With the libfdt include fixups to use "" instead of <> in the
latest dtc import in commit 4760597 (scripts/dtc: Update to upstream
version 9d3649bd3be245c9), it is no longer necessary to add explicit
include paths to use libfdt. Remove these across the kernel.
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Grant Likely <grant.likely@linaro.org>
Cc: linux-mips@linux-mips.org
Cc: linuxppc-dev@lists.ozlabs.org
When allocating memory for the copy of the FDT that the stub
modifies and passes to the kernel, it uses the current size as
an estimate of how much memory to allocate, and increases it page
by page if it turns out to be too small. However, when loading
the FDT from a UEFI configuration table, the estimated size is
left at its default value of zero, and the allocation loop runs
starting from zero all the way up to the allocation size that
finally fits the updated FDT.
Instead, retrieve the size of the FDT from the FDT header when
loading it from the UEFI config table.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Roy Franz <roy.franz@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
and a type bug that could lead to integer overflow - Ivan Khoronzhuk
* Fix boundary checking in efi_high_alloc() which can lead to memory
corruption in the EFI boot stubs - Yinghai Lu
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU9FtlAAoJEC84WcCNIz1VjfsP/jnZPtkSapSsFP9c7AfV/vpg
i4PLGk+18QhXpNrCVC1U4sdx3y+zefqImrDNEv72BLX6YDb10RvtydxEy4Kg2aaE
XzCRinHWu3+IEwv4fKAmNj2HORTl+jn79JDZ97jm1PN5sOxVcRG9e3QBg6aTVhHr
MdTXRMAKHYD+ZX5hrCMrbFXi1dboxVsUb1zwMTbJcmPSVPWToqNKCruSwp29LNfP
/2ZsJJSHgFP3tobk37JHDTHxjXaN/GUIwQC9cIWUQMPiwU3+WeOvROBPeKUTFNv7
kS4CXY5Q6eKz+pWYqG+FhbfHM71GTWPyFEJNeLtALg2DSKbgL6lJbtkrPpBVXrcU
TeHlHnYTlqEpcMqHW3JtrVb0Of0/8X/9YfWjpmdxNcNbbp7KvzTtoBcP8MjGdbIq
CztyB4clFsiyy1bEoGHFTVArzch5nn7sRCL3mYhTNQaeyN6TZc0wMXOFF/JU7N5a
GCn9VO6T396L/7WdzG0B/Uo01xw11OS/R0jZVoDvtGfAregO+NU+yLunTEYaRtkC
prxQ62Bu21EjLKJcdr/toFkEG8sT08XJnGTixRJnJlw+hmsK8WaigBrdpirXT5SV
TDJJNyo6A/drfjcPoTI4lCR1CpPV3QXjCTmhh+K6tbvX5/npuWN/i4KJh54WuwT4
BKouS5gjrgYcHH/XJjsQ
=GJnM
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
" - Fix regression in DMI sysfs code for handling "End of Table" entry
and a type bug that could lead to integer overflow. (Ivan Khoronzhuk)
- Fix boundary checking in efi_high_alloc() which can lead to memory
corruption in the EFI boot stubs. (Yinghai Lu)"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While adding support loading kernel and initrd above 4G to grub2 in legacy
mode, I was referring to efi_high_alloc().
That will allocate buffer for kernel and then initrd, and initrd will
use kernel buffer start as limit.
During testing found two buffers will be overlapped when initrd size is
very big like 400M.
It turns out efi_high_alloc() boundary checking is not right.
end - size will be the new start, and should not compare new
start with max, we need to make sure end is smaller than max.
[ Basically, with the current efi_high_alloc() code it's possible to
allocate memory above 'max', because efi_high_alloc() doesn't check
that the tail of the allocation is below 'max'.
If you have an EFI memory map with a single entry that looks like so,
[0xc0000000-0xc0004000]
And want to allocate 0x3000 bytes below 0xc0003000 the current code
will allocate [0xc0001000-0xc0004000], not [0xc0000000-0xc0003000]
like you would expect. - Matt ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
This reverts commit d1a8d66b91.
Ard reported a boot failure when running UEFI under Qemu and Xen and
experimenting with various Tianocore build options,
"As it turns out, when allocating room for the UEFI memory map using
UEFI's AllocatePool (), it may result in two new memory map entries
being created, for instance, when using Tianocore's preallocated region
feature. For example, the following region
0x00005ead5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
may be split like this
0x00005ead5000-0x00005eae2fff [Conventional Memory| | | | | |WB|WT|WC|UC]
0x00005eae3000-0x00005eae4fff [Loader Data | | | | | |WB|WT|WC|UC]
0x00005eae5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
if the preallocated Loader Data region was chosen to be right in the
middle of the original free space.
After patch d1a8d66b91 ("efi/libstub: Call get_memory_map() to
obtain map and desc sizes"), this is not being dealt with correctly
anymore, as the existing logic to allocate room for a single additional
entry has become insufficient."
Mark requested to reinstate the old loop we had before commit
d1a8d66b91, which grows the memory map buffer until it's big enough to
hold the EFI memory map.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Recently instrumentation of builtin functions calls was removed from GCC
5.0. To check the memory accessed by such functions, userspace asan
always uses interceptors for them.
So now we should do this as well. This patch declares
memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our
own implementation of those functions which checks memory before accessing
it.
Default memset/memmove/memcpy now now always have aliases with '__'
prefix. For files that built without kasan instrumentation (e.g.
mm/slub.c) original mem* replaced (via #define) with prefixed variants,
cause we don't want to check memory accesses there.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.
KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.
This patch only adds infrastructure for kernel address sanitizer. It's
not available for use yet. The idea and some code was borrowed from [1].
Basic idea:
The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.
Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.
Here is function to translate address to corresponding shadow address:
unsigned long kasan_mem_to_shadow(unsigned long addr)
{
return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
}
where KASAN_SHADOW_SCALE_SHIFT = 3.
So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible. Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).
To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
These functions check whether memory region is valid to access or not by
checking corresponding shadow memory. If access is not valid an error
printed.
Historical background of the address sanitizer from Dmitry Vyukov:
"We've developed the set of tools, AddressSanitizer (Asan),
ThreadSanitizer and MemorySanitizer, for user space. We actively use
them for testing inside of Google (continuous testing, fuzzing,
running prod services). To date the tools have found more than 10'000
scary bugs in Chromium, Google internal codebase and various
open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
lots of others): [2] [3] [4].
The tools are part of both gcc and clang compilers.
We have not yet done massive testing under the Kernel AddressSanitizer
(it's kind of chicken and egg problem, you need it to be upstream to
start applying it extensively). To date it has found about 50 bugs.
Bugs that we've found in upstream kernel are listed in [5].
We've also found ~20 bugs in out internal version of the kernel. Also
people from Samsung and Oracle have found some.
[...]
As others noted, the main feature of AddressSanitizer is its
performance due to inline compiler instrumentation and simple linear
shadow memory. User-space Asan has ~2x slowdown on computational
programs and ~2x memory consumption increase. Taking into account that
kernel usually consumes only small fraction of CPU and memory when
running real user-space programs, I would expect that kernel Asan will
have ~10-30% slowdown and similar memory consumption increase (when we
finish all tuning).
I agree that Asan can well replace kmemcheck. We have plans to start
working on Kernel MemorySanitizer that finds uses of unitialized
memory. Asan+Msan will provide feature-parity with kmemcheck. As
others noted, Asan will unlikely replace debug slab and pagealloc that
can be enabled at runtime. Asan uses compiler instrumentation, so even
if it is disabled, it still incurs visible overheads.
Asan technology is easily portable to other architectures. Compiler
instrumentation is fully portable. Runtime has some arch-dependent
parts like shadow mapping and atomic operation interception. They are
relatively easy to port."
Comparison with other debugging features:
========================================
KMEMCHECK:
- KASan can do almost everything that kmemcheck can. KASan uses
compile-time instrumentation, which makes it significantly faster than
kmemcheck. The only advantage of kmemcheck over KASan is detection of
uninitialized memory reads.
Some brief performance testing showed that kasan could be
x500-x600 times faster than kmemcheck:
$ netperf -l 30
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
no debug: 87380 16384 16384 30.00 41624.72
kasan inline: 87380 16384 16384 30.00 12870.54
kasan outline: 87380 16384 16384 30.00 10586.39
kmemcheck: 87380 16384 16384 30.03 20.23
- Also kmemcheck couldn't work on several CPUs. It always sets
number of CPUs to 1. KASan doesn't have such limitation.
DEBUG_PAGEALLOC:
- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
granularity level, so it able to find more bugs.
SLUB_DEBUG (poisoning, redzones):
- SLUB_DEBUG has lower overhead than KASan.
- SLUB_DEBUG in most cases are not able to detect bad reads,
KASan able to detect both reads and writes.
- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
bugs only on allocation/freeing of object. KASan catch
bugs right before it will happen, so we always know exact
place of first bad read/write.
[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
Based on work by Andrey Konovalov.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- reimplementation of the virtual remapping of UEFI Runtime Services in
a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU25v3AAoJEGvWsS0AyF7xYjcP/j8ESvs+z0BPgeJ6XREfOnCh
cp+w/1rJ5BafJ5RRkibrciwTNOIJS4FGMivWyURtoh430lS0Rh7fxZ3Ouna3xjrT
Nf7AxenWoA8Lo6wHh+FlNUeGk3iWfX6WwA2tYrbKudK+LBJ1wHjwpE7cWQO0FgwJ
aFDahu+QD5/u45p/VcVctMtiEDvOxBdO8gfat6r+YkLm7pbRxQkZnpA/JE4Gps1p
Td5jvMNH9pXI5pffSbeR9Q+vs/r0yqKLXQg01Eb2bZgGDgwf9yzADrHuaKamZt35
X5flmLiTGC6swJCJvUkZC1Nuue33bXcvW5+vgvar+MNGyXsxv+B/wARLqGhiWhQZ
nLGwFpuNu6wdY9tGHb/XR8khcewkw1/lRH1hHKhchrmRyUqHvXcPgC5tamjLrY8C
BV3BAeQvRho8OKwWUmbXIlyON1vPux6CJdj4D/A5NL+qph2WHeVWJCXg6nVFx0Wc
Eb3bXbI4QRwTFL7pGRF8RyZJBAQtgYhQMKWMW2GHgUgn+r1EixG73BZoSwvpHrrw
FOR9AVNfVBqmNON8xiIb3DN4EViq76EF0jrsZh5I9EoWS2w5qtk60kJQgXE+M4EE
vOlmh3dhEVfCN2SxOn0bgoQmTulyjqGauTSSJKQbIBuinPFveukrJfGNFIWt0SZs
f38FBMo6sgU4VG85B+Fr
=X5x/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"arm64 updates for 3.20:
- reimplementation of the virtual remapping of UEFI Runtime Services
in a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
The EFI changes going via the arm64 tree have been acked by Matt
Fleming. There is also a patch adding sys_*stat64 prototypes to
include/linux/syscalls.h, acked by Andrew Morton"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (47 commits)
arm64: compat: Remove incorrect comment in compat_siginfo
arm64: Fix section mismatch on alloc_init_p[mu]d()
arm64: Avoid breakage caused by .altmacro in fpsimd save/restore macros
arm64: mm: use *_sect to check for section maps
arm64: drop unnecessary cache+tlb maintenance
arm64:mm: free the useless initial page table
arm64: Enable CPU_IDLE in defconfig
arm64: kernel: remove ARM64_CPU_SUSPEND config option
arm64: make sys_call_table const
arm64: Remove asm/syscalls.h
arm64: Implement the compat_sys_call_table in C
syscalls: Declare sys_*stat64 prototypes if __ARCH_WANT_(COMPAT_)STAT64
compat: Declare compat_sys_sigpending and compat_sys_sigprocmask prototypes
arm64: uapi: expose our struct ucontext to the uapi headers
smp, ARM64: Kill SMP single function call interrupt
arm64: Emulate SETEND for AArch32 tasks
arm64: Consolidate hotplug notifier for instruction emulation
arm64: Track system support for mixed endian EL0
arm64: implement generic IOMMU configuration
arm64: Combine coherent and non-coherent swiotlb dma_ops
...
since that's a more logical and accurate place - Leif Lindholm
* Update efibootmgr URL in Kconfig help - Peter Jones
* Improve accuracy of EFI guid function names - Borislav Petkov
* Expose firmware platform size in sysfs for the benefit of EFI boot
loader installers and other utilities - Steve McIntyre
* Cleanup __init annotations for arm64/efi code - Ard Biesheuvel
* Mark the UIE as unsupported for rtc-efi - Ard Biesheuvel
* Fix memory leak in error code path of runtime map code - Dan Carpenter
* Improve robustness of get_memory_map() by removing assumptions on the
size of efi_memory_desc_t (which could change in future spec
versions) and querying the firmware instead of guessing about the
memmap size - Ard Biesheuvel
* Remove superfluous guid unparse calls - Ivan Khoronzhuk
* Delete unnecessary chosen@0 DT node FDT code since was duplicated
from code in drivers/of and is entirely unnecessary - Leif Lindholm
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUv69oAAoJEC84WcCNIz1VEYgP/1b27WRfCXs4q/8FP+UheSDS
nAFbGe9PjVPnxo5pA9VwPP6eNQ2zYiyNGEK1BlbQlFPZdSD1updIraA78CiF5iys
iSYyG9xVIcTB23RZI8aJLnBXbosIUKPJZ3FORv1LPhI6Mz1rCpraEaaUlv67rUKr
FLBG9cR7t9f/f+fJw6LOAAISGIG/4s0wQdA5/noaYkj5R5bICl2UTGtbwa0oNstb
NUO93aKDgaG/VljpIEeG6XV96Ioz7cHjQsEaX8sTrvT0n7nPNIqSDjFJOqWKJOXl
RsFrzyl8fFIbMuQatYv1f3efPvyH+iKOfHnHrvcjUNje0xhm7F0Bd86BkOw1a3JQ
pNb0YUWecI0Z/8GSzN8X0JQ7cowa3wI15Z/Hfs03odTXiM6VqwFAhuz/s5DEUdKS
U+rOPjU0ezt3G4oBB/VGgF9w5JWKfsMcsHgmLX9P+JYzKFrxggo1SXAtXUeRAqQp
agKmUB+k6Y1baQO8efkoM7rKL2F0q1SR9QiK+16BHCCkevD23v7IFGrHm2r1xKil
kvWlY4MkRVa4KGPxEFEDVty0HjXxImwYsxTaYVHTS7SMeoP41f6koHKB19NaB3No
5fqn/rT1KcJuhQj/I+vAixIX4WMJkX/MQVbtKfqSaKlAiRg3eRY6ONYr0jOglfF6
gaMuvmDd0HlV6UJvH/9L
=iPpM
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/efi
Pull EFI updates from Matt Fleming:
" - Move efivarfs from the misc filesystem section to pseudo filesystem,
since that's a more logical and accurate place - Leif Lindholm
- Update efibootmgr URL in Kconfig help - Peter Jones
- Improve accuracy of EFI guid function names - Borislav Petkov
- Expose firmware platform size in sysfs for the benefit of EFI boot
loader installers and other utilities - Steve McIntyre
- Cleanup __init annotations for arm64/efi code - Ard Biesheuvel
- Mark the UIE as unsupported for rtc-efi - Ard Biesheuvel
- Fix memory leak in error code path of runtime map code - Dan Carpenter
- Improve robustness of get_memory_map() by removing assumptions on the
size of efi_memory_desc_t (which could change in future spec
versions) and querying the firmware instead of guessing about the
memmap size - Ard Biesheuvel
- Remove superfluous guid unparse calls - Ivan Khoronzhuk
- Delete unnecessary chosen@0 DT node FDT code since was duplicated
from code in drivers/of and is entirely unnecessary - Leif Lindholm
There's nothing super scary, mainly cleanups, and a merge from Ricardo who
kindly picked up some patches from the linux-efi mailing list while I
was out on annual leave in December.
Perhaps the biggest risk is the get_memory_map() change from Ard, which
changes the way that both the arm64 and x86 EFI boot stub build the
early memory map. It would be good to have it bake in linux-next for a
while.
"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to some scary special case handling noticed in drivers/of, various
bits of the ARM* EFI support patches did duplicate looking for @0
variants of various nodes. Unless on an ancient PPC system, these are
not in fact required. Most instances have become refactored out along
the way, this removes the last one.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
There is no reason to translate guid number to string here.
So remove it in order to not do unneeded work.
Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This fixes two minor issues in the implementation of get_memory_map():
- Currently, it assumes that sizeof(efi_memory_desc_t) == desc_size,
which is usually true, but not mandated by the spec. (This was added
intentionally to allow future additions to the definition of
efi_memory_desc_t). The way the loop is implemented currently, the
added slack space may be insufficient if desc_size is larger, which in
some corner cases could result in the loop never terminating.
- It allocates 32 efi_memory_desc_t entries first (again, using the size
of the struct instead of desc_size), and frees and reallocates if it
turns out to be insufficient. Few implementations of UEFI have such small
memory maps, which results in a unnecessary allocate/free pair on each
invocation.
Fix this by calling the get_memory_map() boot service first with a '0'
input value for map size to retrieve the map size and desc size from the
firmware and only then perform the allocation, using desc_size rather
than sizeof(efi_memory_desc_t).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The "> 0" here should ">= 0" so we free map_entries[0].
Fixes: 926172d460 ('efi: Export EFI runtime memory mapping to sysfs')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This ensures all stub component are freed when the kernel proper is
done booting, by prefixing the names of all ELF sections that have
the SHF_ALLOC attribute with ".init". This approach ensures that even
implicitly emitted allocated data (like initializer values and string
literals) are covered.
At the same time, remove some __init annotations in the stub that have
now become redundant, and add the __init annotation to handle_kernel_image
which will now trigger a section mismatch warning without it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order to support kexec, the kernel needs to be able to deal with the
state of the UEFI firmware after SetVirtualAddressMap() has been called.
To avoid having separate code paths for non-kexec and kexec, let's move
the call to SetVirtualAddressMap() to the stub: this will guarantee us
that it will only be called once (since the stub is not executed during
kexec), and ensures that the UEFI state is identical between kexec and
normal boot.
This implies that the layout of the virtual mapping needs to be created
by the stub as well. All regions are rounded up to a naturally aligned
multiple of 64 KB (for compatibility with 64k pages kernels) and recorded
in the UEFI memory map. The kernel proper reads those values and installs
the mappings in a dedicated set of page tables that are swapped in during
UEFI Runtime Services calls.
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
In some cases (e.g. Intel Bay Trail machines), the kernel will happily
run in 64-bit even if the underlying UEFI firmware platform is
32-bit. That's great, but it's difficult for userland utilities like
grub-install to do the right thing in such a situation.
The kernel already knows about the size of the firmware via
efi_enabled(EFI_64BIT). Add an extra sysfs interface
/sys/firmware/efi/fw_platform_size to expose that information to
userland for low-level utilities to use.
Signed-off-by: Steve McIntyre <steve@einval.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
On systems with 64 KB pages, it is preferable for UEFI memory map
entries to be 64 KB aligned multiples of 64 KB, because it relieves
us of having to deal with the residues.
So, if EFI_ALLOC_ALIGN is #define'd by the platform, use it to round
up all memory allocations made.
Acked-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Split of the remapping code from efi_config_init() so that the caller
can perform its own remapping. This is necessary to correctly handle
virtually remapped UEFI memory regions under kexec, as efi.systab will
have been updated to a virtual address.
Acked-by: Matt Fleming <matt.fleming@intel.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Call it what it does - "unparse" is plain-misleading.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Matt Domsch changed the dell page to point to the new upstream quite
some time ago; kernel should reflect that here as well.
Cc: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to the
seq_file code as well in another tree.
Some of the other goodies include:
o Added some "!" (NOT) logic to the tracing filter.
o Fixed the frame pointer logic to the x86_64 mcount trampolines
o Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated
and be called directly by functions that only have a single hook
to them.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhbLGAAoJEEjnJuOKh9ldRV4H/3NcLbgGB2iu96la1zdYE6pG
Q7cDJMxXK80YIIL70h9G0IItcD4t62LMb72lfBnMGRj3msgFb3AgISW57EuI0Pxk
xk24wuIPoTG2S7v9sc3SboNFwO8qbtIjxD2OBmqIUrGo2sZIiGjyj3gX7mCY3uzL
WB2bUOSFz/22OgaANinR5EELHA3pZZCf54Vz1K9ndmtK0xp0j1a7xJShD6TrMdYv
mZ3zH5ViIhW4A3mdcMceh6fy2JLQAiEKF0uPTvcMMz7NlVul0mxyL/+10P7AE/3R
Ehw4fzmm4NDshPDtBOkKH0LsppgXzuItFuQUTpact3JlqTg++bV6onSsrkt1hlY=
=Z7Cm
-----END PGP SIGNATURE-----
Merge tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"There was a lot of clean ups and minor fixes. One of those clean ups
was to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to
the seq_file code as well in another tree.
Some of the other goodies include:
- Added some "!" (NOT) logic to the tracing filter.
- Fixed the frame pointer logic to the x86_64 mcount trampolines
- Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated and be
called directly by functions that only have a single hook to them"
* tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (55 commits)
tracing: Truncated output is better than nothing
tracing: Add additional marks to signal very large time deltas
Documentation: describe trace_buf_size parameter more accurately
tracing: Allow NOT to filter AND and OR clauses
tracing: Add NOT to filtering logic
ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter
ftrace/x86: Get rid of ftrace_caller_setup
ftrace/x86: Have save_mcount_regs macro also save stack frames if needed
ftrace/x86: Add macro MCOUNT_REG_SIZE for amount of stack used to save mcount regs
ftrace/x86: Simplify save_mcount_regs on getting RIP
ftrace/x86: Have save_mcount_regs store RIP in %rdi for first parameter
ftrace/x86: Rename MCOUNT_SAVE_FRAME and add more detailed comments
ftrace/x86: Move MCOUNT_SAVE_FRAME out of header file
ftrace/x86: Have static tracing also use ftrace_caller_setup
ftrace/x86: Have static function tracing always test for function graph
kprobes: Add IPMODIFY flag to kprobe_ftrace_ops
ftrace, kprobes: Support IPMODIFY flag to find IP modify conflict
kprobes/ftrace: Recover original IP if pre_handler doesn't change it
tracing/trivial: Fix typos and make an int into a bool
tracing: Deletion of an unnecessary check before iput()
...
Pull EFI updates from Ingo Molnar:
"Changes in this cycle are:
- support module unload for efivarfs (Mathias Krause)
- another attempt at moving x86 to libstub taking advantage of the
__pure attribute (Ard Biesheuvel)
- add EFI runtime services section to ptdump (Mathias Krause)"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, ptdump: Add section for EFI runtime services
efi/x86: Move x86 back to libstub
efivarfs: Allow unloading when build as module
Use the helper function trace_seq_buffer_ptr() to get the current location
of the next buffer write of a trace_seq object, instead of open coding
it.
This facilitates the conversion of trace_seq to use seq_buf.
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This reverts commit 84be880560, which itself reverted my original
attempt to move x86 from #include'ing .c files from across the tree
to using the EFI stub built as a static library.
The issue that affected the original approach was that splitting
the implementation into several .o files resulted in the variable
'efi_early' becoming a global with external linkage, which under
-fPIC implies that references to it must go through the GOT. However,
dealing with this additional GOT entry turned out to be troublesome
on some EFI implementations. (GCC's visibility=hidden attribute is
supposed to lift this requirement, but it turned out not to work on
the 32-bit build.)
Instead, use a pure getter function to get a reference to efi_early.
This approach results in no additional GOT entries being generated,
so there is no need for any changes in the early GOT handling.
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In the absence of a DTB configuration table, the EFI stub will happily
continue attempting to boot a kernel, despite the fact that this kernel
may not function without a description of the hardware. In this case, as
with a typo'd "dtb=" option (e.g. "dbt=") or many other possible
failures, the only output seen by the user will be the rather terse
output from the EFI stub:
EFI stub: Booting Linux Kernel...
To aid those attempting to debug such failures, this patch adds a notice
when no DTB is found, making the output more helpful:
EFI stub: Booting Linux Kernel...
EFI stub: Generating empty DTB
Additionally, a positive acknowledgement is added when a user-specified
DTB is in use:
EFI stub: Booting Linux Kernel...
EFI stub: Using DTB from command line
Similarly, a positive acknowledgement is added when a DTB from a
configuration table is in use:
EFI stub: Booting Linux Kernel...
EFI stub: Using DTB from configuration table
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Roy Franz <roy.franz@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This adds support to the UEFI side for detecting the presence of
a SMBIOS 3.0 64-bit entry point. This allows the actual SMBIOS
structure table to reside at a physical offset over 4 GB, which
cannot be supported by the legacy SMBIOS 32-bit entry point.
Since the firmware can legally provide both entry points, store
the SMBIOS 3.0 entry point in a separate variable, and let the
DMI decoding layer decide which one will be used.
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
commit 5dc3826d9f08 ("efi: Implement mandatory locking for UEFI Runtime
Services") implemented some conditional locking when accessing variable
runtime services that Ingo described as "pretty disgusting".
The intention with the !efi_in_nmi() checks was to avoid live-locks when
trying to write pstore crash data into an EFI variable. Such lockless
accesses are allowed according to the UEFI specification when we're in a
"non-recoverable" state, but whether or not things are implemented
correctly in actual firmware implementations remains an unanswered
question, and so it would seem sensible to avoid doing any kind of
unsynchronized variable accesses.
Furthermore, the efi_in_nmi() tests are inadequate because they don't
account for the case where we call EFI variable services from panic or
oops callbacks and aren't executing in NMI context. In other words,
live-locking is still possible.
Let's just remove the conditional locking altogether. Now we've got the
->set_variable_nonblocking() EFI variable operation we can abort if the
runtime lock is already held. Aborting is by far the safest option.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
There are some circumstances that call for trying to write an EFI
variable in a non-blocking way. One such scenario is when writing pstore
data in efi_pstore_write() via the pstore_dump() kdump callback.
Now that we have an EFI runtime spinlock we need a way of aborting if
there is contention instead of spinning, since when writing pstore data
from the kdump callback, the runtime lock may already be held by the CPU
that's running the callback if we crashed in the middle of an EFI
variable operation.
The situation is sufficiently special that a new EFI variable operation
is warranted.
Introduce ->set_variable_nonblocking() for this use case. It is an
optional EFI backend operation, and need only be implemented by those
backends that usually acquire locks to serialize access to EFI
variables, as is the case for virt_efi_set_variable() where we now grab
the EFI runtime spinlock.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It is a really bad idea to declare variables or parameters that
have the same name as common types. It is valid C, but it gets
surprising if a macro expansion attempts to declare an inner
local with that type. Change the local names to eliminate the
hazard.
Change s16 => str16, s8 => str8.
This resolves warnings seen when using W=2 during make, for instance:
drivers/firmware/efi/vars.c: In function ‘dup_variable_bug’:
drivers/firmware/efi/vars.c:324:44: warning: declaration of ‘s16’ shadows a global declaration [-Wshadow]
static void dup_variable_bug(efi_char16_t *s16, efi_guid_t *vendor_guid,
drivers/firmware/efi/vars.c:328:8: warning: declaration of ‘s8’ shadows a global declaration [-Wshadow]
char *s8;
Signed-off-by: Mark Rustad <mark.d.rustad@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
At the moment, there are three architectures debug-printing the EFI memory
map at initialization: x86, ia64, and arm64. They all use different format
strings, plus the EFI memory type and the EFI memory attributes are
similarly hard to decode for a human reader.
Introduce a helper __init function that formats the memory type and the
memory attributes in a unified way, to a user-provided character buffer.
The array "memory_type_name" is copied from the arm64 code, temporarily
duplicating it. The (otherwise optional) braces around each string literal
in the initializer list are dropped in order to match the kernel coding
style more closely. The element size is tightened from 32 to 20 bytes
(maximum actual string length + 1) so that we can derive the field width
from the element size.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[ Dropped useless 'register' keyword, which compiler will ignore ]
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi kernel param means actually disabling efi runtime, Per suggestion
from Leif Lindholm efi=noruntime should be better. But since noefi is
already used in X86 thus just adding another param efi=noruntime for
same purpose.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi param can be used for arches other than X86 later, thus move it
out of x86 platform code.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f50 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
According to section 7.1 of the UEFI spec, Runtime Services are not fully
reentrant, and there are particular combinations of calls that need to be
serialized. Use a spinlock to serialize all Runtime Services with respect
to all others, even if this is more than strictly needed.
We've managed to get away without requiring a runtime services lock
until now because most of the interactions with EFI involve EFI
variables, and those operations are already serialised with
__efivars->lock.
Some of the assumptions underlying the decision whether locks are
needed or not (e.g., SetVariable() against ResetSystem()) may not
apply universally to all [new] architectures that implement UEFI.
Rather than try to reason our way out of this, let's just implement at
least what the spec requires in terms of locking.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This reverts commit f23cf8bd5c ("efi/x86: efistub: Move shared
dependencies to <asm/efi.h>") as well as the x86 parts of commit
f4f75ad574 ("efi: efistub: Convert into static library").
The road leading to these two reverts is long and winding.
The above two commits were merged during the v3.17 merge window and
turned the common EFI boot stub code into a static library. This
necessitated making some symbols global in the x86 boot stub which
introduced new entries into the early boot GOT.
The problem was that we weren't fixing up the newly created GOT entries
before invoking the EFI boot stub, which sometimes resulted in hangs or
resets. This failure was reported by Maarten on his Macbook pro.
The proposed fix was commit 9cb0e39423 ("x86/efi: Fixup GOT in all
boot code paths"). However, that caused issues for Linus when booting
his Sony Vaio Pro 11. It was subsequently reverted in commit
f3670394c2.
So that leaves us back with Maarten's Macbook pro not booting.
At this stage in the release cycle the least risky option is to revert
the x86 EFI boot stub to the pre-merge window code structure where we
explicitly #include efi-stub-helper.c instead of linking with the static
library. The arm64 code remains unaffected.
We can take another swing at the x86 parts for v3.18.
Conflicts:
arch/x86/include/asm/efi.h
Tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org> [arm64]
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>,
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Commit 86c8b27a01cf:
"arm64: ignore DT memreserve entries when booting in UEFI mode
prevents early_init_fdt_scan_reserved_mem() from being called for
arm64 kernels booting via UEFI. This was done because the kernel
will use the UEFI memory map to determine reserved memory regions.
That approach has problems in that early_init_fdt_scan_reserved_mem()
also reserves the FDT itself and any node-specific reserved memory.
By chance of some kernel configs, the FDT may be overwritten before
it can be unflattened and the kernel will fail to boot. More subtle
problems will result if the FDT has node specific reserved memory
which is not really reserved.
This patch has the UEFI stub remove the memory reserve map entries
from the FDT as it does with the memory nodes. This allows
early_init_fdt_scan_reserved_mem() to be called unconditionally
so that the other needed reservations are made.
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
spin_is_locked() always returns false for uniprocessor configurations
in several architectures, so do not use WARN_ON with it.
Use lockdep_assert_held() instead to also reduce overhead in
non-debug kernels.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This patch does two things. It passes EFI run time mappings to second
kernel in bootparams efi_info. Second kernel parse this info and create
new mappings in second kernel. That means mappings in first and second
kernel will be same. This paves the way to enable EFI in kexec kernel.
This patch also prepares and passes EFI setup data through bootparams.
This contains bunch of information about various tables and their
addresses.
These information gathering and passing has been written along the lines
of what current kexec-tools is doing to make kexec work with UEFI.
[akpm@linux-foundation.org: s/get_efi/efi_get/g, per Matt]
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- ACPICA update to upstream version 20140724. That includes
ACPI 5.1 material (support for the _CCA and _DSD predefined names,
changes related to the DMAR and PCCT tables and ARM support among
other things) and cleanups related to using ACPICA's header files.
A major part of it is related to acpidump and the core code used
by that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and
Rafael J Wysocki.
- Cleanups and improvements related to system suspend from
Lan Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand
governor and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from
Mikulas Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano,
Sandeep Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJT4nhtAAoJEILEb/54YlRxtZEP/2rtVQFSFdAW8l0Xm1SeSsl4
EnZpSNT1TFn+NdG23vSIot5Jzdz1/dLfeoJEbXpoVt4DPC9/PK4HPlv5FEDQYfh5
srftvvGcAva969sXzSBRNUeR+M8Yd2RdoYCfmqTEUjzf8GJLL4jC0VAIwMtsQklt
EbiQX8JaHQS7RIql7MDg1N2vaTo+zxkf39Kkcl56usmO/uATP7cAPjFreF/xQ3d8
OyBhz1cOXIhPw7bd9Dv9AgpJzA8WFpktDYEgy2sluBWMv+mLYjdZRCFkfpIRzmea
pt+hJDeAy8ZL6/bjWCzz2x6wG7uJdDLblreI28sgnJx/VHR3Co6u4H1BqUBj18ct
CHV6zQ55WFmx9/uJqBtwFy333HS2ysJziC5ucwmg8QjkvAn4RK8S0qHMfRvSSaHj
F9ejnHGxyrc3zzfsngUf/VXIp67FReaavyKX3LYxjHjMPZDMw2xCtCWEpUs52l2o
fAbkv8YFBbUalIv0RtELH5XnKQ2ggMP8UgvT74KyfXU6LaliH8lEV20FFjMgwrPI
sMr2xk04eS8mNRNAXL8OMMwvh6DY/Qsmb7BVg58RIw6CdHeFJl834yztzcf7+j56
4oUmA16QYBCFA3udGQ3Tb07mi8XTfrMdTOGA0koQG9tjswKXuLUXUk9WAXZe4vml
ItRpZKE86BCs3mLJMYre
=ZODv
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"Again, ACPICA leads the pack (47 commits), followed by cpufreq (18
commits) and system suspend/hibernation (9 commits).
From the new code perspective, the ACPICA update brings ACPI 5.1 to
the table, including a new device configuration object called _DSD
(Device Specific Data) that will hopefully help us to operate device
properties like Device Trees do (at least to some extent) and changes
related to supporting ACPI on ARM.
Apart from that we have hibernation changes making it use radix trees
to store memory bitmaps which should speed up some operations carried
out by it quite significantly. We also have some power management
changes related to suspend-to-idle (the "freeze" sleep state) support
and more preliminary changes needed to support ACPI on ARM (outside of
ACPICA).
The rest is fixes and cleanups pretty much everywhere.
Specifics:
- ACPICA update to upstream version 20140724. That includes ACPI 5.1
material (support for the _CCA and _DSD predefined names, changes
related to the DMAR and PCCT tables and ARM support among other
things) and cleanups related to using ACPICA's header files. A
major part of it is related to acpidump and the core code used by
that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and Rafael J
Wysocki.
- Cleanups and improvements related to system suspend from Lan
Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand governor
and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from Mikulas
Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano, Sandeep
Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas
Renninger"
* tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (118 commits)
ACPI / LPSS: add LPSS device for Wildcat Point PCH
ACPI / PNP: Replace faulty is_hex_digit() by isxdigit()
ACPICA: Update version to 20140724.
ACPICA: ACPI 5.1: Update for PCCT table changes.
ACPICA/ARM: ACPI 5.1: Update for GTDT table changes.
ACPICA/ARM: ACPI 5.1: Update for MADT changes.
ACPICA/ARM: ACPI 5.1: Update for FADT changes.
ACPICA: ACPI 5.1: Support for the _CCA predifined name.
ACPICA: ACPI 5.1: New notify value for System Affinity Update.
ACPICA: ACPI 5.1: Support for the _DSD predefined name.
ACPICA: Debug object: Add current value of Timer() to debug line prefix.
ACPICA: acpihelp: Add UUID support, restructure some existing files.
ACPICA: Utilities: Fix local printf issue.
ACPICA: Tables: Update for DMAR table changes.
ACPICA: Remove some extraneous printf arguments.
ACPICA: Update for comments/formatting. No functional changes.
ACPICA: Disassembler: Add support for the ToUUID opererator (macro).
ACPICA: Remove a redundant cast to acpi_size for ACPI_OFFSET() macro.
ACPICA: Work around an ancient GCC bug.
ACPI / processor: Make it possible to get local x2apic id via _MAT
...
Pull RAS updates from Ingo Molnar:
"The main changes in this cycle are:
- RAS tracing/events infrastructure, by Gong Chen.
- Various generalizations of the APEI code to make it available to
non-x86 architectures, by Tomasz Nowicki"
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ras: Fix build warnings in <linux/aer.h>
acpi, apei, ghes: Factor out ioremap virtual memory for IRQ and NMI context.
acpi, apei, ghes: Make NMI error notification to be GHES architecture extension.
apei, mce: Factor out APEI architecture specific MCE calls.
RAS, extlog: Adjust init flow
trace, eMCA: Add a knob to adjust where to save event log
trace, RAS: Add eMCA trace event interface
RAS, debugfs: Add debugfs interface for RAS subsystem
CPER: Adjust code flow of some functions
x86, MCE: Robustify mcheck_init_device
trace, AER: Move trace into unified interface
trace, RAS: Add basic RAS trace event
x86, MCE: Kill CPU_POST_DEAD
Pull EFI changes from Ingo Molnar:
"Main changes in this cycle are:
- arm64 efi stub fixes, preservation of FP/SIMD registers across
firmware calls, and conversion of the EFI stub code into a static
library - Ard Biesheuvel
- Xen EFI support - Daniel Kiper
- Support for autoloading the efivars driver - Lee, Chun-Yi
- Use the PE/COFF headers in the x86 EFI boot stub to request that
the stub be loaded with CONFIG_PHYSICAL_ALIGN alignment - Michael
Brown
- Consolidate all the x86 EFI quirks into one file - Saurabh Tangri
- Additional error logging in x86 EFI boot stub - Ulf Winkelvos
- Support loading initrd above 4G in EFI boot stub - Yinghai Lu
- EFI reboot patches for ACPI hardware reduced platforms"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
efi/arm64: Handle missing virtual mapping for UEFI System Table
arch/x86/xen: Silence compiler warnings
xen: Silence compiler warnings
x86/efi: Request desired alignment via the PE/COFF headers
x86/efi: Add better error logging to EFI boot stub
efi: Autoload efivars
efi: Update stale locking comment for struct efivars
arch/x86: Remove efi_set_rtc_mmss()
arch/x86: Replace plain strings with constants
xen: Put EFI machinery in place
xen: Define EFI related stuff
arch/x86: Remove redundant set_bit(EFI_MEMMAP) call
arch/x86: Remove redundant set_bit(EFI_SYSTEM_TABLES) call
efi: Introduce EFI_PARAVIRT flag
arch/x86: Do not access EFI memory map if it is not available
efi: Use early_mem*() instead of early_io*()
arch/ia64: Define early_memunmap()
x86/reboot: Add EFI reboot quirk for ACPI Hardware Reduced flag
efi/reboot: Allow powering off machines using EFI
efi/reboot: Add generic wrapper around EfiResetSystem()
...
The primary dependency is that GHES uses the x86 NMI for hardware
error notification and MCE for memory error handling. These patches
remove that dependency.
Other APEI features such as error reporting via external IRQ, error
serialization, or error injection, do not require changes to use them
on non-x86 architectures.
The following patch set eliminates the APEI Kconfig x86 dependency
by making these changes:
- treat NMI notification as GHES architecture - HAVE_ACPI_APEI_NMI
- group and wrap around #ifdef CONFIG_HAVE_ACPI_APEI_NMI code which
is used only for NMI path
- identify architectural boxes and abstract it accordingly (tlb flush and MCE)
- rework ioremap for both IRQ and NMI context
NMI code is kept in ghes.c file since NMI and IRQ context are tightly coupled.
Note, these patches introduce no functional changes for x86. The NMI notification
feature is hard selected for x86. Architectures that want to use this
feature should also provide NMI code infrastructure.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJT2BaPAAoJEKurIx+X31iBLGMP/0yyWOna4229p9CmuElSP3os
Kb+9Thru+Wg4ihj43CYW0nznQnamCaqBa5NpDXZn0Ebtxc08SSGVzbf+z+vBMeD+
HW4093m4g8sGL7i4JdAol0MEPpKTQRdpj525N/h/xWVSDXQ0Bq3vQ7DS1/j1Bp4k
Lq3G8dEk+4LjNPcQ5YBPl71zWJOC4iUctfh1OpFdfgA04804Vis3j8T6ljE7/72M
51xXK3af9ktIg6MU2HOwraUsSspVeJs/4lPu4fab4XI07BRDb4T7yx19a9VaBy67
m6TaTd3eC/Z0Uh+51grNuXSnWQK4fvahRZJEwiRdC0wL3w3mhdZkmqm0nBdBFyof
5b251+FOazOtZdMsWS/mMjQUjybQ+4k9zpnndIPw/5rqxJ8lgaP7o81e+hw1Xh1Q
E0ZWUMXnAIkRmkyYLUv5aTICRYIZtAC/C1QrR5ZB/9Q+yvtxp13dbqGzWhcF7AIw
UK/yb5T5ZAzvuJlmPG0ZiV75HH9bjX4OFV3AhXJIEG/iTOdVVpat8yICFrT33Xpc
uAwRXQvz6mn2c2xpZcJqSJQlXKg2nbrfUmscU8P8Zu6mQpvBB/+2cDbW/5wfuKbE
NpD0aB5PxhHY+nNvIfOsTUk72aZcZdUEQJt/792vhnMYb/IK1X/qa4zrVmOqlZKt
mtXwUQWdj3kSG36mgssO
=nYdd
-----END PGP SIGNATURE-----
Merge tag 'please-pull-apei' into x86/ras
APEI is currently implemented so that it depends on x86 hardware.
The primary dependency is that GHES uses the x86 NMI for hardware
error notification and MCE for memory error handling. These patches
remove that dependency.
Other APEI features such as error reporting via external IRQ, error
serialization, or error injection, do not require changes to use them
on non-x86 architectures.
The following patch set eliminates the APEI Kconfig x86 dependency
by making these changes:
- treat NMI notification as GHES architecture - HAVE_ACPI_APEI_NMI
- group and wrap around #ifdef CONFIG_HAVE_ACPI_APEI_NMI code which
is used only for NMI path
- identify architectural boxes and abstract it accordingly (tlb flush and MCE)
- rework ioremap for both IRQ and NMI context
NMI code is kept in ghes.c file since NMI and IRQ context are tightly coupled.
Note, these patches introduce no functional changes for x86. The NMI notification
feature is hard selected for x86. Architectures that want to use this
feature should also provide NMI code infrastructure.
* acpica: (30 commits)
ACPICA: Add new GPE public interface - acpi_mark_gpe_for_wake.
ACPICA: GPEs: Do not allow enable for GPEs that have no handler(s).
ACPICA: Fix a regression for deletion of Alias() objects.
ACPICA: Update version to 20140627
ACPICA: Tables: Merge DMAR table structure updates
ACPICA: Hardware: back port of a recursive locking fix
ACPICA: utprint/oslibcfs: cleanup - no functional change
ACPICA: Executer: Fix trivial issues in acpi_get_serial_access_bytes()
ACPICA: OSL: Update acpidump to reduce source code differences
ACPICA: acpidump: Reduce freopen() invocations to improve portability
ACPICA: acpidump: Replace file IOs with new APIs to improve portability
ACPICA: acpidump: Remove exit() from generic layer to improve portability
ACPICA: acpidump: Add memory/string OSL usage to improve portability
ACPICA: Common: Enhance acpi_getopt() to improve portability
ACPICA: Common: Enhance cm_get_file_size() to improve portability
ACPICA: Application: Enhance ACPI_USAGE_xxx/ACPI_OPTION with acpi_os_printf() to improve portability
ACPICA: Utilities: Introduce acpi_log_error() to improve portability
ACPICA: Utilities: Add formatted printing APIs
ACPICA: OSL: Add portable file IO to improve portability
ACPICA: OSL: Clean up acpi_os_printf()/acpi_os_vprintf() stubs
...
The original patch is from Ben Hutchings's contribution to debian
kernel. Got Ben's permission to remove the code of efi-pstore.c and
send to linux-efi:
https://github.com/BlankOn/linux-debian/blob/master/debian/patches/features/all/efi-autoload-efivars.patch
efivars is generally useful to have on EFI systems, and in some cases
it may be impossible to load it after a kernel upgrade in order to
complete a boot loader update. At the same time we don't want to waste
memory on non-EFI systems by making them built-in.
Instead, give them module aliases as if they are platform drivers, and
register a corresponding platform device whenever EFI runtime services
are available. This should trigger udev to load them.
Signed-off-by: Lee, Chun-Yi <jlee@suse.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Introduce EFI_PARAVIRT flag. If it is set then kernel runs
on EFI platform but it has not direct control on EFI stuff
like EFI runtime, tables, structures, etc. If not this means
that Linux Kernel has direct access to EFI infrastructure
and everything runs as usual.
This functionality is used in Xen dom0 because hypervisor
has full control on EFI stuff and all calls from dom0 to
EFI must be requested via special hypercall which in turn
executes relevant EFI code in behalf of dom0.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Use early_mem*() instead of early_io*() because all mapped EFI regions
are memory (usually RAM but they could also be ROM, EPROM, EEPROM, flash,
etc.) not I/O regions. Additionally, I/O family calls do not work correctly
under Xen in our case. early_ioremap() skips the PFN to MFN conversion
when building the PTE. Using it for memory will attempt to map the wrong
machine frame. However, all artificial EFI structures created under Xen
live in dom0 memory and should be mapped/unmapped using early_mem*() family
calls which map domain memory.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It appears that the BayTrail-T class of hardware requires EFI in order
to powerdown and reboot and no other reliable method exists.
This quirk is generally applicable to all hardware that has the ACPI
Hardware Reduced bit set, since usually ACPI would be the preferred
method.
Cc: Len Brown <len.brown@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Not only can EfiResetSystem() be used to reboot, it can also be used to
power down machines.
By and large, this functionality doesn't work very well across the range
of EFI machines in the wild, so it should definitely only be used as a
last resort. In an ideal world, this wouldn't be needed at all.
Unfortunately, we're starting to see machines where EFI is the *only*
reliable way to power down, and nothing else, not PCI, not ACPI, works.
efi_poweroff_required() should be implemented on a per-architecture
basis, since exactly when we should be using EFI runtime services is a
platform-specific decision. There's no analogue for reboot because each
architecture handles reboot very differently - the x86 code in
particular is pretty complex.
Patches to enable this for specific classes of hardware will be
submitted separately.
Tested-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>