For __get_user() paths, do not allow the kernel to speculate on the value
of a user controlled pointer. In addition to the 'stac' instruction for
Supervisor Mode Access Protection (SMAP), a barrier_nospec() causes the
access_ok() result to resolve in the pipeline before the CPU might take any
speculative action on the pointer value. Given the cost of 'stac' the
speculation barrier is placed after 'stac' to hopefully overlap the cost of
disabling SMAP with the cost of flushing the instruction pipeline.
Since __get_user is a major kernel interface that deals with user
controlled pointers, the __uaccess_begin_nospec() mechanism will prevent
speculative execution past an access_ok() permission check. While
speculative execution past access_ok() is not enough to lead to a kernel
memory leak, it is a necessary precondition.
To be clear, __uaccess_begin_nospec() is addressing a class of potential
problems near __get_user() usages.
Note, that while the barrier_nospec() in __uaccess_begin_nospec() is used
to protect __get_user(), pointer masking similar to array_index_nospec()
will be used for get_user() since it incorporates a bounds check near the
usage.
uaccess_try_nospec provides the same mechanism for get_user_try.
No functional changes.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727415922.33451.5796614273104346583.stgit@dwillia2-desk3.amr.corp.intel.com
Rename the open coded form of this instruction sequence from
rdtsc_ordered() into a generic barrier primitive, barrier_nospec().
One of the mitigations for Spectre variant1 vulnerabilities is to fence
speculative execution after successfully validating a bounds check. I.e.
force the result of a bounds check to resolve in the instruction pipeline
to ensure speculative execution honors that result before potentially
operating on out-of-bounds data.
No functional changes.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727415361.33451.9049453007262764675.stgit@dwillia2-desk3.amr.corp.intel.com
Pull x86 RAS updates from Ingo Molnar:
- various AMD SMCA error parsing/reporting improvements (Yazen Ghannam)
- extend Intel CMCI error reporting to more cases (Xie XiuQi)
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE: Make correctable error detection look at the Deferred bit
x86/MCE: Report only DRAM ECC as memory errors on AMD systems
x86/MCE/AMD: Define a function to get SMCA bank type
x86/mce/AMD: Don't set DEF_INT_TYPE in MSR_CU_DEF_ERR on SMCA systems
x86/MCE: Extend table to report action optional errors through CMCI too
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Clean up the x86 instruction decoder (Masami Hiramatsu)
- Add new uprobes optimization for PUSH instructions on x86 (Yonghong
Song)
- Add MSR_IA32_THERM_STATUS to the MSR events (Stephane Eranian)
- Fix misc bugs, update documentation, plus various cleanups (Jiri
Olsa)
There's a large number of tooling side improvements:
- Intel-PT/BTS improvements (Adrian Hunter)
- Numerous 'perf trace' improvements (Arnaldo Carvalho de Melo)
- Introduce an errno code to string facility (Hendrik Brueckner)
- Various build system improvements (Jiri Olsa)
- Add support for CoreSight trace decoding by making the perf tools
use the external openCSD (Mathieu Poirier, Tor Jeremiassen)
- Add ARM Statistical Profiling Extensions (SPE) support (Kim
Phillips)
- libtraceevent updates (Steven Rostedt)
- Intel vendor event JSON updates (Andi Kleen)
- Introduce 'perf report --mmaps' and 'perf report --tasks' to show
info present in 'perf.data' (Jiri Olsa, Arnaldo Carvalho de Melo)
- Add infrastructure to record first and last sample time to the
perf.data file header, so that when processing all samples in a
'perf record' session, such as when doing build-id processing, or
when specifically requesting that that info be recorded, use that
in 'perf report --time', that also got support for percent slices
in addition to absolute ones.
I.e. now it is possible to ask for the samples in the 10%-20% time
slice of a perf.data file (Jin Yao)
- Allow system wide 'perf stat --per-thread', sorting the result (Jin
Yao)
E.g.:
[root@jouet ~]# perf stat --per-thread --metrics IPC
^C
Performance counter stats for 'system wide':
make-22229 23,012,094,032 inst_retired.any # 0.8 IPC
cc1-22419 692,027,497 inst_retired.any # 0.8 IPC
gcc-22418 328,231,855 inst_retired.any # 0.9 IPC
cc1-22509 220,853,647 inst_retired.any # 0.8 IPC
gcc-22486 199,874,810 inst_retired.any # 1.0 IPC
as-22466 177,896,365 inst_retired.any # 0.9 IPC
cc1-22465 150,732,374 inst_retired.any # 0.8 IPC
gcc-22508 112,555,593 inst_retired.any # 0.9 IPC
cc1-22487 108,964,079 inst_retired.any # 0.7 IPC
qemu-system-x86-2697 21,330,550 inst_retired.any # 0.3 IPC
systemd-journal-551 20,642,951 inst_retired.any # 0.4 IPC
docker-containe-17651 9,552,892 inst_retired.any # 0.5 IPC
dockerd-current-9809 7,528,586 inst_retired.any # 0.5 IPC
make-22153 12,504,194,380 inst_retired.any # 0.8 IPC
python2-22429 12,081,290,954 inst_retired.any # 0.8 IPC
<SNIP>
python2-22429 15,026,328,103 cpu_clk_unhalted.thread
cc1-22419 826,660,193 cpu_clk_unhalted.thread
gcc-22418 365,321,295 cpu_clk_unhalted.thread
cc1-22509 279,169,362 cpu_clk_unhalted.thread
gcc-22486 210,156,950 cpu_clk_unhalted.thread
<SNIP>
5.638075538 seconds time elapsed
[root@jouet ~]#
- Improve shell auto-completion of perf events (Jin Yao)
- 'perf probe' improvements (Masami Hiramatsu)
- Improve PMU infrastructure to support amp64's ThunderX2
implementation defined core events (Ganapatrao Kulkarni)
- Various annotation related improvements and fixes (Thomas Richter)
- Clarify usage of 'overwrite' and 'backward' in the evlist/mmap
code, removing the 'overwrite' parameter from several functions as
it was always used it as 'false' (Wang Nan)
- Fix/improve 'perf record' reverse recording support (Wang Nan)
- Improve command line options documentation (Sihyeon Jang)
- Optimize sample parsing for ordering events, where we don't need to
parse all the PERF_SAMPLE_ bits, just the ones leading to the
timestamp needed to reorder events (Jiri Olsa)
- Generalize the annotation code to support other source information
besides objdump/DWARF obtained ones, starting with python scripts,
that will is slated to be merged soon (Jiri Olsa)
- ... and a lot more that I failed to list, see the shortlog and
changelog for details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (262 commits)
perf trace beauty flock: Move to separate object file
perf evlist: Remove fcntl.h from evlist.h
perf trace beauty futex: Beautify FUTEX_BITSET_MATCH_ANY
perf trace: Do not print from time delta for interrupted syscall lines
perf trace: Add --print-sample
perf bpf: Remove misplaced __maybe_unused attribute
MAINTAINERS: Adding entry for CoreSight trace decoding
perf tools: Add mechanic to synthesise CoreSight trace packets
perf tools: Add full support for CoreSight trace decoding
pert tools: Add queue management functionality
perf tools: Add functionality to communicate with the openCSD decoder
perf tools: Add support for decoding CoreSight trace data
perf tools: Add decoder mechanic to support dumping trace data
perf tools: Add processing of coresight metadata
perf tools: Add initial entry point for decoder CoreSight traces
perf tools: Integrating the CoreSight decoding library
perf vendor events intel: Update IvyTown files to V20
perf vendor events intel: Update IvyBridge files to V20
perf vendor events intel: Update BroadwellDE events to V7
perf vendor events intel: Update SkylakeX events to V1.06
...
Now that the DT core code handles bootmem arches, we can remove the x86
specific early_init_dt_alloc_memory_arch function.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
The TS_COMPAT bit is very hot and is accessed from code paths that mostly
also touch thread_info::flags. Move it into struct thread_info to improve
cache locality.
The only reason it was in thread_struct is that there was a brief period
during which arch-specific fields were not allowed in struct thread_info.
Linus suggested further changing:
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
to:
if (unlikely(ti->status & (TS_COMPAT|TS_I386_REGS_POKED)))
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
on the theory that frequently dirtying the cacheline even in pure 64-bit
code that never needs to modify status hurts performance. That could be a
reasonable followup patch, but I suspect it matters less on top of this
patch.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/03148bcc1b217100e6e8ecf6a5468c45cf4304b6.1517164461.git.luto@kernel.org
With the fast path removed there is no point in splitting the push of the
normal and the extra register set. Just push the extra regs right away.
[ tglx: Split out from 'x86/entry/64: Remove the SYSCALL64 fast path' ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
The SYCALLL64 fast path was a nice, if small, optimization back in the good
old days when syscalls were actually reasonably fast. Now there is PTI to
slow everything down, and indirect branches are verboten, making everything
messier. The retpoline code in the fast path is particularly nasty.
Just get rid of the fast path. The slow path is barely slower.
[ tglx: Split out the 'push all extra regs' part ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
Since commit 92a0f81d89 ("x86/cpu_entry_area: Move it out of the
fixmap"), i386's CPU_ENTRY_AREA has been mapped to the memory area just
below FIXADDR_START. But already immediately before FIXADDR_START is the
FIX_BTMAP area, which means that early_ioremap can collide with the entry
area.
It's especially bad on PAE where FIX_BTMAP_BEGIN gets aligned to exactly
match CPU_ENTRY_AREA_BASE, so the first early_ioremap slot clobbers the
IDT and causes interrupts during early boot to reset the system.
The overlap wasn't a problem before the CPU entry area was introduced,
as the fixmap has classically been preceded by the pkmap or vmalloc
areas, neither of which is used until early_ioremap is out of the
picture.
Relocate CPU_ENTRY_AREA to below FIX_BTMAP, not just below the permanent
fixmap area.
Fixes: commit 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
Signed-off-by: William Grant <william.grant@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/7041d181-a019-e8b9-4e4e-48215f841e2c@canonical.com
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJabj6pAAoJEHm+PkMAQRiGs8cIAJQFkCWnbz86e3vG4DuWhyA8
CMGHCQdUOxxFGa/ixhIiuetbC0x+JVHAjV2FwVYbAQfaZB3pfw2iR1ncQxpAP1AI
oLU9vBEqTmwKMPc9CM5rRfnLFWpGcGwUNzgPdxD5yYqGDtcM8K840mF6NdkYe5AN
xU8rv1wlcFPF4A5pvHCH0pvVmK4VxlVFk/2H67TFdxBs4PyJOnSBnf+bcGWgsKO6
hC8XIVtcKCH2GfFxt5d0Vgc5QXJEpX1zn2mtCa1MwYRjN2plgYfD84ha0xE7J0B0
oqV/wnjKXDsmrgVpncr3txd4+zKJFNkdNRE4eLAIupHo2XHTG4HvDJ5dBY2NhGU=
=sOml
-----END PGP SIGNATURE-----
Merge tag 'v4.15' into x86/pti, to be able to merge dependent changes
Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum related changes:
- Code simplifications and cleanups for RSB and retpolines.
- Make the indirect calls in KVM speculation safe.
- Whitelist CPUs which are known not to speculate from Meltdown and
prepare for the new CPUID flag which tells the kernel that a CPU is
not affected.
- A less rigorous variant of the module retpoline check which merily
warns when a non-retpoline protected module is loaded and reflects
that fact in the sysfs file.
- Prepare for Indirect Branch Prediction Barrier support.
- Prepare for exposure of the Speculation Control MSRs to guests, so
guest OSes which depend on those "features" can use them. Includes
a blacklist of the broken microcodes. The actual exposure of the
MSRs through KVM is still being worked on"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify indirect_branch_prediction_barrier()
x86/retpoline: Simplify vmexit_fill_RSB()
x86/cpufeatures: Clean up Spectre v2 related CPUID flags
x86/cpu/bugs: Make retpoline module warning conditional
x86/bugs: Drop one "mitigation" from dmesg
x86/nospec: Fix header guards names
x86/alternative: Print unadorned pointers
x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
x86/msr: Add definitions for new speculation control MSRs
x86/cpufeatures: Add AMD feature bits for Speculation Control
x86/cpufeatures: Add Intel feature bits for Speculation Control
x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
module/retpoline: Warn about missing retpoline in module
KVM: VMX: Make indirect call speculation safe
KVM: x86: Make indirect calls in emulator speculation safe
Pull x86 mm update from Thomas Gleixner:
"A single patch which excludes the GART aperture from vmcore as
accessing that area from a dump kernel can crash the kernel.
Not necessarily the nicest way to fix this, but curing this from
ground up requires a more thorough rewrite of the whole kexec/kdump
magic"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/gart: Exclude GART aperture from vmcore
Pull x86 timer updates from Thomas Gleixner:
"A small set of updates for x86 specific timers:
- Mark TSC invariant on a subset of Centaur CPUs
- Allow TSC calibration without PIT on mobile platforms which lack
legacy devices"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/centaur: Mark TSC invariant
x86/tsc: Introduce early tsc clocksource
x86/time: Unconditionally register legacy timer interrupt
x86/tsc: Allow TSC calibration without PIT
Pull x86 platform updates from Thomas Gleixner:
"The platform support for x86 contains the following updates:
- A set of updates for the UV platform to support new CPUs and to fix
some of the UV4A BAU MRRs
- The initial platform support for the jailhouse hypervisor to allow
native Linux guests (inmates) in non-root cells.
- A fix for the PCI initialization on Intel MID platforms"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/jailhouse: Respect pci=lastbus command line settings
x86/jailhouse: Set X86_FEATURE_TSC_KNOWN_FREQ
x86/platform/intel-mid: Move PCI initialization to arch_init()
x86/platform/uv/BAU: Replace hard-coded values with MMR definitions
x86/platform/UV: Fix UV4A BAU MMRs
x86/platform/UV: Fix GAM MMR references in the UV x2apic code
x86/platform/UV: Fix GAM MMR changes in UV4A
x86/platform/UV: Add references to access fixed UV4A HUB MMRs
x86/platform/UV: Fix UV4A support on new Intel Processors
x86/platform/UV: Update uv_mmrs.h to prepare for UV4A fixes
x86/jailhouse: Add PCI dependency
x86/jailhouse: Hide x2apic code when CONFIG_X86_X2APIC=n
x86/jailhouse: Initialize PCI support
x86/jailhouse: Wire up IOAPIC for legacy UART ports
x86/jailhouse: Halt instead of failing to restart
x86/jailhouse: Silence ACPI warning
x86/jailhouse: Avoid access of unsupported platform resources
x86/jailhouse: Set up timekeeping
x86/jailhouse: Enable PMTIMER
x86/jailhouse: Enable APIC and SMP support
...
Pull x86/cache updates from Thomas Gleixner:
"A set of patches which add support for L2 cache partitioning to the
Intel RDT facility"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Add command line parameter to control L2_CDP
x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG
x86/intel_rdt: Add two new resources for L2 Code and Data Prioritization (CDP)
x86/intel_rdt: Enumerate L2 Code and Data Prioritization (CDP) feature
x86/intel_rdt: Add L2CDP support in documentation
x86/intel_rdt: Update documentation
- Update the ACPICA kernel code to upstream revision 20171215 including:
* Support for ACPI 6.0A changes in the NFIT table (Bob Moore).
* Local 64-bit divide in string conversions (Bob Moore).
* Fix for a regression in acpi_evaluate_object_type() (Bob Moore).
* Fixes for memory leaks during package object resolution (Bob Moore).
* Deployment of safe version of strncpy() (Bob Moore).
* Debug and messaging updates (Bob Moore).
* Support for PDTT, SDEV, TPM2 tables in iASL and tools (Bob Moore).
* Null pointer dereference avoidance in Op and cleanups (Colin Ian King).
* Fix for memory leak from building prefixed pathname (Erik Schmauss).
* Coding style fixes, disassembler and compiler updates (Hanjun Guo,
Erik Schmauss).
* Additional PPTT flags from ACPI 6.2 (Jeremy Linton).
* Fix for an off-by-one error in acpi_get_timer_duration() (Jung-uk Kim).
* Infinite loop detection timeout and utilities cleanups (Lv Zheng).
* Windows 10 version 1607 and 1703 OSI strings (Mario Limonciello).
- Update ACPICA information in MAINTAINERS to reflect the current
status of ACPICA maintenance and rename a local variable in one
function to match the corresponding upstream code (Rafael Wysocki).
- Clean up ACPI-related initialization on x86 (Andy Shevchenko).
- Add support for Intel Merrifield to the ACPI GPIO code (Andy
Shevchenko).
- Clean up ACPI PMIC drivers (Andy Shevchenko, Arvind Yadav).
- Fix the ACPI Generic Event Device (GED) driver to free IRQs on
shutdown and clean up the PCI IRQ Link driver (Sinan Kaya).
- Make the GHES code call into the AER driver on all errors and
clean up the ACPI APEI code (Colin Ian King, Tyler Baicar).
- Make the IA64 ACPI NUMA code parse all SRAT entries (Ganapatrao
Kulkarni).
- Add a lid switch blacklist to the ACPI button driver and make it
print extra debug messages on lid events (Hans de Goede).
- Add quirks for Asus GL502VSK and UX305LA to the ACPI battery
driver and clean it up somewhat (Bjørn Mork, Kai-Heng Feng).
- Add device link for CHT SD card dependency on I2C to the ACPI
LPSS (Intel SoCs) driver and make it avoid creating platform
device objects for devices without MMIO resources (Adrian Hunter,
Hans de Goede).
- Fix the ACPI GPE mask kernel command line parameter handling
(Prarit Bhargava).
- Fix the handling of (incorrectly exposed) backlight interfaces
without LCD (Hans de Goede).
- Fix the usage of debugfs_create_*() in the ACPI EC driver (Geert
Uytterhoeven).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJaY/BrAAoJEILEb/54YlRxR10P/1dVxfhLiGBrwKzA1urr71Vg
LH6ZdlIlihyu9a1PZHjfO72IuZCMSkSnoJUPJPFK6FNA0hIDqsP+hC8gcknCxnAU
i6r2ZzQesOzzjGblpASvdDg0GkYe9r6sHpUQ0xW/hnijamforflGveW1bagbnFuI
gvT6m6+lMJwBd0NrWhQiTJmTuSTwgJBXDA+HhlDnGd6ziVfHPaCxon4L9GQfVhsb
jbOI/kBjnEKoN1dBbEAcSpgzklVUXUj4x2NHUMCyvKOJyKG/F7Ycbghux9t3C+ej
1T0XJAU7K3hkmstWkWwylqVZt3UW47xiJKe6K2Z5p3CaJx0cnI18C+g7x/IcRGiA
+J/Uco+xeMa8yqYV96j+AJexpUDu7fYo6B4nRZ/K+MjWifboeSLKn8PHLKhqYn6k
sV3s0dUf8SJK5pTu+IkAgzDzsw/uJAI8Rylmig9ea12/nIt6EH3Kero31hi3lkoN
Y2rdi9MIqFIj2tX42047Y/q2UEFkMWGO3q8fLkXRvWPwnwStHDDFVj/kd19CWcTy
B1kNxNQQS/Q9u0uoW4rIHW6ipEU2sqyt/tvVQnmJlVP0HuO++uIO7h3mrBDxhSJS
zQF4qtusbMHC85BHrozmGFECN8Cex8DYSUTO/yCoBvMlMxJ7UlSt25TBN+SzmnOV
H1LhVRcFh1488lXzuM+u
=/eCQ
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"The majority of this is an update of the ACPICA kernel code to
upstream revision 20171215 with a cosmetic change and a maintainers
information update on top of it.
The rest is mostly some minor fixes and cleanups in the ACPI drivers
and cleanups to initialization on x86.
Specifics:
- Update the ACPICA kernel code to upstream revision 20171215 including:
* Support for ACPI 6.0A changes in the NFIT table (Bob Moore)
* Local 64-bit divide in string conversions (Bob Moore)
* Fix for a regression in acpi_evaluate_object_type() (Bob Moore)
* Fixes for memory leaks during package object resolution (Bob
Moore)
* Deployment of safe version of strncpy() (Bob Moore)
* Debug and messaging updates (Bob Moore)
* Support for PDTT, SDEV, TPM2 tables in iASL and tools (Bob
Moore)
* Null pointer dereference avoidance in Op and cleanups (Colin Ian
King)
* Fix for memory leak from building prefixed pathname (Erik
Schmauss)
* Coding style fixes, disassembler and compiler updates (Hanjun
Guo, Erik Schmauss)
* Additional PPTT flags from ACPI 6.2 (Jeremy Linton)
* Fix for an off-by-one error in acpi_get_timer_duration()
(Jung-uk Kim)
* Infinite loop detection timeout and utilities cleanups (Lv
Zheng)
* Windows 10 version 1607 and 1703 OSI strings (Mario
Limonciello)
- Update ACPICA information in MAINTAINERS to reflect the current
status of ACPICA maintenance and rename a local variable in one
function to match the corresponding upstream code (Rafael Wysocki)
- Clean up ACPI-related initialization on x86 (Andy Shevchenko)
- Add support for Intel Merrifield to the ACPI GPIO code (Andy
Shevchenko)
- Clean up ACPI PMIC drivers (Andy Shevchenko, Arvind Yadav)
- Fix the ACPI Generic Event Device (GED) driver to free IRQs on
shutdown and clean up the PCI IRQ Link driver (Sinan Kaya)
- Make the GHES code call into the AER driver on all errors and clean
up the ACPI APEI code (Colin Ian King, Tyler Baicar)
- Make the IA64 ACPI NUMA code parse all SRAT entries (Ganapatrao
Kulkarni)
- Add a lid switch blacklist to the ACPI button driver and make it
print extra debug messages on lid events (Hans de Goede)
- Add quirks for Asus GL502VSK and UX305LA to the ACPI battery driver
and clean it up somewhat (Bjørn Mork, Kai-Heng Feng)
- Add device link for CHT SD card dependency on I2C to the ACPI LPSS
(Intel SoCs) driver and make it avoid creating platform device
objects for devices without MMIO resources (Adrian Hunter, Hans de
Goede)
- Fix the ACPI GPE mask kernel command line parameter handling
(Prarit Bhargava)
- Fix the handling of (incorrectly exposed) backlight interfaces
without LCD (Hans de Goede)
- Fix the usage of debugfs_create_*() in the ACPI EC driver (Geert
Uytterhoeven)"
* tag 'acpi-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (62 commits)
ACPI/PCI: pci_link: reduce verbosity when IRQ is enabled
ACPI / LPSS: Do not instiate platform_dev for devs without MMIO resources
ACPI / PMIC: Convert to use builtin_platform_driver() macro
ACPI / x86: boot: Propagate error code in acpi_gsi_to_irq()
ACPICA: Update version to 20171215
ACPICA: trivial style fix, no functional change
ACPICA: Fix a couple memory leaks during package object resolution
ACPICA: Recognize the Windows 10 version 1607 and 1703 OSI strings
ACPICA: DT compiler: prevent error if optional field at the end of table is not present
ACPICA: Rename a global variable, no functional change
ACPICA: Create and deploy safe version of strncpy
ACPICA: Cleanup the global variables and update comments
ACPICA: Debugger: fix slight indentation issue
ACPICA: Fix a regression in the acpi_evaluate_object_type() interface
ACPICA: Update for a few debug output statements
ACPICA: Debug output, no functional change
ACPI: EC: Fix debugfs_create_*() usage
ACPI / video: Default lcd_only to true on Win8-ready and newer machines
ACPI / x86: boot: Don't setup SCI on HW-reduced platforms
ACPI / x86: boot: Use INVALID_ACPI_IRQ instead of 0 for acpi_sci_override_gsi
...
- Define a PM driver flag allowing drivers to request that their
devices be left in suspend after system-wide transitions to the
working state if possible and add support for it to the PCI bus
type and the ACPI PM domain (Rafael Wysocki).
- Make the PM core carry out optimizations for devices with driver
PM flags set in some cases and make a few drivers set those flags
(Rafael Wysocki).
- Fix and clean up wrapper routines allowing runtime PM device
callbacks to be re-used for system-wide PM, change the generic
power domains (genpd) framework to stop using those routines
incorrectly and fix up a driver depending on that behavior of
genpd (Rafael Wysocki, Ulf Hansson, Geert Uytterhoeven).
- Fix and clean up the PM core's device wakeup framework and
re-factor system-wide PM core code related to device wakeup
(Rafael Wysocki, Ulf Hansson, Brian Norris).
- Make more x86-based systems use the Low Power Sleep S0 _DSM
interface by default (to fix power button wakeup from
suspend-to-idle on Surface Pro3) and add a kernel command line
switch to tell it to ignore the system sleep blacklist in the
ACPI core (Rafael Wysocki).
- Fix a race condition related to cpufreq governor module removal
and clean up the governor management code in the cpufreq core
(Rafael Wysocki).
- Drop the unused generic code related to the handling of the static
power energy usage model in the CPU cooling thermal driver along
with the corresponding documentation (Viresh Kumar).
- Add mt2712 support to the Mediatek cpufreq driver (Andrew-sh Cheng).
- Add a new operating point to the imx6ul and imx6q cpufreq drivers
and switch the latter to using clk_bulk_get() (Anson Huang, Dong
Aisheng).
- Add support for multiple regulators to the TI cpufreq driver along
with a new DT binding related to that and clean up that driver
somewhat (Dave Gerlach).
- Fix a powernv cpufreq driver regression leading to incorrect CPU
frequency reporting, fix that driver to deal with non-continguous
P-states correctly and clean it up (Gautham Shenoy, Shilpasri Bhat).
- Add support for frequency scaling on Armada 37xx SoCs through the
generic DT cpufreq driver (Gregory CLEMENT).
- Fix error code paths in the mvebu cpufreq driver (Gregory CLEMENT).
- Fix a transition delay setting regression in the longhaul cpufreq
driver (Viresh Kumar).
- Add Skylake X (server) support to the intel_pstate cpufreq driver
and clean up that driver somewhat (Srinivas Pandruvada).
- Clean up the cpufreq statistics collection code (Viresh Kumar).
- Drop cluster terminology and dependency on physical_package_id
from the PSCI driver and drop dependency on arm_big_little from
the SCPI cpufreq driver (Sudeep Holla).
- Add support for system-wide suspend and resume to the RAPL power
capping driver and drop a redundant semicolon from it (Zhen Han,
Luis de Bethencourt).
- Make SPI domain validation (in the SCSI SPI transport driver) and
system-wide suspend mutually exclusive as they rely on the same
underlying mechanism and cannot be carried out at the same time
(Bart Van Assche).
- Fix the computation of the amount of memory to preallocate in the
hibernation core and clean up one function in there (Rainer Fiebig,
Kyungsik Lee).
- Prepare the Operating Performance Points (OPP) framework for being
used with power domains and clean up one function in it (Viresh
Kumar, Wei Yongjun).
- Clean up the generic sysfs interface for device PM (Andy Shevchenko).
- Fix several minor issues in power management frameworks and clean
them up a bit (Arvind Yadav, Bjorn Andersson, Geert Uytterhoeven,
Gustavo Silva, Julia Lawall, Luis de Bethencourt, Paul Gortmaker,
Sergey Senozhatsky, gaurav jindal).
- Make it easier to disable PM via Kconfig (Mark Brown).
- Clean up the cpupower and intel_pstate_tracer utilities (Doug
Smythies, Laura Abbott).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJaYw2iAAoJEILEb/54YlRxLHwP/iabmAcbXBeg30/wSCKcWB6f
Ar785YbkFedNP7b2dypR7bcKIkaV55EExNHHoVuvC6gKrW+zx3F39v9QzK3HBKfw
DgLWMjxR5Xdm9o8o2chsBEMl0itSRB9s864s+AAAElP+qjyT6kmbFyRFgVYLiNH0
v9jNhPF9EmirViwES/syELa/P1AJDMxCb/SbRY+Xp1sPhGKlx2J/2eQsVDs7G+wL
2BJeyBqwL9D78U/eY2bvpCoZLpmZmklx1eY5iK3Mzo6LZKYMaSypgkGuRfh//K+a
8vFLwOBsOlpZ8lsPBRatV5+SMu8qMQMTnstui1m3/9bOPFfjymat6u0lLw4BV2hv
zrNfqWOiwTAt/fczR1/naYuuSeRCLABvYDKjs/9iYdrCZYJ+n+ZzU/wi5geswDtD
cQKDMOdOBrnfkN0Vqpw6ZBqun0RDldNT/+6oy93tHWBlF0CA4mMq5jr8q3iH35CW
8TA1GCkurHZXTyYdYXR5SUHxPbOgZC87GAb7RlFEJJnvvkmy3jmBng675Hl5XAn7
D8eJp3d4h5n121pkMLGcBc7K036T2uFsjrHWx+QsjKFUBWUBnuRfInRrLA5WnGo2
U+KIEUPepdnbFFvYNv+kTgz2uE6FOqycEmnUKUKWUZYPN0GDAOw/V3813uxVRYtq
27omIOL7PJp1wWjQnfXK
=dnb7
-----END PGP SIGNATURE-----
Merge tag 'pm-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"This includes some infrastructure changes in the PM core, mostly
related to integration between runtime PM and system-wide suspend and
hibernation, plus some driver changes depending on them and fixes for
issues in that area which have become quite apparent recently.
Also included are changes making more x86-based systems use the Low
Power Sleep S0 _DSM interface by default, which turned out to be
necessary to handle power button wakeups from suspend-to-idle on
Surface Pro3.
On the cpufreq front we have fixes and cleanups in the core, some new
hardware support, driver updates and the removal of some unused code
from the CPU cooling thermal driver.
Apart from this, the Operating Performance Points (OPP) framework is
prepared to be used with power domains in the future and there is a
usual bunch of assorted fixes and cleanups.
Specifics:
- Define a PM driver flag allowing drivers to request that their
devices be left in suspend after system-wide transitions to the
working state if possible and add support for it to the PCI bus
type and the ACPI PM domain (Rafael Wysocki).
- Make the PM core carry out optimizations for devices with driver PM
flags set in some cases and make a few drivers set those flags
(Rafael Wysocki).
- Fix and clean up wrapper routines allowing runtime PM device
callbacks to be re-used for system-wide PM, change the generic
power domains (genpd) framework to stop using those routines
incorrectly and fix up a driver depending on that behavior of genpd
(Rafael Wysocki, Ulf Hansson, Geert Uytterhoeven).
- Fix and clean up the PM core's device wakeup framework and
re-factor system-wide PM core code related to device wakeup
(Rafael Wysocki, Ulf Hansson, Brian Norris).
- Make more x86-based systems use the Low Power Sleep S0 _DSM
interface by default (to fix power button wakeup from
suspend-to-idle on Surface Pro3) and add a kernel command line
switch to tell it to ignore the system sleep blacklist in the ACPI
core (Rafael Wysocki).
- Fix a race condition related to cpufreq governor module removal and
clean up the governor management code in the cpufreq core (Rafael
Wysocki).
- Drop the unused generic code related to the handling of the static
power energy usage model in the CPU cooling thermal driver along
with the corresponding documentation (Viresh Kumar).
- Add mt2712 support to the Mediatek cpufreq driver (Andrew-sh
Cheng).
- Add a new operating point to the imx6ul and imx6q cpufreq drivers
and switch the latter to using clk_bulk_get() (Anson Huang, Dong
Aisheng).
- Add support for multiple regulators to the TI cpufreq driver along
with a new DT binding related to that and clean up that driver
somewhat (Dave Gerlach).
- Fix a powernv cpufreq driver regression leading to incorrect CPU
frequency reporting, fix that driver to deal with non-continguous
P-states correctly and clean it up (Gautham Shenoy, Shilpasri
Bhat).
- Add support for frequency scaling on Armada 37xx SoCs through the
generic DT cpufreq driver (Gregory CLEMENT).
- Fix error code paths in the mvebu cpufreq driver (Gregory CLEMENT).
- Fix a transition delay setting regression in the longhaul cpufreq
driver (Viresh Kumar).
- Add Skylake X (server) support to the intel_pstate cpufreq driver
and clean up that driver somewhat (Srinivas Pandruvada).
- Clean up the cpufreq statistics collection code (Viresh Kumar).
- Drop cluster terminology and dependency on physical_package_id from
the PSCI driver and drop dependency on arm_big_little from the SCPI
cpufreq driver (Sudeep Holla).
- Add support for system-wide suspend and resume to the RAPL power
capping driver and drop a redundant semicolon from it (Zhen Han,
Luis de Bethencourt).
- Make SPI domain validation (in the SCSI SPI transport driver) and
system-wide suspend mutually exclusive as they rely on the same
underlying mechanism and cannot be carried out at the same time
(Bart Van Assche).
- Fix the computation of the amount of memory to preallocate in the
hibernation core and clean up one function in there (Rainer Fiebig,
Kyungsik Lee).
- Prepare the Operating Performance Points (OPP) framework for being
used with power domains and clean up one function in it (Viresh
Kumar, Wei Yongjun).
- Clean up the generic sysfs interface for device PM (Andy
Shevchenko).
- Fix several minor issues in power management frameworks and clean
them up a bit (Arvind Yadav, Bjorn Andersson, Geert Uytterhoeven,
Gustavo Silva, Julia Lawall, Luis de Bethencourt, Paul Gortmaker,
Sergey Senozhatsky, gaurav jindal).
- Make it easier to disable PM via Kconfig (Mark Brown).
- Clean up the cpupower and intel_pstate_tracer utilities (Doug
Smythies, Laura Abbott)"
* tag 'pm-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
PCI / PM: Remove spurious semicolon
cpufreq: scpi: remove arm_big_little dependency
drivers: psci: remove cluster terminology and dependency on physical_package_id
powercap: intel_rapl: Fix trailing semicolon
dmaengine: rcar-dmac: Make DMAC reinit during system resume explicit
PM / runtime: Allow no callbacks in pm_runtime_force_suspend|resume()
PM / hibernate: Drop unused parameter of enough_swap
PM / runtime: Check ignore_children in pm_runtime_need_not_resume()
PM / runtime: Rework pm_runtime_force_suspend/resume()
PM / genpd: Stop/start devices without pm_runtime_force_suspend/resume()
cpufreq: powernv: Dont assume distinct pstate values for nominal and pmin
cpufreq: intel_pstate: Add Skylake servers support
cpufreq: intel_pstate: Replace bxt_funcs with core_funcs
platform/x86: surfacepro3: Support for wakeup from suspend-to-idle
ACPI / PM: Use Low Power S0 Idle on more systems
PM / wakeup: Print warn if device gets enabled as wakeup source during sleep
PM / domains: Don't skip driver's ->suspend|resume_noirq() callbacks
PM / core: Propagate wakeup_path status flag in __device_suspend_late()
PM / core: Re-structure code for clearing the direct_complete flag
powercap: add suspend and resume mechanism for SOC power limit
...
-----BEGIN PGP SIGNATURE-----
iQIVAwUAWl80tvSw1s6N8H32AQJq8A//ViRN5fExrd678Eh2Bz1ytrJYMUfYY3Hv
QTH5TH9zFyLFyWLB1Iwe13sdLVTTM88O0qcDb54Lx9fWUqeMZyYvBhLtWPc00lTU
0m3EyYR87MFWaEV+VxaVWgWaWkMDkd39KubDitcS+YIBDszTuMpYodhPUsgLt7lr
pePX7eurXKdQPTh4NUOjGA2NaZot3tga76J6D8NKruGYUstQCGxpP1ryiFfACnwf
NLWNO8ZBMtlDwX1mHYOOMFMaBzFzXorPm7jY4HJDf3mUM84xI3ach6CuH9RTSzfq
A+qB1U3QILPVFo2HtqOHui4bFjRwqOf6uIrI/KcnioJ37w1O+KFcMJeDnX2I211q
f2lXehJLQA7kPmxQw8T3//HDRaLXc0Qxt7IPZRFinrlkcN4oh3DD5euMfCFBSoZG
PTbjxlgMfzJPoZtqAcy0rV5L54a/F4h915OQPJCKLwujIsXD2nT993vNmGDyq4zh
BzNMxSXJC8p+jYvQpNhWyyxwDBBT/YsVQo/ACwg4eJnD3blVTAioRT9ZZcAcsY0F
0z1eWW5RiknzIaXQWvjfK0gYKpO+aMSu9+gipHfMbU3yXG+sPj/H6zAHYzqX3uQZ
jb5Iujjnu49W/YD+RiMenuu59lNXUnLSeRnlV7dw0qxGK1FzGo24+ZzKFhJhKvzG
tdfUsev1Mc8=
=jhWg
-----END PGP SIGNATURE-----
Merge tag 'init_task-20180117' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull init_task initializer cleanups from David Howells:
"It doesn't seem useful to have the init_task in a header file rather
than in a normal source file. We could consolidate init_task handling
instead and expand out various macros.
Here's a series of patches that consolidate init_task handling:
(1) Make THREAD_SIZE available to vmlinux.lds for cris, hexagon and
openrisc.
(2) Alter the INIT_TASK_DATA linker script macro to set
init_thread_union and init_stack rather than defining these in C.
Insert init_task and init_thread_into into the init_stack area in
the linker script as appropriate to the configuration, with
different section markers so that they end up correctly ordered.
We can then get merge ia64's init_task.c into the main one.
We then have a bunch of single-use INIT_*() macros that seem only
to be macros because they used to be used per-arch. We can then
expand these in place of the user and get rid of a few lines and
a lot of backslashes.
(3) Expand INIT_TASK() in place.
(4) Expand in place various small INIT_*() macros that are defined
conditionally. Expand them and surround them by #if[n]def/#endif
in the .c file as it takes fewer lines.
(5) Expand INIT_SIGNALS() and INIT_SIGHAND() in place.
(6) Expand INIT_STRUCT_PID in place.
These macros can then be discarded"
* tag 'init_task-20180117' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
Expand INIT_STRUCT_PID and remove
Expand the INIT_SIGNALS and INIT_SIGHAND macros and remove
Expand various INIT_* macros and remove
Expand INIT_TASK() in init/init_task.c and remove
Construct init thread stack in the linker script rather than by union
openrisc: Make THREAD_SIZE available to vmlinux.lds
hexagon: Make THREAD_SIZE available to vmlinux.lds
cris: Make THREAD_SIZE available to vmlinux.lds
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-01-26
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) A number of extensions to tcp-bpf, from Lawrence.
- direct R or R/W access to many tcp_sock fields via bpf_sock_ops
- passing up to 3 arguments to bpf_sock_ops functions
- tcp_sock field bpf_sock_ops_cb_flags for controlling callbacks
- optionally calling bpf_sock_ops program when RTO fires
- optionally calling bpf_sock_ops program when packet is retransmitted
- optionally calling bpf_sock_ops program when TCP state changes
- access to tclass and sk_txhash
- new selftest
2) div/mod exception handling, from Daniel.
One of the ugly leftovers from the early eBPF days is that div/mod
operations based on registers have a hard-coded src_reg == 0 test
in the interpreter as well as in JIT code generators that would
return from the BPF program with exit code 0. This was basically
adopted from cBPF interpreter for historical reasons.
There are multiple reasons why this is very suboptimal and prone
to bugs. To name one: the return code mapping for such abnormal
program exit of 0 does not always match with a suitable program
type's exit code mapping. For example, '0' in tc means action 'ok'
where the packet gets passed further up the stack, which is just
undesirable for such cases (e.g. when implementing policy) and
also does not match with other program types.
After considering _four_ different ways to address the problem,
we adapt the same behavior as on some major archs like ARMv8:
X div 0 results in 0, and X mod 0 results in X. aarch64 and
aarch32 ISA do not generate any traps or otherwise aborts
of program execution for unsigned divides.
Given the options, it seems the most suitable from
all of them, also since major archs have similar schemes in
place. Given this is all in the realm of undefined behavior,
we still have the option to adapt if deemed necessary.
3) sockmap sample refactoring, from John.
4) lpm map get_next_key fixes, from Yonghong.
5) test cleanups, from Alexei and Prashant.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull x86 retpoline fixlet from Thomas Gleixner:
"Remove the ESP/RSP thunks for retpoline as they cannot ever work.
Get rid of them before they show up in a release"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Remove the esp/rsp thunk
Pull x86 fixes from Thomas Gleixner:
"A set of small fixes for 4.15:
- Fix vmapped stack synchronization on systems with 4-level paging
and a large amount of memory caused by a missing 5-level folding
which made the pgd synchronization logic to fail and causing double
faults.
- Add a missing sanity check in the vmalloc_fault() logic on 5-level
paging systems.
- Bring back protection against accessing a freed initrd in the
microcode loader which was lost by a wrong merge conflict
resolution.
- Extend the Broadwell micro code loading sanity check.
- Add a missing ENDPROC annotation in ftrace assembly code which
makes ORC unhappy.
- Prevent loading the AMD power module on !AMD platforms. The load
itself is uncritical, but an unload attempt results in a kernel
crash.
- Update Peter Anvins role in the MAINTAINERS file"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ftrace: Add one more ENDPROC annotation
x86: Mark hpa as a "Designated Reviewer" for the time being
x86/mm/64: Tighten up vmalloc_fault() sanity checks on 5-level kernels
x86/mm/64: Fix vmapped stack syncing on very-large-memory 4-level systems
x86/microcode: Fix again accessing initrd after having been freed
x86/microcode/intel: Extend BDW late-loading further with LLC size check
perf/x86/amd/power: Do not load AMD power module on !AMD platforms
Pull perf fixes from Thomas Gleixner:
"Four patches which all address lock inversions and deadlocks in the
perf core code and the Intel debug store"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Fix perf,x86,cpuhp deadlock
perf/core: Fix ctx::mutex deadlock
perf/core: Fix another perf,trace,cpuhp lock inversion
perf/core: Fix lock inversion between perf,trace,cpuhp
When ORC support was added for the ftrace_64.S code, an ENDPROC
for function_hook() was missed. This results in the following warning:
arch/x86/kernel/ftrace_64.o: warning: objtool: .entry.text+0x0: unreachable instruction
Fixes: e2ac83d74a ("x86/ftrace: Fix ORC unwinding from ftrace handlers")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180128022150.dqierscqmt3uwwsr@treble
We want to expose the hardware features simply in /proc/cpuinfo as "ibrs",
"ibpb" and "stibp". Since AMD has separate CPUID bits for those, use them
as the user-visible bits.
When the Intel SPEC_CTRL bit is set which indicates both IBRS and IBPB
capability, set those (AMD) bits accordingly. Likewise if the Intel STIBP
bit is set, set the AMD STIBP that's used for the generic hardware
capability.
Hide the rest from /proc/cpuinfo by putting "" in the comments. Including
RETPOLINE and RETPOLINE_AMD which shouldn't be visible there. There are
patches to make the sysfs vulnerabilities information non-readable by
non-root, and the same should apply to all information about which
mitigations are actually in use. Those *shouldn't* appear in /proc/cpuinfo.
The feature bit for whether IBPB is actually used, which is needed for
ALTERNATIVEs, is renamed to X86_FEATURE_USE_IBPB.
Originally-by: Borislav Petkov <bp@suse.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: dave.hansen@intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: pbonzini@redhat.com
Cc: tim.c.chen@linux.intel.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517070274-12128-2-git-send-email-dwmw@amazon.co.uk
If sysfs is disabled and RETPOLINE not defined:
arch/x86/kernel/cpu/bugs.c:97:13: warning: ‘spectre_v2_bad_module’ defined but not used
[-Wunused-variable]
static bool spectre_v2_bad_module;
Hide it.
Fixes: caf7501a1b ("module/retpoline: Warn about missing retpoline in module")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Group together the calls to alloc_vmcs and loaded_vmcs_init. Soon we'll also
allocate an MSR bitmap there.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Since we've changed div/mod exception handling for src_reg in
eBPF verifier itself, remove the leftovers from x86_64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
On a 5-level kernel, if a non-init mm has a top-level entry, it needs to
match init_mm's, but the vmalloc_fault() code skipped over the BUG_ON()
that would have checked it.
While we're at it, get rid of the rather confusing 4-level folded "pgd"
logic.
Cleans-up: b50858ce3e ("x86/mm/vmalloc: Add 5-level paging support")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Neil Berrington <neil.berrington@datacore.com>
Link: https://lkml.kernel.org/r/2ae598f8c279b0a29baf75df207e6f2fdddc0a1b.1516914529.git.luto@kernel.org
Neil Berrington reported a double-fault on a VM with 768GB of RAM that uses
large amounts of vmalloc space with PTI enabled.
The cause is that load_new_mm_cr3() was never fixed to take the 5-level pgd
folding code into account, so, on a 4-level kernel, the pgd synchronization
logic compiles away to exactly nothing.
Interestingly, the problem doesn't trigger with nopti. I assume this is
because the kernel is mapped with global pages if we boot with nopti. The
sequence of operations when we create a new task is that we first load its
mm while still running on the old stack (which crashes if the old stack is
unmapped in the new mm unless the TLB saves us), then we call
prepare_switch_to(), and then we switch to the new stack.
prepare_switch_to() pokes the new stack directly, which will populate the
mapping through vmalloc_fault(). I assume that we're getting lucky on
non-PTI systems -- the old stack's TLB entry stays alive long enough to
make it all the way through prepare_switch_to() and switch_to() so that we
make it to a valid stack.
Fixes: b50858ce3e ("x86/mm/vmalloc: Add 5-level paging support")
Reported-and-tested-by: Neil Berrington <neil.berrington@datacore.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: stable@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/346541c56caed61abbe693d7d2742b4a380c5001.1516914529.git.luto@kernel.org
There's a risk that a kernel which has full retpoline mitigations becomes
vulnerable when a module gets loaded that hasn't been compiled with the
right compiler or the right option.
To enable detection of that mismatch at module load time, add a module info
string "retpoline" at build time when the module was compiled with
retpoline support. This only covers compiled C source, but assembler source
or prebuilt object files are not checked.
If a retpoline enabled kernel detects a non retpoline protected module at
load time, print a warning and report it in the sysfs vulnerability file.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: gregkh@linuxfoundation.org
Cc: torvalds@linux-foundation.org
Cc: jeyu@kernel.org
Cc: arjan@linux.intel.com
Link: https://lkml.kernel.org/r/20180125235028.31211-1-andi@firstfloor.org
GCM can be invoked with a zero destination buffer. This is possible if
the AAD and the ciphertext have zero lengths and only the tag exists in
the source buffer (i.e. a source buffer cannot be zero). In this case,
the GCM cipher only performs the authentication and no decryption
operation.
When the destination buffer has zero length, it is possible that no page
is mapped to the SG pointing to the destination. In this case,
sg_page(req->dst) is an invalid access. Therefore, page accesses should
only be allowed if the req->dst->length is non-zero which is the
indicator that a page must exist.
This fixes a crash that can be triggered by user space via AF_ALG.
CC: <stable@vger.kernel.org>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace indirect call with CALL_NOSPEC.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rga@amazon.de
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180125095843.645776917@infradead.org
We've removed the option, so stop talking about it.
Signed-off-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace the indirect calls with CALL_NOSPEC.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rga@amazon.de
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180125095843.595615683@infradead.org
Last use of IOMMU_STRESS was removed in commit 29b68415e3 ("x86:
amd_iommu: move to drivers/iommu/"). 6 years later the Kconfig entry is
definitely due for removal.
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/1516825754-28415-1-git-send-email-clabbe@baylibre.com
When hypercall-based TLB flush was enabled for Hyper-V guests PCID feature
was deliberately suppressed as a precaution: back then PCID was never
exposed to Hyper-V guests and it wasn't clear what will happen if some day
it becomes available. The day came and PCID/INVPCID features are already
exposed on certain Hyper-V hosts.
From TLFS (as of 5.0b) it is unclear how TLB flush hypercalls combine with
PCID. In particular the usage of PCID is per-cpu based: the same mm gets
different CR3 values on different CPUs. If the hypercall does exact
matching this will fail. However, this is not the case. David Zhang
explains:
"In practice, the AddressSpace argument is ignored on any VM that supports
PCIDs.
Architecturally, the AddressSpace argument must match the CR3 with PCID
bits stripped out (i.e., the low 12 bits of AddressSpace should be 0 in
long mode). The flush hypercalls flush all PCIDs for the specified
AddressSpace."
With this, PCID can be enabled.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Zhang <dazhan@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Aditya Bhandari <adityabh@microsoft.com>
Link: https://lkml.kernel.org/r/20180124103629.29980-1-vkuznets@redhat.com
One was that ORC didn't know how to handle the ftrace callbacks in general
(which Josh fixed). The other was that ORC would just bail if it hit a
dynamically allocated trampoline. Which means all ftrace stack tracing that
happens from the function tracer would produce no results (that includes
killing the max stack size tracer). I added a check to the ORC unwinder to
see if the trampoline belonged to ftrace, and if it did, use the orc entry
of the static trampoline that was used to create the dynamic one (it would
be identical).
Finally, I noticed that the skip values of the stack tracing were out of
whack. I went through and fixed them up.
-----BEGIN PGP SIGNATURE-----
iQHIBAABCgAyFiEEPm6V/WuN2kyArTUe1a05Y9njSUkFAlpohNcUHHJvc3RlZHRA
Z29vZG1pcy5vcmcACgkQ1a05Y9njSUnJ4wv/evoOzbuF67P1N1ci9qjtAuUzOGMA
jr/x/kHj/jE+w5diXTw0XOlaWzK6tB8BEfaVVcljjjjUdoXzULXCv5zR59ARioio
VhnTt1VPr+4fc5huTcIXYf8NXTNoqzLVBIR7+iO9Qk1v5nwFcJjQThj42enCXQR4
sHdeOGpW4N8UKZ1yw+i95a/JibLbnwiQRQRtMXOqxvJiplJsytWlqZkVsOyMFwA9
X+X6FbBAJYwSktMvcEXvvq7BGTuCEJF2R6+P0M40yjBLkJKxa4knM39/zt8DiZFl
bTu9JGfo1uEuMR3I+l7pxNOcPY/8rYbkWS7GAjXxMZk8Zb7iHxaQeQyJSeJbUhaV
ZS+dWVv6zkDvE1Lf0jdeyfjN8HzEZUTYRaFvDZ6JhuykxcJzCLef23uW8laheghO
w58JpwzzVliPe3Iw9E4z8isEeXCU9FYGoxu8NvkP13O72j7D5ZnwwhGAAbgtmYpL
Ez92F0JIh3bNdpEJ7XgJG9ZF9uIhRoGI+D9l
=JDuB
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.15-rc9' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"With the new ORC unwinder, ftrace stack tracing became disfunctional.
One was that ORC didn't know how to handle the ftrace callbacks in
general (which Josh fixed).
The other was that ORC would just bail if it hit a dynamically
allocated trampoline. Which means all ftrace stack tracing that
happens from the function tracer would produce no results (that
includes killing the max stack size tracer). I added a check to the
ORC unwinder to see if the trampoline belonged to ftrace, and if it
did, use the orc entry of the static trampoline that was used to
create the dynamic one (it would be identical).
Finally, I noticed that the skip values of the stack tracing were out
of whack. I went through and fixed them up"
* tag 'trace-v4.15-rc9' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Update stack trace skipping for ORC unwinder
ftrace, orc, x86: Handle ftrace dynamically allocated trampolines
x86/ftrace: Fix ORC unwinding from ftrace handlers
Centaur CPU has a constant frequency TSC and that TSC does not stop in
C-States. But because the corresponding TSC feature flags are not set for
that CPU, the TSC is treated as not constant frequency and assumed to stop
in C-States, which makes it an unreliable and unusable clock source.
Setting those flags tells the kernel that the TSC is usable, so it will
select it over HPET. The effect of this is that reading time stamps (from
kernel or user space) will be faster and more efficent.
Signed-off-by: davidwang <davidwang@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: qiyuanwang@zhaoxin.com
Cc: linux-pm@vger.kernel.org
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: benjaminpan@viatech.com
Link: https://lkml.kernel.org/r/1516616057-5158-1-git-send-email-davidwang@zhaoxin.com
Commit 24c2503255 ("x86/microcode: Do not access the initrd after it has
been freed") fixed attempts to access initrd from the microcode loader
after it has been freed. However, a similar KASAN warning was reported
(stack trace edited):
smpboot: Booting Node 0 Processor 1 APIC 0x11
==================================================================
BUG: KASAN: use-after-free in find_cpio_data+0x9b5/0xa50
Read of size 1 at addr ffff880035ffd000 by task swapper/1/0
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.14.8-slack #7
Hardware name: System manufacturer System Product Name/A88X-PLUS, BIOS 3003 03/10/2016
Call Trace:
dump_stack
print_address_description
kasan_report
? find_cpio_data
__asan_report_load1_noabort
find_cpio_data
find_microcode_in_initrd
__load_ucode_amd
load_ucode_amd_ap
load_ucode_ap
After some investigation, it turned out that a merge was done using the
wrong side to resolve, leading to picking up the previous state, before
the 24c2503255 fix. Therefore the Fixes tag below contains a merge
commit.
Revert the mismerge by catching the save_microcode_in_initrd_amd()
retval and thus letting the function exit with the last return statement
so that initrd_gone can be set to true.
Fixes: f26483eaed ("Merge branch 'x86/urgent' into x86/microcode, to resolve conflicts")
Reported-by: <higuita@gmx.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=198295
Link: https://lkml.kernel.org/r/20180123104133.918-2-bp@alien8.de
Commit b94b737331 ("x86/microcode/intel: Extend BDW late-loading with a
revision check") reduced the impact of erratum BDF90 for Broadwell model
79.
The impact can be reduced further by checking the size of the last level
cache portion per core.
Tony: "The erratum says the problem only occurs on the large-cache SKUs.
So we only need to avoid the update if we are on a big cache SKU that is
also running old microcode."
For more details, see erratum BDF90 in document #334165 (Intel Xeon
Processor E7-8800/4800 v4 Product Family Specification Update) from
September 2017.
Fixes: b94b737331 ("x86/microcode/intel: Extend BDW late-loading with a revision check")
Signed-off-by: Jia Zhang <zhang.jia@linux.alibaba.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1516321542-31161-1-git-send-email-zhang.jia@linux.alibaba.com
The AMD power module can be loaded on non AMD platforms, but unload fails
with the following Oops:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: __list_del_entry_valid+0x29/0x90
Call Trace:
perf_pmu_unregister+0x25/0xf0
amd_power_pmu_exit+0x1c/0xd23 [power]
SyS_delete_module+0x1a8/0x2b0
? exit_to_usermode_loop+0x8f/0xb0
entry_SYSCALL_64_fastpath+0x20/0x83
Return -ENODEV instead of 0 from the module init function if the CPU does
not match.
Fixes: c7ab62bfbe ("perf/x86/amd/power: Add AMD accumulated power reporting mechanism")
Signed-off-by: Xiao Liang <xiliang@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180122061252.6394-1-xiliang@redhat.com
It doesn't make sense to have an indirect call thunk with esp/rsp as
retpoline code won't work correctly with the stack pointer register.
Removing it will help compiler writers to catch error in case such
a thunk call is emitted incorrectly.
Fixes: 76b043848f ("x86/retpoline: Add initial retpoline support")
Suggested-by: Jeff Law <law@redhat.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1516658974-27852-1-git-send-email-longman@redhat.com
The function tracer can create a dynamically allocated trampoline that is
called by the function mcount or fentry hook that is used to call the
function callback that is registered. The problem is that the orc undwinder
will bail if it encounters one of these trampolines. This breaks the stack
trace of function callbacks, which include the stack tracer and setting the
stack trace for individual functions.
Since these dynamic trampolines are basically copies of the static ftrace
trampolines defined in ftrace_*.S, we do not need to create new orc entries
for the dynamic trampolines. Finding the return address on the stack will be
identical as the functions that were copied to create the dynamic
trampolines. When encountering a ftrace dynamic trampoline, we can just use
the orc entry of the ftrace static function that was copied for that
trampoline.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaZ5GHAAoJEFmIoMA60/r8UmAP/AjrS+C+OSMHzM/U/h+UHmou
DRg5Tg7gG3PjnnKULEQno4BSGM5VJeXpM+QC8Ypqa2I1T4GTHVHiSn6qtOi4yn0R
k9CAGyeRD1zYH4Mtw4dyUOVE5j0ANoBuji0KklawqaxcPFJDh6FhSCbChPq0WjIA
ZarpJZ4YKeJF5ZYXFs4G5W6EjnXokYogjZL3lzCOVXoTC9aVfo+NoJ9Hg9P38VA3
WmYaLUEbIzV40JXkDieZq7nqO8m3mFBtxi7+74BvsjtgozW0og1tPNI6Hige6/U3
dUAzrdNGQg52T3pTMm8r0+efagDV11UO0IBhVhktNzTTVaUggxluBEza//FaQ85m
PLm7vsnwtIALujnp74VcFnTsVM2yYa9NeaPNIQ9FQ6kOB7TS0/ELtyHaPLNS8JoM
lhssdhT3jmVNg86UG2pOi9MJZhyYb6SQmWAGmYopzwEn/idBTOcLsTdcbptF5LfP
0hbc9BLI0wCF8sv0JXD4IBQFWN264z1vPGNDWD4cnkEMPiAJ23h1ySpS3S0HjZe3
c6AMEMNj5E1b6unwIebBHfeSj4DUUnfyypb4/oICNxCThQBIzPyXtnlk07DNFMOl
9pRZBebfUl5xAZeWz2Sxxvs0PqMc8QEDa5j8YzLS3cgz9y1i80Hn6fGxSeHptgC+
Zb4SYRr5S82kU3SbAtnY
=tRVW
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.15-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI fix from Bjorn Helgaas:
"Fix AMD regression due to not re-enabling the big window on resume
(Christian König)"
* tag 'pci-v4.15-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
x86/PCI: Enable AMD 64-bit window on resume
en_rx_am.c was deleted in 'net-next' but had a bug fixed in it in
'net'.
The esp{4,6}_offload.c conflicts were overlapping changes.
The 'out' label is removed so we just return ERR_PTR(-EINVAL)
directly.
Signed-off-by: David S. Miller <davem@davemloft.net>
Steven Rostedt discovered that the ftrace stack tracer is broken when
it's used with the ORC unwinder. The problem is that objtool is
instructed by the Makefile to ignore the ftrace_64.S code, so it doesn't
generate any ORC data for it.
Fix it by making the asm code objtool-friendly:
- Objtool doesn't like the fact that save_mcount_regs pushes RBP at the
beginning, but it's never restored (directly, at least). So just skip
the original RBP push, which is only needed for frame pointers anyway.
- Annotate some functions as normal callable functions with
ENTRY/ENDPROC.
- Add an empty unwind hint to return_to_handler(). The return address
isn't on the stack, so there's nothing ORC can do there. It will just
punt in the unlikely case it tries to unwind from that code.
With all that fixed, remove the OBJECT_FILES_NON_STANDARD Makefile
annotation so objtool can read the file.
Link: http://lkml.kernel.org/r/20180123040746.ih4ep3tk4pbjvg7c@treble
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Today 4 architectures set ARCH_SUPPORTS_MEMORY_FAILURE (arm64, parisc,
powerpc, and x86), while 4 other architectures set __ARCH_SI_TRAPNO
(alpha, metag, sparc, and tile). These two sets of architectures do
not interesect so remove the trapno paramater to remove confusion.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull x86 pti fixes from Thomas Gleixner:
"A small set of fixes for the meltdown/spectre mitigations:
- Make kprobes aware of retpolines to prevent probes in the retpoline
thunks.
- Make the machine check exception speculation protected. MCE used to
issue an indirect call directly from the ASM entry code. Convert
that to a direct call into a C-function and issue the indirect call
from there so the compiler can add the retpoline protection,
- Make the vmexit_fill_RSB() assembly less stupid
- Fix a typo in the PTI documentation"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Optimize inline assembler for vmexit_fill_RSB
x86/pti: Document fix wrong index
kprobes/x86: Disable optimizing on the function jumps to indirect thunk
kprobes/x86: Blacklist indirect thunk functions for kprobes
retpoline: Introduce start/end markers of indirect thunk
x86/mce: Make machine check speculation protected
Pull x86 kexec fix from Thomas Gleixner:
"A single fix for the WBINVD issue introduced by the SME support which
causes kexec fails on non AMD/SME capable CPUs. Issue WBINVD only when
the CPU has SME and avoid doing so in a loop"
[ Side note: this patch fixes the problem, but it isn't entirely clear
why it is required. The wbinvd should just work regardless, but there
seems to be some system - as opposed to CPU - issue, since the wbinvd
causes more problems later in the shutdown sequence, but wbinvd
instructions while the system is still active are not problematic.
Possibly some SMI or pending machine check issue on the affected system ]
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Rework wbinvd, hlt operation in stop_this_cpu()
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-01-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) bpf array map HW offload, from Jakub.
2) support for bpf_get_next_key() for LPM map, from Yonghong.
3) test_verifier now runs loaded programs, from Alexei.
4) xdp cpumap monitoring, from Jesper.
5) variety of tests, cleanups and small x64 JIT optimization, from Daniel.
6) user space can now retrieve HW JITed program, from Jiong.
Note there is a minor conflict between Russell's arm32 JIT fixes
and removal of bpf_jit_enable variable by Daniel which should
be resolved by keeping Russell's comment and removing that variable.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit bacf6b499e ("x86/mm: Use a struct to reduce parameters for SME
PGD mapping") moved some parameters into a structure.
The structure was large enough to trigger the stack protection canary in
sme_encrypt_kernel which doesn't work this early, causing reboots.
Mark sme_encrypt_kernel appropriately to not use the canary.
Fixes: bacf6b499e ("x86/mm: Use a struct to reduce parameters for SME PGD mapping")
Signed-off-by: Laura Abbott <labbott@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM:
* fix incorrect huge page mappings on systems using the contiguous hint
for hugetlbfs
* support alternative GICv4 init sequence
* correctly implement the ARM SMCC for HVC and SMC handling
PPC:
* add KVM IOCTL for reporting vulnerability and workaround status
s390:
* provide userspace interface for branch prediction changes in firmware
x86:
* use correct macros for bits
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaY3/eAAoJEED/6hsPKofo64kH/16SCSA9pKJTf39+jLoCPzbp
tlhzxoaqb9cPNMQBAk8Cj5xNJ6V4Clwnk8iRWaE6dRI5nWQxnxRHiWxnrobHwUbK
I0zSy+SywynSBnollKzLzQrDUBZ72fv3oLwiYEYhjMvs0zW6Q/vg10WERbav912Q
bv8nb5e8TbvU500ErndKTXOa8/B6uZYkMVjBNvAHwb+4AQ7bJgDQs5/qOeXllm8A
MT/SNYop/fkjRP7mQng5XYzoO+70tbe0hWpOQGgBnduzrbkNNvZtYtovusHYytLX
PAB7DDPbLZm5L2HBo4zvKgTHIoHTxU0X2yfUDzt7O151O2WSyqBRC3y1tpj6xa8=
=GnNJ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"ARM:
- fix incorrect huge page mappings on systems using the contiguous
hint for hugetlbfs
- support alternative GICv4 init sequence
- correctly implement the ARM SMCC for HVC and SMC handling
PPC:
- add KVM IOCTL for reporting vulnerability and workaround status
s390:
- provide userspace interface for branch prediction changes in
firmware
x86:
- use correct macros for bits"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: s390: wire up bpb feature
KVM: PPC: Book3S: Provide information about hardware/firmware CVE workarounds
KVM/x86: Fix wrong macro references of X86_CR0_PG_BIT and X86_CR4_PAE_BIT in kvm_valid_sregs()
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
KVM: arm64: Fix GICv4 init when called from vgic_its_create
KVM: arm/arm64: Check pagesize when allocating a hugepage at Stage 2
Limiting the scan width to the known last bus via the command line can
accelerate the boot noteworthy.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jailhouse <jailhouse-dev@googlegroups.com>
Link: https://lkml.kernel.org/r/51f5fe62-ca8f-9286-5cdb-39df3fad78b4@siemens.com
Otherwise, Linux will not recognize precalibrated_tsc_khz and disable
the tsc as clocksource.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jailhouse <jailhouse-dev@googlegroups.com>
Link: https://lkml.kernel.org/r/975fbfc9-2a64-cc56-40d5-164992ec3916@siemens.com
The BPF verifier conflict was some minor contextual issue.
The TUN conflict was less trivial. Cong Wang fixed a memory leak of
tfile->tx_array in 'net'. This is an skb_array. But meanwhile in
net-next tun changed tfile->tx_arry into tfile->tx_ring which is a
ptr_ring.
Signed-off-by: David S. Miller <davem@davemloft.net>
For the BPF_REG_0 (BPF_REG_A in cBPF, respectively), we can use
the short form of the opcode as dst mapping is on eax/rax and
thus save a byte per such operation. Added to add/sub/and/or/xor
for 32/64 bit when K immediate is used. There may be more such
low-hanging fruit to add in future as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Having a pure_initcall() callback just to permanently enable BPF
JITs under CONFIG_BPF_JIT_ALWAYS_ON is unnecessary and could leave
a small race window in future where JIT is still disabled on boot.
Since we know about the setting at compilation time anyway, just
initialize it properly there. Also consolidate all the individual
bpf_jit_enable variables into a single one and move them under one
location. Moreover, don't allow for setting unspecified garbage
values on them.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The generated assembler for the C fill RSB inline asm operations has
several issues:
- The C code sets up the loop register, which is then immediately
overwritten in __FILL_RETURN_BUFFER with the same value again.
- The C code also passes in the iteration count in another register, which
is not used at all.
Remove these two unnecessary operations. Just rely on the single constant
passed to the macro for the iterations.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: dave.hansen@intel.com
Cc: gregkh@linuxfoundation.org
Cc: torvalds@linux-foundation.org
Cc: arjan@linux.intel.com
Link: https://lkml.kernel.org/r/20180117225328.15414-1-andi@firstfloor.org
Since indirect jump instructions will be replaced by jump
to __x86_indirect_thunk_*, those jmp instruction must be
treated as an indirect jump. Since optprobe prohibits to
optimize probes in the function which uses an indirect jump,
it also needs to find out the function which jump to
__x86_indirect_thunk_* and disable optimization.
Add a check that the jump target address is between the
__indirect_thunk_start/end when optimizing kprobe.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/151629212062.10241.6991266100233002273.stgit@devbox
Mark __x86_indirect_thunk_* functions as blacklist for kprobes
because those functions can be called from anywhere in the kernel
including blacklist functions of kprobes.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/151629209111.10241.5444852823378068683.stgit@devbox
Introduce start/end markers of __x86_indirect_thunk_* functions.
To make it easy, consolidate .text.__x86.indirect_thunk.* sections
to one .text.__x86.indirect_thunk section and put it in the
end of kernel text section and adds __indirect_thunk_start/end
so that other subsystem (e.g. kprobes) can identify it.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/151629206178.10241.6828804696410044771.stgit@devbox
The machine check idtentry uses an indirect branch directly from the low
level code. This evades the speculation protection.
Replace it by a direct call into C code and issue the indirect call there
so the compiler can apply the proper speculation protection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by:Borislav Petkov <bp@alien8.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Niced-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801181626290.1847@nanos
ACPI redefines x86_init.pci.init when enabled. Though we still need special
treatment for MID platforms.
Move our specific callback to x86_init.pci.arch_init() and, by calling
acpi_noirq_set(), take back a control over IRQ assignment.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-acpi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180117173409.88136-2-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some issues have been reported with the for loop in stop_this_cpu() that
issues the 'wbinvd; hlt' sequence. Reverting this sequence to halt()
has been shown to resolve the issue.
However, the wbinvd is needed when running with SME. The reason for the
wbinvd is to prevent cache flush races between encrypted and non-encrypted
entries that have the same physical address. This can occur when
kexec'ing from memory encryption active to inactive or vice-versa. The
important thing is to not have outside of kernel text memory references
(such as stack usage), so the usage of the native_*() functions is needed
since these expand as inline asm sequences. So instead of reverting the
change, rework the sequence.
Move the wbinvd instruction outside of the for loop as native_wbinvd()
and make its execution conditional on X86_FEATURE_SME. In the for loop,
change the asm 'wbinvd; hlt' sequence back to a halt sequence but use
the native_halt() call.
Fixes: bba4ed011a ("x86/mm, kexec: Allow kexec to be used with SME")
Reported-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yu Chen <yu.c.chen@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: kexec@lists.infradead.org
Cc: ebiederm@redhat.com
Cc: Borislav Petkov <bp@alien8.de>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180117234141.21184.44067.stgit@tlendack-t1.amdoffice.net
L2 CDP can be controlled by kernel parameter "rdt=".
If "rdt=l2cdp", L2 CDP is turned on.
If "rdt=!l2cdp", L2 CDP is turned off.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-7-git-send-email-fenghua.yu@intel.com
Bit 0 in MSR IA32_L2_QOS_CFG (0xc82) is L2 CDP enable bit. By default,
the bit is zero, i.e. L2 CAT is enabled, and L2 CDP is disabled. When
the resctrl mount parameter "cdpl2" is given, the bit is set to 1 and L2
CDP is enabled.
In L2 CDP mode, the L2 CAT mask MSRs are re-mapped into interleaved pairs
of mask MSRs for code (referenced by an odd CLOSID) and data (referenced by
an even CLOSID).
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-6-git-send-email-fenghua.yu@intel.com
L2 data and L2 code are added as new resources in rdt_resources_all[]
and data in the resources are configured.
When L2 CDP is enabled, the schemata will have the two resources in
this format:
L2DATA:l2id0=xxxx;l2id1=xxxx;....
L2CODE:l2id0=xxxx;l2id1=xxxx;....
xxxx represent CBM (Cache Bit Mask) values in the schemata, similar to all
others (L2 CAT/L3 CAT/L3 CDP).
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-5-git-send-email-fenghua.yu@intel.com
* acpi-pm:
platform/x86: surfacepro3: Support for wakeup from suspend-to-idle
ACPI / PM: Use Low Power S0 Idle on more systems
ACPI / PM: Make it possible to ignore the system sleep blacklist
* pm-sleep:
PM / hibernate: Drop unused parameter of enough_swap
block, scsi: Fix race between SPI domain validation and system suspend
PM / sleep: Make lock/unlock_system_sleep() available to kernel modules
PM: hibernate: Do not subtract NR_FILE_MAPPED in minimum_image_size()
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJaW+iVAAoJEHm+PkMAQRiGCDsIAJALNpX7odTx/8y+yCSWbpBH
E57iwr4rmnI6tXJY6gqBUWTYnjAcf4b8IsHGCO6q3WIE3l/kt+m3eA21a32mF2Db
/bfPGTOWu5LoOnFqzgH2kiFuC3Y474toxpld2YtkQWYxi5W7SUtIHi/jGgkUprth
g15yPfwYgotJd/gpmPfBDMPlYDYvLlnPYbTG6ZWdMbg39m2RF2m0BdQ6aBFLHvbJ
IN0tjCM6hrLFBP0+6Zn60pevUW9/AFYotZn2ankNTk5QVCQm14rgQIP+Pfoa5WpE
I25r0DbkG2jKJCq+tlgIJjxHKD37GEDMc4T8/5Y8CNNeT9Q8si9EWvznjaAPazw=
=o5gx
-----END PGP SIGNATURE-----
BackMerge tag 'v4.15-rc8' into drm-next
Linux 4.15-rc8
Daniel requested this for so the intel CI won't fall over on drm-next
so often.
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- A rather involved set of memory hardware encryption fixes to
support the early loading of microcode files via the initrd. These
are larger than what we normally take at such a late -rc stage, but
there are two mitigating factors: 1) much of the changes are
limited to the SME code itself 2) being able to early load
microcode has increased importance in the post-Meltdown/Spectre
era.
- An IRQ vector allocator fix
- An Intel RDT driver use-after-free fix
- An APIC driver bug fix/revert to make certain older systems boot
again
- A pkeys ABI fix
- TSC calibration fixes
- A kdump fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/vector: Fix off by one in error path
x86/intel_rdt/cqm: Prevent use after free
x86/mm: Encrypt the initrd earlier for BSP microcode update
x86/mm: Prepare sme_encrypt_kernel() for PAGE aligned encryption
x86/mm: Centralize PMD flags in sme_encrypt_kernel()
x86/mm: Use a struct to reduce parameters for SME PGD mapping
x86/mm: Clean up register saving in the __enc_copy() assembly code
x86/idt: Mark IDT tables __initconst
Revert "x86/apic: Remove init_bsp_APIC()"
x86/mm/pkeys: Fix fill_sig_info_pkey
x86/tsc: Print tsc_khz, when it differs from cpu_khz
x86/tsc: Fix erroneous TSC rate on Skylake Xeon
x86/tsc: Future-proof native_calibrate_tsc()
kdump: Write the correct address of mem_section into vmcoreinfo
Pull x86 perf fix from Ingo Molnar:
"An Intel RAPL events fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/rapl: Fix Haswell and Broadwell server RAPL event
Pull x86 pti bits and fixes from Thomas Gleixner:
"This last update contains:
- An objtool fix to prevent a segfault with the gold linker by
changing the invocation order. That's not just for gold, it's a
general robustness improvement.
- An improved error message for objtool which spares tearing hairs.
- Make KASAN fail loudly if there is not enough memory instead of
oopsing at some random place later
- RSB fill on context switch to prevent RSB underflow and speculation
through other units.
- Make the retpoline/RSB functionality work reliably for both Intel
and AMD
- Add retpoline to the module version magic so mismatch can be
detected
- A small (non-fix) update for cpufeatures which prevents cpu feature
clashing for the upcoming extra mitigation bits to ease
backporting"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
module: Add retpoline tag to VERMAGIC
x86/cpufeature: Move processor tracing out of scattered features
objtool: Improve error message for bad file argument
objtool: Fix seg fault with gold linker
x86/retpoline: Add LFENCE to the retpoline/RSB filling RSB macros
x86/retpoline: Fill RSB on context switch for affected CPUs
x86/kasan: Panic if there is not enough memory to boot
kvm_valid_sregs() should use X86_CR0_PG and X86_CR4_PAE to check bit
status rather than X86_CR0_PG_BIT and X86_CR4_PAE_BIT. This patch is
to fix it.
Fixes: f29810335965a(KVM/x86: Check input paging mode when cs.l is set)
Reported-by: Jeremi Piotrowski <jeremi.piotrowski@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Keith reported the following warning:
WARNING: CPU: 28 PID: 1420 at kernel/irq/matrix.c:222 irq_matrix_remove_managed+0x10f/0x120
x86_vector_free_irqs+0xa1/0x180
x86_vector_alloc_irqs+0x1e4/0x3a0
msi_domain_alloc+0x62/0x130
The reason for this is that if the vector allocation fails the error
handling code tries to free the failed vector as well, which causes the
above imbalance warning to trigger.
Adjust the error path to handle this correctly.
Fixes: b5dc8e6c21 ("x86/irq: Use hierarchical irqdomain to manage CPU interrupt vectors")
Reported-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Keith Busch <keith.busch@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801161217300.1823@nanos
intel_rdt_iffline_cpu() -> domain_remove_cpu() frees memory first and then
proceeds accessing it.
BUG: KASAN: use-after-free in find_first_bit+0x1f/0x80
Read of size 8 at addr ffff883ff7c1e780 by task cpuhp/31/195
find_first_bit+0x1f/0x80
has_busy_rmid+0x47/0x70
intel_rdt_offline_cpu+0x4b4/0x510
Freed by task 195:
kfree+0x94/0x1a0
intel_rdt_offline_cpu+0x17d/0x510
Do the teardown first and then free memory.
Fixes: 24247aeeab ("x86/intel_rdt/cqm: Improve limbo list processing")
Reported-by: Joseph Salisbury <joseph.salisbury@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Peter Zilstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "Roderick W. Smith" <rod.smith@canonical.com>
Cc: 1733662@bugs.launchpad.net
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801161957510.2366@nanos
Processor tracing is already enumerated in word 9 (CPUID[7,0].EBX),
so do not duplicate it in the scattered features word.
Besides being more tidy, this will be useful for KVM when it presents
processor tracing to the guests. KVM selects host features that are
supported by both the host kernel (depending on command line options,
CPU errata, or whatever) and KVM. Whenever a full feature word exists,
KVM's code is written in the expectation that the CPUID bit number
matches the X86_FEATURE_* bit number, but this is not the case for
X86_FEATURE_INTEL_PT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1516117345-34561-1-git-send-email-pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reenable the 64-bit window during resume.
Fixes: fa564ad963 ("x86/PCI: Enable a 64bit BAR on AMD Family 15h (Models 00-1f, 30-3f, 60-7f)")
Reported-by: Tom St Denis <tom.stdenis@amd.com>
Signed-off-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Remove duplicate expression in nested_vmx_prepare_msr_bitmap, and make
the register names clearer in hardware_setup.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The bulk of the MSR bitmap is either immutable, or can be copied from
the L1 bitmap. By initializing it at VMXON time, and copying the mutable
parts one long at a time on vmentry (rather than one bit), about 4000
clock cycles (30%) can be saved on a nested VMLAUNCH/VMRESUME.
The resulting for loop only has four iterations, so it is cheap enough
to reinitialize the MSR write bitmaps on every iteration, and it makes
the code simpler.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The APICv-enabled MSR bitmap is a superset of the APICv-disabled bitmap.
Make that obvious in vmx_disable_intercept_msr_x2apic.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The POSTED_INTR_NV field is constant (though it differs between the vmcs01 and
vmcs02), there is no need to reload it on vmexit to L1.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
These fields are also simple copies of the data in the vmcs12 struct.
For some of them, prepare_vmcs02 was skipping the copy when the field
was unused. In prepare_vmcs02_full, we copy them always as long as the
field exists on the host, because the corresponding execution control
might be one of the shadowed fields.
Optimization opportunities remain for MSRs that, depending on the
entry/exit controls, have to be copied from either the vmcs01 or
the vmcs12: EFER (whose value is partly stored in the entry controls
too), PAT, DEBUGCTL (and also DR7). Before moving these three and
the entry/exit controls to prepare_vmcs02_full, KVM would have to set
dirty_vmcs12 on writes to the L1 MSRs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This part is separate for ease of review, because git prefers to move
prepare_vmcs02 below the initial long sequence of vmcs_write* operations.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
VMCS12 fields that are not handled through shadow VMCS are rarely
written, and thus they are also almost constant in the vmcs02. We can
thus optimize prepare_vmcs02 by skipping all the work for non-shadowed
fields in the common case.
This patch introduces the (pretty simple) tracking infrastructure; the
next patches will move work to prepare_vmcs02_full and save a few hundred
clock cycles per VMRESUME on a Haswell Xeon E5 system:
before after
cpuid 14159 13869
vmcall 15290 14951
inl_from_kernel 17703 17447
outl_to_kernel 16011 14692
self_ipi_sti_nop 16763 15825
self_ipi_tpr_sti_nop 17341 15935
wr_tsc_adjust_msr 14510 14264
rd_tsc_adjust_msr 15018 14311
mmio-wildcard-eventfd:pci-mem 16381 14947
mmio-datamatch-eventfd:pci-mem 18620 17858
portio-wildcard-eventfd:pci-io 15121 14769
portio-datamatch-eventfd:pci-io 15761 14831
(average savings 748, stdev 460).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The vmcs_field_to_offset_table was a rather sparse table of short
integers with a maximum index of 0x6c16, amounting to 55342 bytes. Now
that we are considering support for multiple VMCS12 formats, it would
be unfortunate to replicate that large, sparse table. Rotating the
field encoding (as a 16-bit integer) left by 6 reduces that table to
5926 bytes.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Per the SDM, "[VMCS] Fields are grouped by width (16-bit, 32-bit,
etc.) and type (guest-state, host-state, etc.)." Previously, the width
was indicated by vmcs_field_type. To avoid confusion when we start
dealing with both field width and field type, change vmcs_field_type
to vmcs_field_width.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is the highest index value used in any supported VMCS12 field
encoding. It is used to populate the IA32_VMX_VMCS_ENUM MSR.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Because all fields can be read/written with a single vmread/vmwrite on
64-bit kernels, the switch statements in copy_vmcs12_to_shadow and
copy_shadow_to_vmcs12 are unnecessary.
What I did in this patch is to copy the two parts of 64-bit fields
separately on 32-bit kernels, to keep all complicated #ifdef-ery
in init_vmcs_shadow_fields. The disadvantage is that 64-bit fields
have to be listed separately in shadow_read_only/read_write_fields,
but those are few and we can validate the arrays when building the
VMREAD and VMWRITE bitmaps. This saves a few hundred clock cycles
per nested vmexit.
However there is still a "switch" in vmcs_read_any and vmcs_write_any.
So, while at it, this patch reorders the fields by type, hoping that
the branch predictor appreciates it.
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Compared to when VMCS shadowing was added to KVM, we are reading/writing
a few more fields: the PML index, the interrupt status and the preemption
timer value. The first two are because we are exposing more features
to nested guests, the preemption timer is simply because we have grown
a new optimization. Adding them to the shadow VMCS field lists reduces
the cost of a vmexit by about 1000 clock cycles for each field that exists
on bare metal.
On the other hand, the guest BNDCFGS and TSC offset are not written on
fast paths, so remove them.
Suggested-by: Jim Mattson <jmattson@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Consider the following scenario:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. CPU B is currently executing L2 guest.
3. vmx_deliver_nested_posted_interrupt() calls
kvm_vcpu_trigger_posted_interrupt() which will note that
vcpu->mode == IN_GUEST_MODE.
4. Assume that before CPU A sends the physical POSTED_INTR_NESTED_VECTOR
IPI, CPU B exits from L2 to L0 during event-delivery
(valid IDT-vectoring-info).
5. CPU A now sends the physical IPI. The IPI is received in host and
it's handler (smp_kvm_posted_intr_nested_ipi()) does nothing.
6. Assume that before CPU A sets pi_pending=true and KVM_REQ_EVENT,
CPU B continues to run in L0 and reach vcpu_enter_guest(). As
KVM_REQ_EVENT is not set yet, vcpu_enter_guest() will continue and resume
L2 guest.
7. At this point, CPU A sets pi_pending=true and KVM_REQ_EVENT but
it's too late! CPU B already entered L2 and KVM_REQ_EVENT will only be
consumed at next L2 entry!
Another scenario to consider:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. Assume that before CPU A calls kvm_vcpu_trigger_posted_interrupt(),
CPU B is at L0 and is about to resume into L2. Further assume that it is
in vcpu_enter_guest() after check for KVM_REQ_EVENT.
3. At this point, CPU A calls kvm_vcpu_trigger_posted_interrupt() which
will note that vcpu->mode != IN_GUEST_MODE. Therefore, do nothing and
return false. Then, will set pi_pending=true and KVM_REQ_EVENT.
4. Now CPU B continue and resumes into L2 guest without processing
the posted-interrupt until next L2 entry!
To fix both issues, we just need to change
vmx_deliver_nested_posted_interrupt() to set pi_pending=true and
KVM_REQ_EVENT before calling kvm_vcpu_trigger_posted_interrupt().
It will fix the first scenario by chaging step (6) to note that
KVM_REQ_EVENT and pi_pending=true and therefore process
nested posted-interrupt.
It will fix the second scenario by two possible ways:
1. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B has changed
vcpu->mode to IN_GUEST_MODE, physical IPI will be sent and will be received
when CPU resumes into L2.
2. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B hasn't yet
changed vcpu->mode to IN_GUEST_MODE, then after CPU B will change
vcpu->mode it will call kvm_request_pending() which will return true and
therefore force another round of vcpu_enter_guest() which will note that
KVM_REQ_EVENT and pi_pending=true and therefore process nested
posted-interrupt.
Cc: stable@vger.kernel.org
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
[Add kvm_vcpu_kick to also handle the case where L1 doesn't intercept L2 HLT
and L2 executes HLT instruction. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Before each vmentry to guest, vcpu_enter_guest() calls sync_pir_to_irr()
which calls vmx_hwapic_irr_update() to update RVI.
Currently, vmx_hwapic_irr_update() contains a tweak in case it is called
when CPU is running L2 and L1 don't intercept external-interrupts.
In that case, code injects interrupt directly into L2 instead of
updating RVI.
Besides being hacky (wouldn't expect function updating RVI to also
inject interrupt), it also doesn't handle this case correctly.
The code contains several issues:
1. When code calls kvm_queue_interrupt() it just passes it max_irr which
represents the highest IRR currently pending in L1 LAPIC.
This is problematic as interrupt was injected to guest but it's bit is
still set in LAPIC IRR instead of being cleared from IRR and set in ISR.
2. Code doesn't check if LAPIC PPR is set to accept an interrupt of
max_irr priority. It just checks if interrupts are enabled in guest with
vmx_interrupt_allowed().
To fix the above issues:
1. Simplify vmx_hwapic_irr_update() to just update RVI.
Note that this shouldn't happen when CPU is running L2
(See comment in code).
2. Since now vmx_hwapic_irr_update() only does logic for L1
virtual-interrupt-delivery, inject_pending_event() should be the
one responsible for injecting the interrupt directly into L2.
Therefore, change kvm_cpu_has_injectable_intr() to check L1
LAPIC when CPU is running L2.
3. Change vmx_sync_pir_to_irr() to set KVM_REQ_EVENT when L1
has a pending injectable interrupt.
Fixes: 963fee1656 ("KVM: nVMX: Fix virtual interrupt delivery
injection")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In case posted-interrupt was delivered to CPU while it is in host
(outside guest), then posted-interrupt delivery will be done by
calling sync_pir_to_irr() at vmentry after interrupts are disabled.
sync_pir_to_irr() will check vmx->pi_desc.control ON bit and if
set, it will sync vmx->pi_desc.pir to IRR and afterwards update RVI to
ensure virtual-interrupt-delivery will dispatch interrupt to guest.
However, it is possible that L1 will receive a posted-interrupt while
CPU runs at host and is about to enter L2. In this case, the call to
sync_pir_to_irr() will indeed update the L1's APIC IRR but
vcpu_enter_guest() will then just resume into L2 guest without
re-evaluating if it should exit from L2 to L1 as a result of this
new pending L1 event.
To address this case, if sync_pir_to_irr() has a new L1 injectable
interrupt and CPU is running L2, we force exit GUEST_MODE which will
result in another iteration of vcpu_run() run loop which will call
kvm_vcpu_running() which will call check_nested_events() which will
handle the pending L1 event properly.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
sync_pir_to_irr() is only called if vcpu->arch.apicv_active()==true.
In case it is false, VMX code make sure to set sync_pir_to_irr
to NULL.
Therefore, having SVM stubs allows to remove check for if
sync_pir_to_irr != NULL from all calling sites.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
[Return highest IRR in the SVM case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kvm_clear_exception_queue() should clear pending exception.
This also includes exceptions which were only marked pending but not
yet injected. This is because exception.pending is used for both L1
and L2 to determine if an exception should be raised to guest.
Note that an exception which is pending but not yet injected will
be raised again once the guest will be resumed.
Consider the following scenario:
1) L0 KVM with ignore_msrs=false.
2) L1 prepare vmcs12 with the following:
a) No intercepts on MSR (MSR_BITMAP exist and is filled with 0).
b) No intercept for #GP.
c) vmx-preemption-timer is configured.
3) L1 enters into L2.
4) L2 reads an unhandled MSR that exists in MSR_BITMAP
(such as 0x1fff).
L2 RDMSR could be handled as described below:
1) L2 exits to L0 on RDMSR and calls handle_rdmsr().
2) handle_rdmsr() calls kvm_inject_gp() which sets
KVM_REQ_EVENT, exception.pending=true and exception.injected=false.
3) vcpu_enter_guest() consumes KVM_REQ_EVENT and calls
inject_pending_event() which calls vmx_check_nested_events()
which sees that exception.pending=true but
nested_vmx_check_exception() returns 0 and therefore does nothing at
this point. However let's assume it later sees vmx-preemption-timer
expired and therefore exits from L2 to L1 by calling
nested_vmx_vmexit().
4) nested_vmx_vmexit() calls prepare_vmcs12()
which calls vmcs12_save_pending_event() but it does nothing as
exception.injected is false. Also prepare_vmcs12() calls
kvm_clear_exception_queue() which does nothing as
exception.injected is already false.
5) We now return from vmx_check_nested_events() with 0 while still
having exception.pending=true!
6) Therefore inject_pending_event() continues
and we inject L2 exception to L1!...
This commit will fix above issue by changing step (4) to
clear exception.pending in kvm_clear_exception_queue().
Fixes: 664f8e26b0 ("KVM: X86: Fix loss of exception which has not yet been injected")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
... just like in vmx_set_msr().
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Some reserved pages, such as those from NVDIMM DAX devices, are not
for MMIO, and can be mapped with cached memory type for better
performance. However, the above check misconceives those pages as
MMIO. Because KVM maps MMIO pages with UC memory type, the
performance of guest accesses to those pages would be harmed.
Therefore, we check the host memory type in addition and only treat
UC/UC-/WC pages as MMIO.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: Cuevas Escareno, Ivan D <ivan.d.cuevas.escareno@intel.com>
Reported-by: Kumar, Karthik <karthik.kumar@intel.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Check whether the PAT memory type of a pfn cannot be overridden by
MTRR UC memory type, i.e. the PAT memory type is UC, UC- or WC. This
function will be used by KVM to distinguish MMIO pfns and give them
UC memory type in the EPT page tables (on Intel processors, EPT
memory types work like MTRRs).
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Avoid reverse dependencies. Instead, SEV will only be enabled if
the PSP driver is available.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.
SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.
The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.
The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.
The following links provide additional details:
AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
AMD64 Architecture Programmer's Manual:
http://support.amd.com/TechDocs/24593.pdf
SME is section 7.10
SEV is section 15.34
SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf
KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
SEV Guest BIOS support:
SEV support has been add to EDKII/OVMF BIOS
https://github.com/tianocore/edk2
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
xsetbv can be expensive when running on nested virtualization, try to
avoid it.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Quan Xu <quan.xu0@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
syzkaller reported:
WARNING: CPU: 0 PID: 12927 at arch/x86/kernel/traps.c:780 do_debug+0x222/0x250
CPU: 0 PID: 12927 Comm: syz-executor Tainted: G OE 4.15.0-rc2+ #16
RIP: 0010:do_debug+0x222/0x250
Call Trace:
<#DB>
debug+0x3e/0x70
RIP: 0010:copy_user_enhanced_fast_string+0x10/0x20
</#DB>
_copy_from_user+0x5b/0x90
SyS_timer_create+0x33/0x80
entry_SYSCALL_64_fastpath+0x23/0x9a
The testcase sets a watchpoint (with perf_event_open) on a buffer that is
passed to timer_create() as the struct sigevent argument. In timer_create(),
copy_from_user()'s rep movsb triggers the BP. The testcase also sets
the debug registers for the guest.
However, KVM only restores host debug registers when the host has active
watchpoints, which triggers a race condition when running the testcase with
multiple threads. The guest's DR6.BS bit can escape to the host before
another thread invokes timer_create(), and do_debug() complains.
The fix is to respect do_debug()'s dr6 invariant when leaving KVM.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When running on a virtual machine, IPIs are expensive when the target
CPU is sleeping. Thus, it is nice to be able to avoid them for TLB
shootdowns. KVM can just do the flush via INVVPID on the guest's behalf
the next time the CPU is scheduled.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Use "&" to test the bit instead of "==". - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush,
it will be used by later patches to just flush guest tlb.
For VMX, this will use INVVPID instead of INVEPT, which will invalidate
combined mappings while keeping guest-physical mappings.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Remote TLB flush does a busy wait which is fine in bare-metal
scenario. But with-in the guest, the vcpus might have been pre-empted or
blocked. In this scenario, the initator vcpu would end up busy-waiting
for a long amount of time; it also consumes CPU unnecessarily to wake
up the target of the shootdown.
This patch set adds support for KVM's new paravirtualized TLB flush;
remote TLB flush does not wait for vcpus that are sleeping, instead
KVM will flush the TLB as soon as the vCPU starts running again.
The improvement is clearly visible when the host is overcommitted; in this
case, the PV TLB flush (in addition to avoiding the wait on the main CPU)
prevents preempted vCPUs from stealing precious execution time from the
running ones.
Testing on a Xeon Gold 6142 2.6GHz 2 sockets, 32 cores, 64 threads,
so 64 pCPUs, and each VM is 64 vCPUs.
ebizzy -M
vanilla optimized boost
1VM 46799 48670 4%
2VM 23962 42691 78%
3VM 16152 37539 132%
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The next patch will add another bit to the preempted field in
kvm_steal_time. Define a constant for bit 0 (the only one that is
currently used).
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Replaces hard-coded node ID shift for the descriptor base MMR to fix
initialization on UV4A while maintaining support for previous architectures.
Signed-off-by: Andrew Banman <abanman@hpe.com>
Acked-by: Mike Travis <mike.travis@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1515440592-44060-1-git-send-email-abanman@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Along with the fixes in UV4A (rev2) MMRs, the code to access those
MMRs also was modified by the fixes. UV3, UV4, and UV4A no longer
have compatible setups for Global Address Memory (GAM).
Correct the new mistakes.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Acked-by: Andrew Banman <abanman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1515440405-20880-6-git-send-email-mike.travis@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel processor changes necessitated UV4 HUB Global Address Memory
(GAM) fixes to accommodate support for those processors. This patch
deals with the updated address range change from 46 to 52 bits in UV4A.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Acked-by: Andrew Banman <abanman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1515440405-20880-5-git-send-email-mike.travis@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Upcoming Intel CascadeLake and IceLake processors have some architecture
changes that required fixes in the UV4 HUB bringing that chip to
revision 2. The nomenclature for that new chip is "UV4A".
This patch fixes the references for the expanded MMR definitions in the
previous (automated) patch.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Acked-by: Andrew Banman <abanman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1515440405-20880-3-git-send-email-mike.travis@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Among the existing architecture specific versions of
copy_siginfo_to_user32 there are several different implementation
problems. Some architectures fail to handle all of the cases in in
the siginfo union. Some architectures perform a blind copy of the
siginfo union when the si_code is negative. A blind copy suggests the
data is expected to be in 32bit siginfo format, which means that
receiving such a signal via signalfd won't work, or that the data is
in 64bit siginfo and the code is copying nonsense to userspace.
Create a single instance of copy_siginfo_to_user32 that all of the
architectures can share, and teach it to handle all of the cases in
the siginfo union correctly, with the assumption that siginfo is
stored internally to the kernel is 64bit siginfo format.
A special case is made for x86 x32 format. This is needed as presence
of both x32 and ia32 on x86_64 results in two different 32bit signal
formats. By allowing this small special case there winds up being
exactly one code base that needs to be maintained between all of the
architectures. Vastly increasing the testing base and the chances of
finding bugs.
As the x86 copy of copy_siginfo_to_user32 the call of the x86
signal_compat_build_tests were moved into sigaction_compat_abi, so
that they will keep running.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Currently the BSP microcode update code examines the initrd very early
in the boot process. If SME is active, the initrd is treated as being
encrypted but it has not been encrypted (in place) yet. Update the
early boot code that encrypts the kernel to also encrypt the initrd so
that early BSP microcode updates work.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192634.6026.10452.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for encrypting more than just the kernel, the encryption
support in sme_encrypt_kernel() needs to support 4KB page aligned
encryption instead of just 2MB large page aligned encryption.
Update the routines that populate the PGD to support non-2MB aligned
addresses. This is done by creating PTE page tables for the start
and end portion of the address range that fall outside of the 2MB
alignment. This results in, at most, two extra pages to hold the
PTE entries for each mapping of a range.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192626.6026.75387.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for encrypting more than just the kernel during early
boot processing, centralize the use of the PMD flag settings based
on the type of mapping desired. When 4KB aligned encryption is added,
this will allow either PTE flags or large page PMD flags to be used
without requiring the caller to adjust.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192615.6026.14767.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for follow-on patches, combine the PGD mapping parameters
into a struct to reduce the number of function arguments and allow for
direct updating of the next pagetable mapping area pointer.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192605.6026.96206.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up the use of PUSH and POP and when registers are saved in the
__enc_copy() assembly function in order to improve the readability of the code.
Move parameter register saving into general purpose registers earlier
in the code and move all the pushes to the beginning of the function
with corresponding pops at the end.
We do this to prepare fixes.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192556.6026.74187.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The function copy_siginfo_from_user32 is used for two things, in ptrace
since the dawn of siginfo for arbirarily modifying a signal that
user space sees, and in sigqueueinfo to send a signal with arbirary
siginfo data.
Create a single copy of copy_siginfo_from_user32 that all architectures
share, and teach it to handle all of the cases in the siginfo union.
In the generic version of copy_siginfo_from_user32 ensure that all
of the fields in siginfo are initialized so that the siginfo structure
can be safely copied to userspace if necessary.
When copying the embedded sigval union copy the si_int member. That
ensures the 32bit values passes through the kernel unchanged.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Having si_codes in many different files simply encourages duplicate
definitions that can cause problems later. To avoid that merge the
ia64 specific si_codes into uapi/asm-generic/siginfo.h
Update the sanity checks in arch/x86/kernel/signal_compat.c to expect
the now lager NSIGILL and NSIGFPE. As nothing excpe the larger count
is exposed on x86 no additional code needs to be updated.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
--EWB Added #ifdef CONFIG_X86_X32_ABI to arch/x86/kernel/signal_compat.c
Changed #ifdef CONFIG_X86_X32 to #ifdef CONFIG_X86_X32_ABI in
linux/compat.h
CONFIG_X86_X32 is set when the user requests X32 support.
CONFIG_X86_X32_ABI is set when the user requests X32 support
and the tool-chain has X32 allowing X32 support to be built.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This ioctl is obsolete (it was used by Xenner as far as I know) but
still let's not break it gratuitously... Its handler is copying
directly into struct kvm. Go through a bounce buffer instead, with
the added benefit that we can actually do something useful with the
flags argument---the previous code was exiting with -EINVAL but still
doing the copy.
This technically is a userspace ABI breakage, but since no one should be
using the ioctl, it's a good occasion to see if someone actually
complains.
Cc: kernel-hardening@lists.openwall.com
Cc: Kees Cook <keescook@chromium.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
This whitelists the FPU register state portion of the thread_struct for
copying to userspace, instead of the default entire struct. This is needed
because FPU register state is dynamically sized, so it doesn't bypass the
hardened usercopy checks.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Rik van Riel <riel@redhat.com>
Building jailhouse support without PCI results in a link error:
arch/x86/kernel/jailhouse.o: In function `jailhouse_init_platform':
jailhouse.c:(.init.text+0x235): undefined reference to `pci_probe'
arch/x86/kernel/jailhouse.o: In function `jailhouse_pci_arch_init':
jailhouse.c:(.init.text+0x265): undefined reference to `pci_direct_init'
jailhouse.c:(.init.text+0x26c): undefined reference to `pcibios_last_bus'
Add the missing Kconfig dependency.
Fixes: a0c01e4bb9 ("x86/jailhouse: Initialize PCI support")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Link: https://lkml.kernel.org/r/20180115155150.51407-1-arnd@arndb.de
x2apic_phys is not available when CONFIG_X86_X2APIC=n and the code is not
optimized out resulting in a build fail:
jailhouse.c: In function ‘jailhouse_get_smp_config’:
jailhouse.c:73:3: error: ‘x2apic_phys’ undeclared (first use in this function)
Fixes: 11c8dc419b ("x86/jailhouse: Enable APIC and SMP support")
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: jailhouse-dev@googlegroups.com
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
We'll need that name for a generic implementation soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
To implement the x86 forbid_dac and iommu_sac_force we want an arch hook
so that it can apply the global options across all dma_map_ops
implementations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Lift the code from x86 so that we behave consistently. In the future we
should probably warn if any of these is set.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
The PAUSE instruction is currently used in the retpoline and RSB filling
macros as a speculation trap. The use of PAUSE was originally suggested
because it showed a very, very small difference in the amount of
cycles/time used to execute the retpoline as compared to LFENCE. On AMD,
the PAUSE instruction is not a serializing instruction, so the pause/jmp
loop will use excess power as it is speculated over waiting for return
to mispredict to the correct target.
The RSB filling macro is applicable to AMD, and, if software is unable to
verify that LFENCE is serializing on AMD (possible when running under a
hypervisor), the generic retpoline support will be used and, so, is also
applicable to AMD. Keep the current usage of PAUSE for Intel, but add an
LFENCE instruction to the speculation trap for AMD.
The same sequence has been adopted by GCC for the GCC generated retpolines.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Kees Cook <keescook@google.com>
Link: https://lkml.kernel.org/r/20180113232730.31060.36287.stgit@tlendack-t1.amdoffice.net
On context switch from a shallow call stack to a deeper one, as the CPU
does 'ret' up the deeper side it may encounter RSB entries (predictions for
where the 'ret' goes to) which were populated in userspace.
This is problematic if neither SMEP nor KPTI (the latter of which marks
userspace pages as NX for the kernel) are active, as malicious code in
userspace may then be executed speculatively.
Overwrite the CPU's return prediction stack with calls which are predicted
to return to an infinite loop, to "capture" speculation if this
happens. This is required both for retpoline, and also in conjunction with
IBRS for !SMEP && !KPTI.
On Skylake+ the problem is slightly different, and an *underflow* of the
RSB may cause errant branch predictions to occur. So there it's not so much
overwrite, as *filling* the RSB to attempt to prevent it getting
empty. This is only a partial solution for Skylake+ since there are many
other conditions which may result in the RSB becoming empty. The full
solution on Skylake+ is to use IBRS, which will prevent the problem even
when the RSB becomes empty. With IBRS, the RSB-stuffing will not be
required on context switch.
[ tglx: Added missing vendor check and slighty massaged comments and
changelog ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk
Currently KASAN doesn't panic in case it don't have enough memory
to boot. Instead, it crashes in some random place:
kernel BUG at arch/x86/mm/physaddr.c:27!
RIP: 0010:__phys_addr+0x268/0x276
Call Trace:
kasan_populate_shadow+0x3f2/0x497
kasan_init+0x12e/0x2b2
setup_arch+0x2825/0x2a2c
start_kernel+0xc8/0x15f4
x86_64_start_reservations+0x2a/0x2c
x86_64_start_kernel+0x72/0x75
secondary_startup_64+0xa5/0xb0
Use memblock_virt_alloc_try_nid() for allocations without failure
fallback. It will panic with an out of memory message.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Cc: Alexander Potapenko <glider@google.com>
Cc: lkp@01.org
Link: https://lkml.kernel.org/r/20180110153602.18919-1-aryabinin@virtuozzo.com
Pull x86 fixlet from Thomas Gleixner.
Remove a warning about lack of compiler support for retpoline that most
people can't do anything about, so it just annoys them needlessly.
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Remove compile time warning
Remove the compile time warning when CONFIG_RETPOLINE=y and the compiler
does not have retpoline support. Linus rationale for this is:
It's wrong because it will just make people turn off RETPOLINE, and the
asm updates - and return stack clearing - that are independent of the
compiler are likely the most important parts because they are likely the
ones easiest to target.
And it's annoying because most people won't be able to do anything about
it. The number of people building their own compiler? Very small. So if
their distro hasn't got a compiler yet (and pretty much nobody does), the
warning is just annoying crap.
It is already properly reported as part of the sysfs interface. The
compile-time warning only encourages bad things.
Fixes: 76b043848f ("x86/retpoline: Add initial retpoline support")
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Link: https://lkml.kernel.org/r/CA+55aFzWgquv4i6Mab6bASqYXg3ErV3XDFEYf=GEcCDQg5uAtw@mail.gmail.com
The typical I/O interrupts in non-root cells are MSI-based. However, the
platform UARTs do not support MSI. In order to run a non-root cell that
shall use one of them, the standard IOAPIC must be registered and 1:1
routing for IRQ 3 and 4 set up.
If an IOAPIC is not available, the boot loader clears standard_ioapic in
the setup data, so registration is skipped. If the guest is not allowed to
to use one of those pins, Jailhouse will simply ignore the access.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/90d942dda9d48a8046e00bb3c1bb6757c83227be.1511770314.git.jan.kiszka@siemens.com
Non-root cells do not have CMOS access, thus the warm reset cannot be
enabled. There is no RTC, thus also no wall clock. Furthermore, there
are no ISA IRQs and no PIC.
Also disable probing of i8042 devices that are typically blocked for
non-root cells. In theory, access could also be granted to a non-root
cell, provided the root cell is not using the devices. But there is no
concrete scenario in sight, and disabling probing over Jailhouse allows
to build generic kernels that keep CONFIG_SERIO enabled for use in
normal systems.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/39b68cc2c496501c9d95e6f40e5d76e3053c3908.1511770314.git.jan.kiszka@siemens.com
Register the APIC which Jailhouse always exposes at 0xfee00000 if in
xAPIC mode or via MSRs as x2APIC. The latter is only available if it was
already activated because there is no support for switching its mode
during runtime.
Jailhouse requires the APIC to be operated in phys-flat mode. Ensure
that this mode is selected by Linux.
The available CPUs are taken from the setup data structure that the
loader filled and registered with the kernel.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/8b2255da0a9856c530293a67aa9d6addfe102a2b.1511770314.git.jan.kiszka@siemens.com
The Jailhouse hypervisor is able to statically partition a multicore
system into multiple so-called cells. Linux is used as boot loader and
continues to run in the root cell after Jailhouse is enabled. Linux can
also run in non-root cells.
Jailhouse does not emulate usual x86 devices. It also provides no
complex ACPI but basic platform information that the boot loader
forwards via setup data. This adds the infrastructure to detect when
running in a non-root cell so that the platform can be configured as
required in succeeding steps.
Support is limited to x86-64 so far, primarily because no boot loader
stub exists for i386 and, thus, we wouldn't be able to test the 32-bit
path.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/7f823d077b38b1a70c526b40b403f85688c137d3.1511770314.git.jan.kiszka@siemens.com
As the comment already stated, there is no need for setting up LDR (and
DFR) in physflat mode as it remains unused (see SDM, 10.6.2.1).
flat_init_apic_ldr only served as a placeholder for a nop operation so
far, causing no harm.
That will change when running over the Jailhouse hypervisor. Here we
must not touch LDR in a way that destroys the mapping originally set up
by the Linux root cell. Jailhouse enforces this setting in order to
efficiently validate any IPI requests sent by a cell.
Avoid a needless clash caused by flat_init_apic_ldr by installing a true
nop handler.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/f9867d294cdae4d45ed89d3a2e6adb524f4f6794.1511770314.git.jan.kiszka@siemens.com
Without TSC_KNOWN_FREQ the TSC clocksource is registered so late that the
kernel first switches to the HPET. Using HPET on large CPU count machines is
undesirable.
Therefore register a tsc-early clocksource using the preliminary tsc_khz
from quick calibration. Then when the final TSC calibration is done, it
can switch to the tuned frequency.
The only notably problem is that the real tsc clocksource must be marked
with CLOCK_SOURCE_VALID_FOR_HRES, otherwise it will not be selected when
unregistering tsc-early. tsc-early cannot be left registered, because then
the clocksource code would fall back to it when we tsc clocksource is
marked unstable later.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: len.brown@intel.com
Cc: rui.zhang@intel.com
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20171222092243.431585460@infradead.org
Zhang Rui reported that a Surface Pro 4 will fail to boot with
lapic=notscdeadline. Part of the problem is that that machine doesn't have
a PIT.
If, for some reason, the TSC init has to fall back to TSC calibration, it
relies on the PIT to be present.
Allow TSC calibration to reliably fall back to HPET.
The below results in an accurate TSC measurement when forced on a IVB:
tsc: Unable to calibrate against PIT
tsc: No reference (HPET/PMTIMER) available
tsc: Unable to calibrate against PIT
tsc: using HPET reference calibration
tsc: Detected 2792.451 MHz processor
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: len.brown@intel.com
Cc: rui.zhang@intel.com
Link: https://lkml.kernel.org/r/20171222092243.333145937@infradead.org
Mark the C exception handler functions that are directly called through
exception tables visible. LTO needs to know they are accessed from assembler.
[ tglx: Mopped up the wrecked argument alignment. Sigh.... ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20171222001821.2157-6-andi@firstfloor.org
__const_udelay is marked inline, and LTO will happily inline it everywhere
Dropping the inline saves ~44k text in a LTO build.
13999560 1740864 1499136 17239560 1070e08 vmlinux-with-udelay-inline
13954764 1736768 1499136 17190668 1064f0c vmlinux-wo-udelay-inline
Inlining it has no advantage in general, so its the right thing to do.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20171222001821.2157-2-andi@firstfloor.org
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
SEGV_PKUERR is a signal specific si_code which happens to have the same
numeric value as several others: BUS_MCEERR_AR, ILL_ILLTRP, FPE_FLTOVF,
TRAP_HWBKPT, CLD_TRAPPED, POLL_ERR, SEGV_THREAD_ID, as such it is not safe
to just test the si_code the signal number must also be tested to prevent a
false positive in fill_sig_info_pkey.
This error was by inspection, and BUS_MCEERR_AR appears to be a real
candidate for confusion. So pass in si_signo and check for SIG_SEGV to
verify that it is actually a SEGV_PKUERR
Fixes: 019132ff3d ("x86/mm/pkeys: Fill in pkey field in siginfo")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180112203135.4669-2-ebiederm@xmission.com
If CPU and TSC frequency are the same the printout of the CPU frequency is
valid for the TSC as well:
tsc: Detected 2900.000 MHz processor
If the TSC frequency is different there is no information in dmesg. Add a
conditional printout:
tsc: Detected 2904.000 MHz TSC
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Link: https://lkml.kernel.org/r/537b342debcd8e8aebc8d631015dcdf9f9ba8a26.1513920414.git.len.brown@intel.com
The INTEL_FAM6_SKYLAKE_X hardcoded crystal_khz value of 25MHZ is
problematic:
- SKX workstations (with same model # as server variants) use a 24 MHz
crystal. This results in a -4.0% time drift rate on SKX workstations.
- SKX servers subject the crystal to an EMI reduction circuit that reduces its
actual frequency by (approximately) -0.25%. This results in -1 second per
10 minute time drift as compared to network time.
This issue can also trigger a timer and power problem, on configurations
that use the LAPIC timer (versus the TSC deadline timer). Clock ticks
scheduled with the LAPIC timer arrive a few usec before the time they are
expected (according to the slow TSC). This causes Linux to poll-idle, when
it should be in an idle power saving state. The idle and clock code do not
graciously recover from this error, sometimes resulting in significant
polling and measurable power impact.
Stop using native_calibrate_tsc() for INTEL_FAM6_SKYLAKE_X.
native_calibrate_tsc() will return 0, boot will run with tsc_khz = cpu_khz,
and the TSC refined calibration will update tsc_khz to correct for the
difference.
[ tglx: Sanitized change log ]
Fixes: 6baf3d6182 ("x86/tsc: Add additional Intel CPU models to the crystal quirk list")
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/ff6dcea166e8ff8f2f6a03c17beab2cb436aa779.1513920414.git.len.brown@intel.com
If the crystal frequency cannot be determined via CPUID(15).crystal_khz or
the built-in table then native_calibrate_tsc() will still set the
X86_FEATURE_TSC_KNOWN_FREQ flag which prevents the refined TSC calibration.
As a consequence such systems use cpu_khz for the TSC frequency which is
incorrect when cpu_khz != tsc_khz resulting in time drift.
Return early when the crystal frequency cannot be retrieved without setting
the X86_FEATURE_TSC_KNOWN_FREQ flag. This ensures that the refined TSC
calibration is invoked.
[ tglx: Steam-blastered changelog. Sigh ]
Fixes: 4ca4df0b7e ("x86/tsc: Mark TSC frequency determined by CPUID as known")
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: Bin Gao <bin.gao@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/0fe2503aa7d7fc69137141fc705541a78101d2b9.1513920414.git.len.brown@intel.com
The intel_bts driver does not use the 'normal' BTS buffer which is exposed
through the cpu_entry_area but instead uses the memory allocated for the
perf AUX buffer.
This obviously comes apart when using PTI because then the kernel mapping;
which includes that AUX buffer memory; disappears. Fixing this requires to
expose a mapping which is visible in all context and that's not trivial.
As a quick fix disable this driver when PTI is enabled to prevent
malfunction.
Fixes: 385ce0ea4c ("x86/mm/pti: Add Kconfig")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Reported-by: Robert Święcki <robert@swiecki.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: greg@kroah.com
Cc: hughd@google.com
Cc: luto@amacapital.net
Cc: Vince Weaver <vince@deater.net>
Cc: torvalds@linux-foundation.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180114102713.GB6166@worktop.programming.kicks-ass.net
The switch to the user space page tables in the low level ASM code sets
unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base
address of the page directory to the user part, bit 11 is switching the
PCID to the PCID associated with the user page tables.
This fails on a machine which lacks PCID support because bit 11 is set in
CR3. Bit 11 is reserved when PCID is inactive.
While the Intel SDM claims that the reserved bits are ignored when PCID is
disabled, the AMD APM states that they should be cleared.
This went unnoticed as the AMD APM was not checked when the code was
developed and reviewed and test systems with Intel CPUs never failed to
boot. The report is against a Centos 6 host where the guest fails to boot,
so it's not yet clear whether this is a virt issue or can happen on real
hardware too, but thats irrelevant as the AMD APM clearly ask for clearing
the reserved bits.
Make sure that on non PCID machines bit 11 is not set by the page table
switching code.
Andy suggested to rename the related bits and masks so they are clearly
describing what they should be used for, which is done as well for clarity.
That split could have been done with alternatives but the macro hell is
horrible and ugly. This can be done on top if someone cares to remove the
extra orq. For now it's a straight forward fix.
Fixes: 6fd166aae7 ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
Since error-injection framework is not limited to be used
by kprobes, nor bpf. Other kernel subsystems can use it
freely for checking safeness of error-injection, e.g.
livepatch, ftrace etc.
So this separate error-injection framework from kprobes.
Some differences has been made:
- "kprobe" word is removed from any APIs/structures.
- BPF_ALLOW_ERROR_INJECTION() is renamed to
ALLOW_ERROR_INJECTION() since it is not limited for BPF too.
- CONFIG_FUNCTION_ERROR_INJECTION is the config item of this
feature. It is automatically enabled if the arch supports
error injection feature for kprobe or ftrace etc.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Check whether error injectable event is on function entry or not.
Currently it checks the event is ftrace-based kprobes or not,
but that is wrong. It should check if the event is on the entry
of target function. Since error injection will override a function
to just return with modified return value, that operation must
be done before the target function starts making stackframe.
As a side effect, bpf error injection is no need to depend on
function-tracer. It can work with sw-breakpoint based kprobe
events too.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
SEGV_PKUERR is a signal specific si_code which happens to have the
same numeric value as several others: BUS_MCEERR_AR, ILL_ILLTRP,
FPE_FLTOVF, TRAP_HWBKPT, CLD_TRAPPED, POLL_ERR, SEGV_THREAD_ID,
as such it is not safe to just test the si_code the signal number
must also be tested to prevent a false positive in fill_sig_info_pkey.
I found this error by inspection, and BUS_MCEERR_AR appears to
be a real candidate for confusion. So pass in si_signo and fix it.
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Fixes: 019132ff3d ("x86/mm/pkeys: Fill in pkey field in siginfo")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull x86 fixes from Ingo Molnar:
"Two pending (non-PTI) x86 fixes:
- an Intel-MID crash fix
- and an Intel microcode loader blacklist quirk to avoid a
problematic revision"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform/intel-mid: Revert "Make 'bt_sfi_data' const"
x86/microcode/intel: Extend BDW late-loading with a revision check
Pull locking fixes from Ingo Molnar:
"No functional effects intended: removes leftovers from recent lockdep
and refcounts work"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/refcounts: Remove stale comment from the ARCH_HAS_REFCOUNT Kconfig entry
locking/lockdep: Remove cross-release leftovers
locking/Documentation: Remove stale crossrelease_fullstack parameter
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJaWMzkAAoJELDendYovxMvyRQH/34SP3oe7EtapIwDg0YqXBgJ
0nX2ZgMvhylR1ANZ4mPwP5z/CQZvrFWWAqhPZdGTntrzkvsNf5uZ0s38f3fk/eu8
3XxSDoZRrr/RFms42smS3NZRMFgagzLRrCVZrFWgFaDmsa/2/e6k46GAPRHI8Chg
tEB6h8yHp1R9s4Z232I5pkilA7/ggABk8oRgKWQzrVqnfuD0G+byDm0h0kgan6br
a63XVD1JTGCmEFI2KaRCthd+r5H34oDMEUS4anJXVdWwid23rSbsAsbO7Cfb9qKR
XDA/ls371IrcqiHhnWepuXyUs811hF8qRoSTmG6gDtPXxazONcw0x0L8lK+S5Wo=
=gLWS
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.15-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"This contains two build fixes for clang and two fixes for rather
unlikely situations in the Xen gntdev driver"
* tag 'for-linus-4.15-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/gntdev: Fix partial gntdev_mmap() cleanup
xen/gntdev: Fix off-by-one error when unmapping with holes
x86: xen: remove the use of VLAIS
x86/xen/time: fix section mismatch for xen_init_time_ops()
Perf-fuzzer triggers non-existent MSR access in RAPL driver on
Haswell-EX.
Haswell/Broadwell server and client have differnt RAPL events.
Since 'commit 7f2236d0bf ("perf/x86/rapl: Use Intel family macros for
RAPL")', it accidentally assign RAPL client events to server.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-kernel@vger.kernel.org
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert salsa20-asm from the deprecated "blkcipher" API to the
"skcipher" API, in the process fixing it up to use the generic helpers.
This allows removing the salsa20_keysetup() and salsa20_ivsetup()
assembly functions, which aren't performance critical; the C versions do
just fine.
This also fixes the same bug that salsa20-generic had, where the state
array was being maintained directly in the transform context rather than
on the stack or in the request context. Thus, if multiple threads used
the same Salsa20 transform concurrently they produced the wrong results.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We need to consistently enforce that keyed hashes cannot be used without
setting the key. To do this we need a reliable way to determine whether
a given hash algorithm is keyed or not. AF_ALG currently does this by
checking for the presence of a ->setkey() method. However, this is
actually slightly broken because the CRC-32 algorithms implement
->setkey() but can also be used without a key. (The CRC-32 "key" is not
actually a cryptographic key but rather represents the initial state.
If not overridden, then a default initial state is used.)
Prepare to fix this by introducing a flag CRYPTO_ALG_OPTIONAL_KEY which
indicates that the algorithm has a ->setkey() method, but it is not
required to be called. Then set it on all the CRC-32 algorithms.
The same also applies to the Adler-32 implementation in Lustre.
Also, the cryptd and mcryptd templates have to pass through the flag
from their underlying algorithm.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since Poly1305 requires a nonce per invocation, the Linux kernel
implementations of Poly1305 don't use the crypto API's keying mechanism
and instead expect the key and nonce as the first 32 bytes of the data.
But ->setkey() is still defined as a stub returning an error code. This
prevents Poly1305 from being used through AF_ALG and will also break it
completely once we start enforcing that all crypto API users (not just
AF_ALG) call ->setkey() if present.
Fix it by removing crypto_poly1305_setkey(), leaving ->setkey as NULL.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In accordance with the Intel and AMD documentation, we need to overwrite
all entries in the RSB on exiting a guest, to prevent malicious branch
target predictions from affecting the host kernel. This is needed both
for retpoline and for IBRS.
[ak: numbers again for the RSB stuffing labels]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515755487-8524-1-git-send-email-dwmw@amazon.co.uk
pci_get_bus_and_slot() is restrictive such that it assumes domain=0 as
where a PCI device is present. This restricts the device drivers to be
reused for other domain numbers.
Getting ready to remove pci_get_bus_and_slot() function in favor of
pci_get_domain_bus_and_slot().
Use domain number of 0 as the domain number is not available in struct
irq_routing_table.
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Signed-off-by: Bjorn Helgaas <helgaas@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>