The current implementation of expedited grace periods has the user
task drive the grace period. This works, but has downsides: (1) The
user task must awaken tasks piggybacking on this grace period, which
can result in latencies rivaling that of the grace period itself, and
(2) User tasks can receive signals, which interfere with RCU CPU stall
warnings.
This commit therefore uses workqueues to drive the grace periods, so
that the user task need not do the awakening. A subsequent commit
will remove the now-unnecessary code allowing for signals.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Recent kernels can fail to awaken the grace-period kthread for
quiescent-state forcing. This commit is a crude hack that does
a wakeup if a scheduling-clock interrupt sees that it has been
too long since force-quiescent-state (FQS) processing.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current expedited grace-period implementation makes subsequent grace
periods wait on wakeups for the prior grace period. This does not fit
the dictionary definition of "expedited", so this commit allows these two
phases to overlap. Doing this requires four waitqueues rather than two
because tasks can now be waiting on the previous, current, and next grace
periods. The fourth waitqueue makes the bit masking work out nicely.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current mutex-based funnel-locking approach used by expedited grace
periods is subject to severe unfairness. The problem arises when a
few tasks, making a path from leaves to root, all wake up before other
tasks do. A new task can then follow this path all the way to the root,
which needlessly delays tasks whose grace period is done, but who do
not happen to acquire the lock quickly enough.
This commit avoids this problem by maintaining per-rcu_node wait queues,
along with a per-rcu_node counter that tracks the latest grace period
sought by an earlier task to visit this node. If that grace period
would satisfy the current task, instead of proceeding up the tree,
it waits on the current rcu_node structure using a pair of wait queues
provided for that purpose. This decouples awakening of old tasks from
the arrival of new tasks.
If the wakeups prove to be a bottleneck, additional kthreads can be
brought to bear for that purpose.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit #cdacbe1f91264 ("rcu: Add fastpath bypassing funnel locking")
turns out to be a pessimization at high load because it forces a tree
full of tasks to wait for an expedited grace period that they probably
do not need. This commit therefore removes this optimization.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
As of commit dae6e64d2b ("rcu: Introduce proper blocking to no-CBs kthreads
GP waits") the RCU subsystem started making use of wait queues.
Here we convert all additions of RCU wait queues to use simple wait queues,
since they don't need the extra overhead of the full wait queue features.
Originally this was done for RT kernels[1], since we would get things like...
BUG: sleeping function called from invalid context at kernel/rtmutex.c:659
in_atomic(): 1, irqs_disabled(): 1, pid: 8, name: rcu_preempt
Pid: 8, comm: rcu_preempt Not tainted
Call Trace:
[<ffffffff8106c8d0>] __might_sleep+0xd0/0xf0
[<ffffffff817d77b4>] rt_spin_lock+0x24/0x50
[<ffffffff8106fcf6>] __wake_up+0x36/0x70
[<ffffffff810c4542>] rcu_gp_kthread+0x4d2/0x680
[<ffffffff8105f910>] ? __init_waitqueue_head+0x50/0x50
[<ffffffff810c4070>] ? rcu_gp_fqs+0x80/0x80
[<ffffffff8105eabb>] kthread+0xdb/0xe0
[<ffffffff8106b912>] ? finish_task_switch+0x52/0x100
[<ffffffff817e0754>] kernel_thread_helper+0x4/0x10
[<ffffffff8105e9e0>] ? __init_kthread_worker+0x60/0x60
[<ffffffff817e0750>] ? gs_change+0xb/0xb
...and hence simple wait queues were deployed on RT out of necessity
(as simple wait uses a raw lock), but mainline might as well take
advantage of the more streamline support as well.
[1] This is a carry forward of work from v3.10-rt; the original conversion
was by Thomas on an earlier -rt version, and Sebastian extended it to
additional post-3.10 added RCU waiters; here I've added a commit log and
unified the RCU changes into one, and uprev'd it to match mainline RCU.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-6-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rcu_nocb_gp_cleanup() is called while holding rnp->lock. Currently,
this is okay because the wake_up_all() in rcu_nocb_gp_cleanup() will
not enable the IRQs. lockdep is happy.
By switching over using swait this is not true anymore. swake_up_all()
enables the IRQs while processing the waiters. __do_softirq() can now
run and will eventually call rcu_process_callbacks() which wants to
grap nrp->lock.
Let's move the rcu_nocb_gp_cleanup() call outside the lock before we
switch over to swait.
If we would hold the rnp->lock and use swait, lockdep reports
following:
=================================
[ INFO: inconsistent lock state ]
4.2.0-rc5-00025-g9a73ba0 #136 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
rcu_preempt/8 [HC0[0]:SC0[0]:HE1:SE1] takes:
(rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
{IN-SOFTIRQ-W} state was registered at:
[<ffffffff81109b9f>] __lock_acquire+0xd5f/0x21e0
[<ffffffff8110be0f>] lock_acquire+0xdf/0x2b0
[<ffffffff81841cc9>] _raw_spin_lock_irqsave+0x59/0xa0
[<ffffffff81136991>] rcu_process_callbacks+0x141/0x3c0
[<ffffffff810b1a9d>] __do_softirq+0x14d/0x670
[<ffffffff810b2214>] irq_exit+0x104/0x110
[<ffffffff81844e96>] smp_apic_timer_interrupt+0x46/0x60
[<ffffffff81842e70>] apic_timer_interrupt+0x70/0x80
[<ffffffff810dba66>] rq_attach_root+0xa6/0x100
[<ffffffff810dbc2d>] cpu_attach_domain+0x16d/0x650
[<ffffffff810e4b42>] build_sched_domains+0x942/0xb00
[<ffffffff821777c2>] sched_init_smp+0x509/0x5c1
[<ffffffff821551e3>] kernel_init_freeable+0x172/0x28f
[<ffffffff8182cdce>] kernel_init+0xe/0xe0
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
irq event stamp: 76
hardirqs last enabled at (75): [<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
hardirqs last disabled at (76): [<ffffffff8184116f>] _raw_spin_lock_irq+0x1f/0x90
softirqs last enabled at (0): [<ffffffff810a8df2>] copy_process.part.26+0x602/0x1cf0
softirqs last disabled at (0): [< (null)>] (null)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(rcu_node_1);
<Interrupt>
lock(rcu_node_1);
*** DEADLOCK ***
1 lock held by rcu_preempt/8:
#0: (rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
stack backtrace:
CPU: 0 PID: 8 Comm: rcu_preempt Not tainted 4.2.0-rc5-00025-g9a73ba0 #136
Hardware name: Dell Inc. PowerEdge R820/066N7P, BIOS 2.0.20 01/16/2014
0000000000000000 000000006d7e67d8 ffff881fb081fbd8 ffffffff818379e0
0000000000000000 ffff881fb0812a00 ffff881fb081fc38 ffffffff8110813b
0000000000000000 0000000000000001 ffff881f00000001 ffffffff8102fa4f
Call Trace:
[<ffffffff818379e0>] dump_stack+0x4f/0x7b
[<ffffffff8110813b>] print_usage_bug+0x1db/0x1e0
[<ffffffff8102fa4f>] ? save_stack_trace+0x2f/0x50
[<ffffffff811087ad>] mark_lock+0x66d/0x6e0
[<ffffffff81107790>] ? check_usage_forwards+0x150/0x150
[<ffffffff81108898>] mark_held_locks+0x78/0xa0
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff81108a28>] trace_hardirqs_on_caller+0x168/0x220
[<ffffffff81108aed>] trace_hardirqs_on+0xd/0x10
[<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810fd1c7>] swake_up_all+0xb7/0xe0
[<ffffffff811386e1>] rcu_gp_kthread+0xab1/0xeb0
[<ffffffff811089bf>] ? trace_hardirqs_on_caller+0xff/0x220
[<ffffffff81841341>] ? _raw_spin_unlock_irq+0x41/0x60
[<ffffffff81137c30>] ? rcu_barrier+0x20/0x20
[<ffffffff810d2014>] kthread+0x104/0x120
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-5-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In patch:
"rcu: Add transitivity to remaining rcu_node ->lock acquisitions"
All locking operations on rcu_node::lock are replaced with the wrappers
because of the need of transitivity, which indicates we should never
write code using LOCK primitives alone(i.e. without a proper barrier
following) on rcu_node::lock outside those wrappers. We could detect
this kind of misuses on rcu_node::lock in the future by adding __private
modifier on rcu_node::lock.
To privatize rcu_node::lock, unlock wrappers are also needed. Replacing
spinlock unlocks with these wrappers not only privatizes rcu_node::lock
but also makes it easier to figure out critical sections of rcu_node.
This patch adds __private modifier to rcu_node::lock and makes every
access to it wrapped by ACCESS_PRIVATE(). Besides, unlock wrappers are
added and raw_spin_unlock(&rnp->lock) and its friends are replaced with
those wrappers.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, ->gp_state is printed as an integer, which slows debugging.
This commit therefore prints a symbolic name in addition to the integer.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Updated to fix relational operator called out by Dan Carpenter. ]
[ paulmck: More "const", as suggested by Josh Triplett. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, the piggybacked-work checks carried out by sync_exp_work_done()
atomically increment a small set of variables (the ->expedited_workdone0,
->expedited_workdone1, ->expedited_workdone2, ->expedited_workdone3
fields in the rcu_state structure), which will form a memory-contention
bottleneck given a sufficiently large number of CPUs concurrently invoking
either synchronize_rcu_expedited() or synchronize_sched_expedited().
This commit therefore moves these for fields to the per-CPU rcu_data
structure, eliminating the memory contention. The show_rcuexp() function
also changes to sum up each field in the rcu_data structures.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Analogy with the ->qsmaskinitnext field might lead one to believe that
->expmaskinitnext tracks online CPUs. This belief is incorrect: Any CPU
that has ever been online will have its bit set in the ->expmaskinitnext
field. This commit therefore adds a comment to make this clear, at
least to people who read comments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Providing RCU's memory-ordering guarantees requires that the rcu_node
tree's locking provide transitive memory ordering, which the Linux kernel's
spinlocks currently do not provide unless smp_mb__after_unlock_lock()
is used. Having a separate smp_mb__after_unlock_lock() after each and
every lock acquisition is error-prone, hard to read, and a bit annoying,
so this commit provides wrapper functions that pull in the
smp_mb__after_unlock_lock() invocations.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit makes the RCU CPU stall warning message print online/offline
indications immediately after the CPU number. A "O" indicates global
offline, a "." global online, and a "o" indicates RCU believes that the
CPU is offline for the current grace period and "." otherwise, and an
"N" indicates that RCU believes that the CPU will be offline for the
next grace period, and "." otherwise, all right after the CPU number.
So for CPU 10, you would normally see "10-...:" indicating that everything
believes that the CPU is online.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This reverts commit af859beaab (rcu: Silence lockdep false positive
for expedited grace periods). Because synchronize_rcu_expedited()
no longer invokes synchronize_sched_expedited(), ->exp_funnel_mutex
acquisition is no longer nested, so the false positive no longer happens.
This commit therefore removes the extra lockdep data structures, as they
are no longer needed.
This commit switches synchronize_sched_expedited() from stop_one_cpu_nowait()
to smp_call_function_single(), thus moving from an IPI and a pair of
context switches to an IPI and a single pass through the scheduler.
Of course, if the scheduler actually does decide to switch to a different
task, there will still be a pair of context switches, but there would
likely have been a pair of context switches anyway, just a bit later.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit corrects the comment for the values of the ->gp_state field,
which previously incorrectly said that these were for the ->gp_flags
field.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Commit commit 4cdfc175c2 ("rcu: Move quiescent-state forcing
into kthread") started the process of folding the old ->fqs_state into
->gp_state, but did not complete it. This situation does not cause
any malfunction, but can result in extremely confusing trace output.
This commit completes this task of eliminating ->fqs_state in favor
of ->gp_state.
The old ->fqs_state was also used to decide when to collect dyntick-idle
snapshots. For this purpose, we add a boolean variable into the kthread,
which is set on the first call to rcu_gp_fqs() for a given grace period
and clear otherwise.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
We have had the call_rcu_func_t typedef for a quite awhile, but we still
use explicit function pointer types in some places. These types can
confuse cscope and can be hard to read. This patch therefore replaces
these types with the call_rcu_func_t typedef.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
As we now have rcu_callback_t typedefs as the type of rcu callbacks, we
should use it in call_rcu*() and friends as the type of parameters. This
could save us a few lines of code and make it clear which function
requires an rcu callbacks rather than other callbacks as its argument.
Besides, this can also help cscope to generate a better database for
code reading.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit converts the rcu_data structure's ->cpu_no_qs field
to a union. The bytewise side of this union allows individual access
to indications as to whether this CPU needs to find a quiescent state
for a normal (.norm) and/or expedited (.exp) grace period. The setwise
side of the union allows testing whether or not a quiescent state is
needed at all, for either type of grace period.
For now, only .norm is used. A later commit will introduce the expedited
usage.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit inverts the sense of the rcu_data structure's ->passed_quiesce
field and renames it to ->cpu_no_qs. This will allow a later commit to
use an "aggregate OR" operation to test expedited as well as normal grace
periods without added overhead.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
An upcoming commit needs to invert the sense of the ->passed_quiesce
rcu_data structure field, so this commit is taking this opportunity
to clarify things a bit by renaming ->qs_pending to ->core_needs_qs.
So if !rdp->core_needs_qs, then this CPU need not concern itself with
quiescent states, in particular, it need not acquire its leaf rcu_node
structure's ->lock to check. Otherwise, it needs to report the next
quiescent state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_sched_expedited() uses a single global counter
to track the number of remaining context switches that the current
expedited grace period must wait on. This is problematic on large
systems, where the resulting memory contention can be pathological.
This commit therefore makes synchronize_sched_expedited() instead use
the combining tree in the same manner as synchronize_rcu_expedited(),
keeping memory contention down to a dull roar.
This commit creates a temporary function sync_sched_exp_select_cpus()
that is very similar to sync_rcu_exp_select_cpus(). A later commit
will consolidate these two functions, which becomes possible when
synchronize_sched_expedited() switches from stop_one_cpu_nowait() to
smp_call_function_single().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit replaces sync_rcu_preempt_exp_init1(() and
sync_rcu_preempt_exp_init2() with sync_exp_reset_tree_hotplug()
and sync_exp_reset_tree(), which will also be used by
synchronize_sched_expedited(), and sync_rcu_exp_select_nodes(), which
contains code specific to synchronize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU is the only thing that uses smp_mb__after_unlock_lock(), and is
likely the only thing that ever will use it, so this commit makes this
macro private to RCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
In a CONFIG_PREEMPT=y kernel, synchronize_rcu_expedited()
acquires the ->exp_funnel_mutex in rcu_preempt_state, then invokes
synchronize_sched_expedited, which acquires the ->exp_funnel_mutex in
rcu_sched_state. There can be no deadlock because rcu_preempt_state
->exp_funnel_mutex acquisition always precedes that of rcu_sched_state.
But lockdep does not know that, so it gives false-positive splats.
This commit therefore associates a separate lock_class_key structure
with the rcu_sched_state structure's ->exp_funnel_mutex, allowing
lockdep to see the lock ordering, avoiding the false positives.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In the common case, there will be only one expedited grace period in
the system at a given time, in which case it is not helpful to use
funnel locking. This commit therefore adds a fastpath that bypasses
funnel locking when the root ->exp_funnel_mutex is not held.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The grace-period kthread sleeps waiting to do a force-quiescent-state
scan, and when awakened sets rsp->gp_state to RCU_GP_DONE_FQS.
However, this is confusing because the kthread has not done the
force-quiescent-state, but is instead just starting to do it. This commit
therefore renames RCU_GP_DONE_FQS to RCU_GP_DOING_FQS in order to make
things a bit easier on reviewers.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although synchronize_sched_expedited() historically has no RCU CPU stall
warnings, the availability of the rcupdate.rcu_expedited boot parameter
invalidates the old assumption that synchronize_sched()'s stall warnings
would suffice. This commit therefore adds RCU CPU stall warnings to
synchronize_sched_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The strictly rcu_node based funnel-locking scheme works well in many
cases, but systems with CONFIG_RCU_FANOUT_LEAF=64 won't necessarily get
all that much concurrency. This commit therefore extends the funnel
locking into the per-CPU rcu_data structure, providing concurrency equal
to the number of CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_seq operations were open-coded in _rcu_barrier(), so this commit
replaces the open-coding with the shiny new rcu_seq operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Sequentially stopping the CPUs slows down expedited grace periods by
at least a factor of two, based on rcutorture's grace-period-per-second
rate. This is a conservative measure because rcutorture uses unusually
long RCU read-side critical sections and because rcutorture periodically
quiesces the system in order to test RCU's ability to ramp down to and
up from the idle state. This commit therefore replaces the stop_one_cpu()
with stop_one_cpu_nowait(), using an atomic-counter scheme to determine
when all CPUs have passed through the stopped state.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit gets rid of synchronize_sched_expedited()'s mutex_trylock()
polling loop in favor of a funnel-locking scheme based on the rcu_node
tree. The work-done check is done at each level of the tree, allowing
high-contention situations to be resolved quickly with reasonable levels
of mutex contention.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that synchronize_sched_expedited() have a mutex, it can use simpler
work-already-done detection scheme. This commit simplifies this scheme
by using something similar to the sequence-locking counter scheme.
A counter is incremented before and after each grace period, so that
the counter is odd in the midst of the grace period and even otherwise.
So if the counter has advanced to the second even number that is
greater than or equal to the snapshot, the required grace period has
already happened.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The synchronize_sched_expedited() currently invokes try_stop_cpus(),
which schedules the stopper kthreads on each online non-idle CPU,
and waits until all those kthreads are running before letting any
of them stop. This is disastrous for real-time workloads, which
get hit with a preemption that is as long as the longest scheduling
latency on any CPU, including any non-realtime housekeeping CPUs.
This commit therefore switches to using stop_one_cpu() on each CPU
in turn. This avoids inflicting the worst-case scheduling latency
on the worst-case CPU onto all other CPUs, and also simplifies the
code a little bit.
Follow-up commits will simplify the counter-snapshotting algorithm
and convert a number of the counters that are now protected by the
new ->expedited_mutex to non-atomic.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ paulmck: Kept stop_one_cpu(), dropped disabling of "guardrails". ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The CONFIG_RCU_CPU_STALL_INFO has been default-y for a couple of
releases with no complaints, so it is time to eliminate this Kconfig
option entirely, so that the long-form RCU CPU stall warnings cannot
be disabled. This commit does just that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because gcc does not realize a loop would not be entered ever
(i.e. in case of rcu_num_lvls == 1):
for (i = 1; i < rcu_num_lvls; i++)
rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
some compiler (pre- 5.x?) versions give a bogus warning:
kernel/rcu/tree.c: In function ‘rcu_init_one.isra.55’:
kernel/rcu/tree.c:4108:13: warning: array subscript is above array bounds [-Warray-bounds]
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
^
Fix that warning by adding an extra item to rcu_state::level[]
array. Once the bogus warning is fixed in gcc and kernel drops
support of older versions, the dummy item may be removed from
the array.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Suggested-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This update makes arithmetic to calculate number of RCU nodes
more straight and easy to read.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although a number of RCU levels may be less than the current
maximum of four, some static data associated with each level
are allocated for all four levels. As result, the extra data
never get accessed and just wast memory. This update limits
count of allocated items to the number of used RCU levels.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Members rcu_state::levelcnt[] and rcu_state::levelspread[]
are only used at init. There is no reason to keep them
afterwards.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Number of items in rcu_capacity[] array is defined by macro
MAX_RCU_LVLS. However, that array is never accessed beyond
RCU_NUM_LVLS index. Therefore, we can limit the array to
RCU_NUM_LVLS items and eliminate MAX_RCU_LVLS. As result,
in most cases the memory is conserved.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Variable rcu_num_lvls is limited by RCU_NUM_LVLS macro.
In turn, rcu_state::levelcnt[] array is never accessed
beyond rcu_num_lvls. Thus, rcu_state::levelcnt[] is safe
to limit to RCU_NUM_LVLS items.
Since rcu_num_lvls could be changed during boot (as result
of rcutree.rcu_fanout_leaf kernel parameter update) one might
assume a new value could overflow the value of RCU_NUM_LVLS.
However, that is not the case, since leaf-level fanout is only
permitted to increase, resulting in rcu_num_lvls possibly to
decrease.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>