Commit Graph

130 Commits

Author SHA1 Message Date
Linus Torvalds 112cbae26d Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
 "This fixes a performance regression in arm64 NEON crypto as well as a
  crash in x86 aegis/morus on unsupported CPUs"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
  crypto: x86/aegis,morus - Fix and simplify CPUID checks
  crypto: arm64 - revert NEON yield for fast AEAD implementations
2018-08-09 10:00:15 -07:00
Ard Biesheuvel f10dc56c64 crypto: arm64 - revert NEON yield for fast AEAD implementations
As it turns out, checking the TIF_NEED_RESCHED flag after each
iteration results in a significant performance regression (~10%)
when running fast algorithms (i.e., ones that use special instructions
and operate in the < 4 cycles per byte range) on in-order cores with
comparatively slow memory accesses such as the Cortex-A53.

Given the speed of these ciphers, and the fact that the page based
nature of the AEAD scatterwalk API guarantees that the core NEON
transform is never invoked with more than a single page's worth of
input, we can estimate the worst case duration of any resulting
scheduling blackout: on a 1 GHz Cortex-A53 running with 64k pages,
processing a page's worth of input at 4 cycles per byte results in
a delay of ~250 us, which is a reasonable upper bound.

So let's remove the yield checks from the fused AES-CCM and AES-GCM
routines entirely.

This reverts commit 7b67ae4d5c and
partially reverts commit 7c50136a8a.

Fixes: 7c50136a8a ("crypto: arm64/aes-ghash - yield NEON after every ...")
Fixes: 7b67ae4d5c ("crypto: arm64/aes-ccm - yield NEON after every ...")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:26:23 +08:00
Ard Biesheuvel c7513c2a27 crypto/arm64: aes-ce-gcm - add missing kernel_neon_begin/end pair
Calling pmull_gcm_encrypt_block() requires kernel_neon_begin() and
kernel_neon_end() to be used since the routine touches the NEON
register file. Add the missing calls.

Also, since NEON register contents are not preserved outside of
a kernel mode NEON region, pass the key schedule array again.

Fixes: 7c50136a8a ("crypto: arm64/aes-ghash - yield NEON after every ...")
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-31 13:20:30 +01:00
Jia He 6e88f01206 crypto: arm64/aes-blk - fix and move skcipher_walk_done out of kernel_neon_begin, _end
In a arm64 server(QDF2400),I met a similar might-sleep warning as [1]:
[    7.019116] BUG: sleeping function called from invalid context at
./include/crypto/algapi.h:416
[    7.027863] in_atomic(): 1, irqs_disabled(): 0, pid: 410, name:
cryptomgr_test
[    7.035106] 1 lock held by cryptomgr_test/410:
[    7.039549]  #0:         (ptrval) (&drbg->drbg_mutex){+.+.}, at:
drbg_instantiate+0x34/0x398
[    7.048038] CPU: 9 PID: 410 Comm: cryptomgr_test Not tainted
4.17.0-rc6+ #27
[    7.068228]  dump_backtrace+0x0/0x1c0
[    7.071890]  show_stack+0x24/0x30
[    7.075208]  dump_stack+0xb0/0xec
[    7.078523]  ___might_sleep+0x160/0x238
[    7.082360]  skcipher_walk_done+0x118/0x2c8
[    7.086545]  ctr_encrypt+0x98/0x130
[    7.090035]  simd_skcipher_encrypt+0x68/0xc0
[    7.094304]  drbg_kcapi_sym_ctr+0xd4/0x1f8
[    7.098400]  drbg_ctr_update+0x98/0x330
[    7.102236]  drbg_seed+0x1b8/0x2f0
[    7.105637]  drbg_instantiate+0x2ac/0x398
[    7.109646]  drbg_kcapi_seed+0xbc/0x188
[    7.113482]  crypto_rng_reset+0x4c/0xb0
[    7.117319]  alg_test_drbg+0xec/0x330
[    7.120981]  alg_test.part.6+0x1c8/0x3c8
[    7.124903]  alg_test+0x58/0xa0
[    7.128044]  cryptomgr_test+0x50/0x58
[    7.131708]  kthread+0x134/0x138
[    7.134936]  ret_from_fork+0x10/0x1c

Seems there is a bug in Ard Biesheuvel's commit.
Fixes: 6833817472 ("crypto: arm64/aes-blk - move kernel mode neon
en/disable into loop")

[1] https://www.spinics.net/lists/linux-crypto/msg33103.html

Signed-off-by: jia.he@hxt-semitech.com
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: <stable@vger.kernel.org> # 4.17
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-06-15 23:06:46 +08:00
Adam Langley c2e415fe75 crypto: clarify licensing of OpenSSL asm code
Several source files have been taken from OpenSSL. In some of them a
comment that "permission to use under GPL terms is granted" was
included below a contradictory license statement. In several cases,
there was no indication that the license of the code was compatible
with the GPLv2.

This change clarifies the licensing for all of these files. I've
confirmed with the author (Andy Polyakov) that a) he has licensed the
files with the GPLv2 comment under that license and b) that he's also
happy to license the other files under GPLv2 too. In one case, the
file is already contained in his CRYPTOGAMS bundle, which has a GPLv2
option, and so no special measures are needed.

In all cases, the license status of code has been clarified by making
the GPLv2 license prominent.

The .S files have been regenerated from the updated .pl files.

This is a comment-only change. No code is changed.

Signed-off-by: Adam Langley <agl@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-31 00:13:44 +08:00
Ard Biesheuvel 6caf7adc5e crypto: arm64/sha512-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
conditionally yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:12 +08:00
Ard Biesheuvel 7edc86cb1c crypto: arm64/sha3-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
conditionally yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:11 +08:00
Ard Biesheuvel 5b3da65177 crypto: arm64/crct10dif-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:11 +08:00
Ard Biesheuvel 4e530fba69 crypto: arm64/crc32-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:10 +08:00
Ard Biesheuvel 7c50136a8a crypto: arm64/aes-ghash - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:10 +08:00
Ard Biesheuvel 20ab633258 crypto: arm64/aes-bs - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:09 +08:00
Ard Biesheuvel 0c8f838a52 crypto: arm64/aes-blk - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:08 +08:00
Ard Biesheuvel 7b67ae4d5c crypto: arm64/aes-ccm - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:07 +08:00
Ard Biesheuvel d82f37ab5e crypto: arm64/sha2-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:06 +08:00
Ard Biesheuvel 7df8d16475 crypto: arm64/sha1-ce - yield NEON after every block of input
Avoid excessive scheduling delays under a preemptible kernel by
yielding the NEON after every block of input.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-12 00:13:05 +08:00
Ard Biesheuvel e99ce921c4 crypto: arm64 - add support for SM4 encryption using special instructions
Add support for the SM4 symmetric cipher implemented using the special
SM4 instructions introduced in ARM architecture revision 8.2.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-05 14:52:53 +08:00
Masahiro Yamada 54a702f705 kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers
GNU Make automatically deletes intermediate files that are updated
in a chain of pattern rules.

Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts
Example 2) %.o <- %.c <- %.c_shipped

A couple of makefiles mark such targets as .PRECIOUS to prevent Make
from deleting them, but the correct way is to use .SECONDARY.

  .SECONDARY
    Prerequisites of this special target are treated as intermediate
    files but are never automatically deleted.

  .PRECIOUS
    When make is interrupted during execution, it may delete the target
    file it is updating if the file was modified since make started.
    If you mark the file as precious, make will never delete the file
    if interrupted.

Both can avoid deletion of intermediate files, but the difference is
the behavior when Make is interrupted; .SECONDARY deletes the target,
but .PRECIOUS does not.

The use of .PRECIOUS is relatively rare since we do not want to keep
partially constructed (possibly corrupted) targets.

Another difference is that .PRECIOUS works with pattern rules whereas
.SECONDARY does not.

  .PRECIOUS: $(obj)/%.lex.c

works, but

  .SECONDARY: $(obj)/%.lex.c

has no effect.  However, for the reason above, I do not want to use
.PRECIOUS which could cause obscure build breakage.

The targets specified as .SECONDARY must be explicit.  $(targets)
contains all targets that need to include .*.cmd files.  So, the
intermediates you want to keep are mostly in there.  Therefore, mark
$(targets) as .SECONDARY.  It means primary targets are also marked
as .SECONDARY, but I do not see any drawback for this.

I replaced some .SECONDARY / .PRECIOUS markers with 'targets'.  This
will make Kbuild search for non-existing .*.cmd files, but this is
not a noticeable performance issue.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Frank Rowand <frowand.list@gmail.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
2018-04-07 19:04:02 +09:00
Leonard Crestez 6aaf49b495 crypto: arm,arm64 - Fix random regeneration of S_shipped
The decision to rebuild .S_shipped is made based on the relative
timestamps of .S_shipped and .pl files but git makes this essentially
random. This means that the perl script might run anyway (usually at
most once per checkout), defeating the whole purpose of _shipped.

Fix by skipping the rule unless explicit make variables are provided:
REGENERATE_ARM_CRYPTO or REGENERATE_ARM64_CRYPTO.

This can produce nasty occasional build failures downstream, for example
for toolchains with broken perl. The solution is minimally intrusive to
make it easier to push into stable.

Another report on a similar issue here: https://lkml.org/lkml/2018/3/8/1379

Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-23 23:43:19 +08:00
Ard Biesheuvel 1a3713c7cd crypto: arm64/sha256-neon - play nice with CONFIG_PREEMPT kernels
Tweak the SHA256 update routines to invoke the SHA256 block transform
block by block, to avoid excessive scheduling delays caused by the
NEON algorithm running with preemption disabled.

Also, remove a stale comment which no longer applies now that kernel
mode NEON is actually disallowed in some contexts.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:58 +08:00
Ard Biesheuvel 870c163a0e crypto: arm64/aes-blk - add 4 way interleave to CBC-MAC encrypt path
CBC MAC is strictly sequential, and so the current AES code simply
processes the input one block at a time. However, we are about to add
yield support, which adds a bit of overhead, and which we prefer to
align with other modes in terms of granularity (i.e., it is better to
have all routines yield every 64 bytes and not have an exception for
CBC MAC which yields every 16 bytes)

So unroll the loop by 4. We still cannot perform the AES algorithm in
parallel, but we can at least merge the loads and stores.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:58 +08:00
Ard Biesheuvel a8f8a69e82 crypto: arm64/aes-blk - add 4 way interleave to CBC encrypt path
CBC encryption is strictly sequential, and so the current AES code
simply processes the input one block at a time. However, we are
about to add yield support, which adds a bit of overhead, and which
we prefer to align with other modes in terms of granularity (i.e.,
it is better to have all routines yield every 64 bytes and not have
an exception for CBC encrypt which yields every 16 bytes)

So unroll the loop by 4. We still cannot perform the AES algorithm in
parallel, but we can at least merge the loads and stores.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:57 +08:00
Ard Biesheuvel 55868b45cf crypto: arm64/aes-blk - remove configurable interleave
The AES block mode implementation using Crypto Extensions or plain NEON
was written before real hardware existed, and so its interleave factor
was made build time configurable (as well as an option to instantiate
all interleaved sequences inline rather than as subroutines)

We ended up using INTERLEAVE=4 with inlining disabled for both flavors
of the core AES routines, so let's stick with that, and remove the option
to configure this at build time. This makes the code easier to modify,
which is nice now that we're adding yield support.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:55 +08:00
Ard Biesheuvel 4bf7e7a19d crypto: arm64/chacha20 - move kernel mode neon en/disable into loop
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.

Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.

So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:55 +08:00
Ard Biesheuvel 78ad7b08d8 crypto: arm64/aes-bs - move kernel mode neon en/disable into loop
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.

Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.

So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:55 +08:00
Ard Biesheuvel 6833817472 crypto: arm64/aes-blk - move kernel mode neon en/disable into loop
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.

Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.

So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)

Note that this requires some reshuffling of the registers in the asm
code, because the XTS routines can no longer rely on the registers to
retain their contents between invocations.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:54 +08:00
Ard Biesheuvel bd2ad885e3 crypto: arm64/aes-ce-ccm - move kernel mode neon en/disable into loop
When kernel mode NEON was first introduced on arm64, the preserve and
restore of the userland NEON state was completely unoptimized, and
involved saving all registers on each call to kernel_neon_begin(),
and restoring them on each call to kernel_neon_end(). For this reason,
the NEON crypto code that was introduced at the time keeps the NEON
enabled throughout the execution of the crypto API methods, which may
include calls back into the crypto API that could result in memory
allocation or other actions that we should avoid when running with
preemption disabled.

Since then, we have optimized the kernel mode NEON handling, which now
restores lazily (upon return to userland), and so the preserve action
is only costly the first time it is called after entering the kernel.

So let's put the kernel_neon_begin() and kernel_neon_end() calls around
the actual invocations of the NEON crypto code, and run the remainder of
the code with kernel mode NEON disabled (and preemption enabled)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:54 +08:00
Eric Biggers 91a2abb78f crypto: arm64/speck - add NEON-accelerated implementation of Speck-XTS
Add a NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
for ARM64.  This is ported from the 32-bit version.  It may be useful on
devices with 64-bit ARM CPUs that don't have the Cryptography
Extensions, so cannot do AES efficiently -- e.g. the Cortex-A53
processor on the Raspberry Pi 3.

It generally works the same way as the 32-bit version, but there are
some slight differences due to the different instructions, registers,
and syntax available in ARM64 vs. in ARM32.  For example, in the 64-bit
version there are enough registers to hold the XTS tweaks for each
128-byte chunk, so they don't need to be saved on the stack.

Benchmarks on a Raspberry Pi 3 running a 64-bit kernel:

   Algorithm                              Encryption     Decryption
   ---------                              ----------     ----------
   Speck64/128-XTS (NEON)                 92.2 MB/s      92.2 MB/s
   Speck128/256-XTS (NEON)                75.0 MB/s      75.0 MB/s
   Speck128/256-XTS (generic)             47.4 MB/s      35.6 MB/s
   AES-128-XTS (NEON bit-sliced)          33.4 MB/s      29.6 MB/s
   AES-256-XTS (NEON bit-sliced)          24.6 MB/s      21.7 MB/s

The code performs well on higher-end ARM64 processors as well, though
such processors tend to have the Crypto Extensions which make AES
preferred.  For example, here are the same benchmarks run on a HiKey960
(with CPU affinity set for the A73 cores), with the Crypto Extensions
implementation of AES-256-XTS added:

   Algorithm                              Encryption     Decryption
   ---------                              -----------    -----------
   AES-256-XTS (Crypto Extensions)        1273.3 MB/s    1274.7 MB/s
   Speck64/128-XTS (NEON)                  359.8 MB/s     348.0 MB/s
   Speck128/256-XTS (NEON)                 292.5 MB/s     286.1 MB/s
   Speck128/256-XTS (generic)              186.3 MB/s     181.8 MB/s
   AES-128-XTS (NEON bit-sliced)           142.0 MB/s     124.3 MB/s
   AES-256-XTS (NEON bit-sliced)           104.7 MB/s      91.1 MB/s

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16 23:35:41 +08:00
Ard Biesheuvel fb87127bce crypto: arm64/sha512 - fix/improve new v8.2 Crypto Extensions code
Add a missing symbol export that prevents this code to be built as a
module. Also, move the round constant table to the .rodata section,
and use a more optimized version of the core transform.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-26 01:10:36 +11:00
Ard Biesheuvel 140aa50d68 crypto: arm64/sm3 - new v8.2 Crypto Extensions implementation
Implement the Chinese SM3 secure hash algorithm using the new
special instructions that have been introduced as an optional
extension in ARMv8.2.

Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-26 01:10:35 +11:00
Ard Biesheuvel 15d5910e92 crypto: arm64/sha3 - new v8.2 Crypto Extensions implementation
Implement the various flavours of SHA3 using the new optional
EOR3/RAX1/XAR/BCAX instructions introduced by ARMv8.2.

Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-26 01:10:35 +11:00
Ard Biesheuvel 20b04c02bc crypto: arm64/sha1-ce - get rid of literal pool
Load the four SHA-1 round constants using immediates rather than literal
pool entries, to avoid having executable data that may be exploitable
under speculation attacks.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:33 +11:00
Ard Biesheuvel 17a0607019 crypto: arm64/sha2-ce - move the round constant table to .rodata section
Move the SHA2 round constant table to the .rodata section where it is
safe from being exploited by speculative execution.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:32 +11:00
Ard Biesheuvel 325f562d8f crypto: arm64/crct10dif - move literal data to .rodata section
Move the CRC-T10DIF literal data to the .rodata section where it is
safe from being exploited by speculative execution.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:31 +11:00
Ard Biesheuvel eec7d4593a crypto: arm64/crc32 - move literal data to .rodata section
Move CRC32 literal data to the .rodata section where it is safe from
being exploited by speculative execution.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:31 +11:00
Ard Biesheuvel 62c2470876 crypto: arm64/aes-neon - move literal data to .rodata section
Move the S-boxes and some other literals to the .rodata section where
it is safe from being exploited by speculative execution.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:30 +11:00
Ard Biesheuvel 96a74f7bdc crypto: arm64/aes-cipher - move S-box to .rodata section
Move the AES inverse S-box to the .rodata section where it is safe from
abuse by speculation.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 23:00:30 +11:00
Ard Biesheuvel bb6c8c467b crypto: arm64 - implement SHA-512 using special instructions
Implement the SHA-512 using the new special instructions that have
been introduced as an optional extension in ARMv8.2.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-18 22:52:24 +11:00
Eric Biggers a208fa8f33 crypto: hash - annotate algorithms taking optional key
We need to consistently enforce that keyed hashes cannot be used without
setting the key.  To do this we need a reliable way to determine whether
a given hash algorithm is keyed or not.  AF_ALG currently does this by
checking for the presence of a ->setkey() method.  However, this is
actually slightly broken because the CRC-32 algorithms implement
->setkey() but can also be used without a key.  (The CRC-32 "key" is not
actually a cryptographic key but rather represents the initial state.
If not overridden, then a default initial state is used.)

Prepare to fix this by introducing a flag CRYPTO_ALG_OPTIONAL_KEY which
indicates that the algorithm has a ->setkey() method, but it is not
required to be called.  Then set it on all the CRC-32 algorithms.

The same also applies to the Adler-32 implementation in Lustre.

Also, the cryptd and mcryptd templates have to pass through the flag
from their underlying algorithm.

Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-01-12 23:03:35 +11:00
Corentin Labbe 45223b7811 crypto: arm64/aes - do not call crypto_unregister_skcipher twice on error
When a cipher fails to register in aes_init(), the error path goes thought
aes_exit() then crypto_unregister_skciphers().
Since aes_exit calls also crypto_unregister_skcipher, this triggers a
refcount_t: underflow; use-after-free.

Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-11-29 17:33:34 +11:00
Ard Biesheuvel 019cd46984 crypto: arm64/aes-ce-cipher - move assembler code to .S file
Most crypto drivers involving kernel mode NEON take care to put the code
that actually touches the NEON register file in a separate compilation
unit, to prevent the compiler from reordering code that preserves or
restores the NEON context with code that may corrupt it. This is
necessary because we currently have no way to express the restrictions
imposed upon use of the NEON in kernel mode in a way that the compiler
understands.

However, in the case of aes-ce-cipher, it did not seem unreasonable to
deviate from this rule, given how it does not seem possible for the
compiler to reorder cross object function calls with asm blocks whose
in- and output constraints reflect that it reads from and writes to
memory.

Now that LTO is being proposed for the arm64 kernel, it is time to
revisit this. The link time optimization may replace the function
calls to kernel_neon_begin() and kernel_neon_end() with instantiations
of the IR that make up its implementation, allowing further reordering
with the asm block.

So let's clean this up, and move the asm() blocks into a separate .S
file.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-By: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-11-29 17:33:30 +11:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Ard Biesheuvel 7c83d689c7 crypto: arm64/aes - avoid expanded lookup tables in the final round
For the final round, avoid the expanded and padded lookup tables
exported by the generic AES driver. Instead, for encryption, we can
perform byte loads from the same table we used for the inner rounds,
which will still be hot in the caches. For decryption, use the inverse
AES Sbox directly, which is 4x smaller than the inverse lookup table
exported by the generic driver.

This should significantly reduce the Dcache footprint of our code,
which makes the code more robust against timing attacks. It does not
introduce any additional module dependencies, given that we already
rely on the core AES module for the shared key expansion routines.
It also frees up register x18, which is not available as a scratch
register on all platforms, which and so avoiding it improves
shareability of this code.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:26 +08:00
Ard Biesheuvel 03c9a333fe crypto: arm64/ghash - add NEON accelerated fallback for 64-bit PMULL
Implement a NEON fallback for systems that do support NEON but have
no support for the optional 64x64->128 polynomial multiplication
instruction that is part of the ARMv8 Crypto Extensions. It is based
on the paper "Fast Software Polynomial Multiplication on ARM Processors
Using the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
Ricardo Dahab (https://hal.inria.fr/hal-01506572), but has been reworked
extensively for the AArch64 ISA.

On a low-end core such as the Cortex-A53 found in the Raspberry Pi3, the
NEON based implementation is 4x faster than the table based one, and
is time invariant as well, making it less vulnerable to timing attacks.
When combined with the bit-sliced NEON implementation of AES-CTR, the
AES-GCM performance increases by 2x (from 58 to 29 cycles per byte).

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:25 +08:00
Ard Biesheuvel 537c1445ab crypto: arm64/gcm - implement native driver using v8 Crypto Extensions
Currently, the AES-GCM implementation for arm64 systems that support the
ARMv8 Crypto Extensions is based on the generic GCM module, which combines
the AES-CTR implementation using AES instructions with the PMULL based
GHASH driver. This is suboptimal, given the fact that the input data needs
to be loaded twice, once for the encryption and again for the MAC
calculation.

On Cortex-A57 (r1p2) and other recent cores that implement micro-op fusing
for the AES instructions, AES executes at less than 1 cycle per byte, which
means that any cycles wasted on loading the data twice hurt even more.

So implement a new GCM driver that combines the AES and PMULL instructions
at the block level. This improves performance on Cortex-A57 by ~37% (from
3.5 cpb to 2.6 cpb)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:23 +08:00
Ard Biesheuvel ec808bbef0 crypto: arm64/aes-bs - implement non-SIMD fallback for AES-CTR
Of the various chaining modes implemented by the bit sliced AES driver,
only CTR is exposed as a synchronous cipher, and requires a fallback in
order to remain usable once we update the kernel mode NEON handling logic
to disallow nested use. So wire up the existing CTR fallback C code.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:22 +08:00
Ard Biesheuvel 611d5324f4 crypto: arm64/chacha20 - take may_use_simd() into account
To accommodate systems that disallow the use of kernel mode NEON in
some circumstances, take the return value of may_use_simd into
account when deciding whether to invoke the C fallback routine.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:22 +08:00
Ard Biesheuvel e211506979 crypto: arm64/aes-blk - add a non-SIMD fallback for synchronous CTR
To accommodate systems that may disallow use of the NEON in kernel mode
in some circumstances, introduce a C fallback for synchronous AES in CTR
mode, and use it if may_use_simd() returns false.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:21 +08:00
Ard Biesheuvel 5092fcf349 crypto: arm64/aes-ce-ccm: add non-SIMD generic fallback
The arm64 kernel will shortly disallow nested kernel mode NEON.

So honour this in the ARMv8 Crypto Extensions implementation of
CCM-AES, and fall back to a scalar implementation using the generic
crypto helpers for AES, XOR and incrementing the CTR counter.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:21 +08:00
Ard Biesheuvel b8fb993a83 crypto: arm64/aes-ce-cipher: add non-SIMD generic fallback
The arm64 kernel will shortly disallow nested kernel mode NEON, so
add a fallback to scalar code that can be invoked in that case.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:20 +08:00
Ard Biesheuvel f402e3115e crypto: arm64/aes-ce-cipher - match round key endianness with generic code
In order to be able to reuse the generic AES code as a fallback for
situations where the NEON may not be used, update the key handling
to match the byte order of the generic code: it stores round keys
as sequences of 32-bit quantities rather than streams of bytes, and
so our code needs to be updated to reflect that.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-04 09:27:19 +08:00