` > /sys/class/rtc/rtc0/wakealarm
[root@tul169p1 ~]# cat /sys/class/rtc/rtc0/wakealarm
1413274345
[root@tul169p1 ~]#
FSP:
$ smgr mfgState
standby
$ rtim timeofday
System time is valid: 2014/10/14 08:12:04.225115
$ smgr mfgState
ipling
$
CC: devicetree@vger.kernel.org
CC: tglx@linutronix.de
CC: rtc-linux@googlegroups.com
CC: a.zummo@towertech.it
Signed-off-by: Neelesh Gupta <neelegup@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The generic Linux framework to power off the machine is a function pointer
called pm_power_off. The trick about this pointer is that device drivers can
potentially implement it rather than board files.
Today on powerpc we set pm_power_off to invoke our generic full machine power
off logic which then calls ppc_md.power_off to invoke machine specific power
off.
However, when we want to add a power off GPIO via the "gpio-poweroff" driver,
this card house falls apart. That driver only registers itself if pm_power_off
is NULL to ensure it doesn't override board specific logic. However, since we
always set pm_power_off to the generic power off logic (which will just not
power off the machine if no ppc_md.power_off call is implemented), we can't
implement power off via the generic GPIO power off driver.
To fix this up, let's get rid of the ppc_md.power_off logic and just always use
pm_power_off as was intended. Then individual drivers such as the GPIO power off
driver can implement power off logic via that function pointer.
With this patch set applied and a few patches on top of QEMU that implement a
power off GPIO on the virt e500 machine, I can successfully turn off my virtual
machine after halt.
Signed-off-by: Alexander Graf <agraf@suse.de>
[mpe: Squash into one patch and update changelog based on cover letter]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The dma_get_required_mask() function is used by some drivers to
query the platform about what DMA mask is needed to cover all of
memory. This is a bit of a strange semantic when we have to choose
between IOMMU translation or bypass, but essentially what it means
is "what DMA mask will give best performances".
Currently, our IOMMU backend always returns a 32-bit mask here, we
don't do anything special to it when we have bypass available. This
causes some drivers to choose a 32-bit mask, thus losing the ability
to use the bypass window, thinking this is more efficient. The problem
was reported from the driver of following device:
0004:03:00.0 0107: 1000:0087 (rev 05)
0004:03:00.0 Serial Attached SCSI controller: LSI Logic / Symbios \
Logic SAS2308 PCI-Express Fusion-MPT SAS-2 (rev 05)
This patch adds an override of that function in order to, instead,
return a 64-bit mask whenever a bypass window is available in order
for drivers to prefer this configuration.
Reported-by: Murali N. Iyer <mniyer@us.ibm.com>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We've already dropped the default pseries timeout to 10s, do
the same for powernv.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Build throws following errors when CONFIG_SMP=n
arch/powerpc/platforms/powernv/setup.c: In function ‘pnv_kexec_wait_secondaries_down’:
arch/powerpc/platforms/powernv/setup.c:179:4: error: implicit declaration of function ‘get_hard_smp_processor_id’
rc = opal_query_cpu_status(get_hard_smp_processor_id(i),
The usage of get_hard_smp_processor_id() needs the declaration from
<asm/smp.h>. The file setup.c includes <linux/sched.h>, which in-turn
includes <linux/smp.h>. However, <linux/smp.h> includes <asm/smp.h>
only on SMP configs and hence UP builds fail.
Fix this by directly including <asm/smp.h> in setup.c unconditionally.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
powerpc sets a low SECTION_SIZE_BITS to accomodate small pseries
boxes. We default to 16MB memory blocks, and boxes with a lot
of memory end up with enormous numbers of sysfs memory nodes.
Set a more reasonable default for powernv of 256MB.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Implement a method named pnv_get_proc_freq(unsigned int cpu) which
returns the current clock rate on the 'cpu' in Hz to be reported in
/proc/cpuinfo. This method uses the value reported by cpufreq when
such a value is sane. Otherwise it falls back to old way of reporting
the clockrate, i.e. ppc_proc_freq.
Set the ppc_md.get_proc_freq() hook to pnv_get_proc_freq() on the
PowerNV platform.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Firmware update on PowerNV platform takes several minutes. During
this time one CPU is stuck in FW and the kernel complains about "soft
lockups".
This patch returns all secondary CPUs to firmware before starting
firmware update process.
[ Reworked a bit and cleaned up -- BenH ]
Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have a subtle race when sending CPUs back to OPAL on kexec.
We mark them as "in real mode" right before we send them down. Once
we've booted the new kernel, it might try to call opal_reinit_cpus()
to change endianness, and that requires all CPUs to be spinning inside
OPAL.
However there is no synchronization here and we've observed cases
where the returning CPUs hadn't established their new state inside
OPAL before opal_reinit_cpus() is called, causing it to fail.
The proper fix is to actually wait for them to go down all the way
from the kexec'ing kernel.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull main powerpc updates from Ben Herrenschmidt:
"This time around, the powerpc merges are going to be a little bit more
complicated than usual.
This is the main pull request with most of the work for this merge
window. I will describe it a bit more further down.
There is some additional cpuidle driver work, however I haven't
included it in this tree as it depends on some work in tip/timer-core
which Thomas accidentally forgot to put in a topic branch. Since I
didn't want to carry all of that tip timer stuff in powerpc -next, I
setup a separate branch on top of Thomas tree with just that cpuidle
driver in it, and Stephen has been carrying that in next separately
for a while now. I'll send a separate pull request for it.
Additionally, two new pieces in this tree add users for a sysfs API
that Tejun and Greg have been deprecating in drivers-core-next.
Thankfully Greg reverted the patch that removes the old API so this
merge can happen cleanly, but once merged, I will send a patch
adjusting our new code to the new API so that Greg can send you the
removal patch.
Now as for the content of this branch, we have a lot of perf work for
power8 new counters including support for our new "nest" counters
(also called 24x7) under pHyp (not natively yet).
We have new functionality when running under the OPAL firmware
(non-virtualized or KVM host), such as access to the firmware error
logs and service processor dumps, system parameters and sensors, along
with a hwmon driver for the latter.
There's also a bunch of bug fixes accross the board, some LE fixes,
and a nice set of selftests for validating our various types of copy
loops.
On the Freescale side, we see mostly new chip/board revisions, some
clock updates, better support for machine checks and debug exceptions,
etc..."
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (70 commits)
powerpc/book3s: Fix CFAR clobbering issue in machine check handler.
powerpc/compat: 32-bit little endian machine name is ppcle, not ppc
powerpc/le: Big endian arguments for ppc_rtas()
powerpc: Use default set of netfilter modules (CONFIG_NETFILTER_ADVANCED=n)
powerpc/defconfigs: Enable THP in pseries defconfig
powerpc/mm: Make sure a local_irq_disable prevent a parallel THP split
powerpc: Rate-limit users spamming kernel log buffer
powerpc/perf: Fix handling of L3 events with bank == 1
powerpc/perf/hv_{gpci, 24x7}: Add documentation of device attributes
powerpc/perf: Add kconfig option for hypervisor provided counters
powerpc/perf: Add support for the hv 24x7 interface
powerpc/perf: Add support for the hv gpci (get performance counter info) interface
powerpc/perf: Add macros for defining event fields & formats
powerpc/perf: Add a shared interface to get gpci version and capabilities
powerpc/perf: Add 24x7 interface headers
powerpc/perf: Add hv_gpci interface header
powerpc: Add hvcalls for 24x7 and gpci (Get Performance Counter Info)
sysfs: create bin_attributes under the requested group
powerpc/perf: Enable BHRB access for EBB events
powerpc/perf: Add BHRB constraint and IFM MMCRA handling for EBB
...
Detect and recover from machine check when inside opal on a special
scom load instructions. On specific SCOM read via MMIO we may get a machine
check exception with SRR0 pointing inside opal. To recover from MC
in this scenario, get a recovery instruction address and return to it from
MC.
OPAL will export the machine check recoverable ranges through
device tree node mcheck-recoverable-ranges under ibm,opal:
# hexdump /proc/device-tree/ibm,opal/mcheck-recoverable-ranges
0000000 0000 0000 3000 2804 0000 000c 0000 0000
0000010 3000 2814 0000 0000 3000 27f0 0000 000c
0000020 0000 0000 3000 2814 xxxx xxxx xxxx xxxx
0000030 llll llll yyyy yyyy yyyy yyyy
...
...
#
where:
xxxx xxxx xxxx xxxx = Starting instruction address
llll llll = Length of the address range.
yyyy yyyy yyyy yyyy = recovery address
Each recoverable address range entry is (start address, len,
recovery address), 2 cells each for start and recovery address, 1 cell for
len, totalling 5 cells per entry. During kernel boot time, build up the
recovery table with the list of recovery ranges from device-tree node which
will be used during machine check exception to recover from MMIO SCOM UE.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The core idle loop now takes care of it. We need to add the runlatch
function calls to the idle routines which was earlier taken care of by
the arch specific idle routine.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Reviewed-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/n/tip-nr4mtbkkzf2oomaj85m24o7c@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds the support for to create a direct iommu "bypass"
window on IODA2 bridges (such as Power8) allowing to bypass iommu
page translation completely for 64-bit DMA capable devices, thus
significantly improving DMA performances.
Additionally, this adds a hook to the struct iommu_table so that
the IOMMU API / VFIO can disable the bypass when external ownership
is requested, since in that case, the device will be used by an
environment such as userspace or a KVM guest which must not be
allowed to bypass translations.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Following patch ports the cpuidle framework for powernv
platform and also implements a cpuidle back-end powernv
idle driver calling on to power7_nap and snooze idle states.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Its possible that OPAL may be writing to host memory during
kexec (like dump retrieve scenario). In this situation we might
end up corrupting host memory.
This patch makes OPAL sync call to make sure OPAL stops
writing to host memory before kexec'ing.
Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When removing prom.h include by of.h, several OF headers will no longer
be implicitly included. Add explicit includes of of_*.h as needed.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Grant Likely <grant.likely@linaro.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: linuxppc-dev@lists.ozlabs.org
With OPAL v3 we can return secondary CPUs to firmware on kexec. This
allows firmware to do various cleanups making things generally more
reliable, and will enable the "new" kernel to call OPAL to perform
some reconfiguration tasks early on that can only be done while
all the CPUs are in firmware.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This uses the hooks provided by CONFIG_PPC_INDIRECT_PIO to
implement a set of hooks for IO port access to use the LPC
bus via OPAL calls for the first 64K of IO space
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While we're restarting or powering off the system, we needn't
the OPAL notifier any more. So just to disable that.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We add a machine_shutdown hook that frees the OPAL interrupts
(so they get masked at the source and don't fire while kexec'ing)
and which triggers an IODA reset on all the PCIe host bridges
which will have the effect of blocking all DMAs and subsequent
PCIs interrupts.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
arch/powerpc/platforms/powernv/setup.c: included 'asm/xics.h' twice,
remove the duplicate.
Signed-off-by: Danny Kukawka <danny.kukawka@bisect.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds support for PCI-X and PCIe on the p5ioc2 IO hub using
OPAL. This includes allocating & setting up TCE tables and config
space access routines.
This also supports fallbacks via RTAS when OPAL is absent, using
legacy TCE format pre-allocated via the device-tree (BML style)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
OPAL can handle various interrupt for us such as Machine Checks (it
performs all sorts of recovery tasks and passes back control to us with
informations about the error), Hardware Management Interrupts and Softpatch
interrupts.
This wires up the mechanisms and prints out specific informations returned
by HAL when a machine check occurs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Implements OPAL RTC and NVRAM support and wire all that up to
the powernv platform.
We use RTAS for RTC as a fallback if available. Using RTAS for nvram
is not supported yet, pending some rework/cleanup and generalization
of the pSeries & CHRP code. We also use RTAS fallbacks for power off
and reboot
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This calls the respective HAL functions, and spin on hal_poll_event()
to ensure the HAL has a chance to communicate with the FSP to trigger
the reboot or shutdown operation
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds a udbg and an hvc console backend for supporting a console
using the OPAL console interfaces.
On OPAL v1 we have hvc0 mapped to whatever console the system was
configured for (network or hvsi serial port) via the service
processor.
On OPAL v2 we have hvcN mapped to the Nth console provided by OPAL
which generally corresponds to:
hvc0 : network console (raw protocol)
hvc1 : serial port S1 (hvsi)
hvc2 : serial port S2 (hvsi)
Note: At this point, early debug console only works with OPAL v1
and shouldn't be enabled in a normal kernel.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add definition of OPAL interfaces along with the wrappers to call
into OPAL runtime and the early device-tree parsing hook to locate
the OPAL runtime firmware.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds a skeletton for the new Power "Non Virtualized"
platform which will be used by machines supporting running
without an hypervisor, for example in order to run KVM.
These machines will be using a new firmware called OPAL
for which the support will be provided by later patches.
The PowerNV platform is intended to be also usable under
the BML environment used internally for early CPU bringup
which is why the code also supports using RTAS instead of
OPAL in various places.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>