The truncate transaction does not ever modify the inode btree, but
includes an associated log reservation. Update
xfs_calc_itruncate_reservation() to remove the reservation
associated with inobt updates.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The current AGI unlinked list addition and removal reservations do
not reflect the worst case log usage. An unlinked list removal can
log up to two on-disk inode clusters but only includes reservation
for one. An unlinked list addition logs the on-disk cluster but
includes reservation for an in-core inode.
Update the AGI unlinked list reservation helpers to calculate the
correct worst case reservation for the associated operations.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The tr_ifree transaction handles inode unlinks and inode chunk
frees. The current transaction calculation does not accurately
reflect worst case changes to the inode btree, however. The inobt
portion of the current transaction reservation only covers
modification of a single inobt buffer (for the particular inode
record). This is a historical artifact from the days before XFS
supported full inode chunk removal.
When support for inode chunk removal was added in commit
254f6311ed1b ("Implement deletion of inode clusters in XFS."), the
additional log reservation required for chunk removal was not added
correctly. The new reservation only considered the header overhead
of associated buffers rather than the full contents of the btrees
and AGF and AGFL buffers affected by the transaction. The
reservation for the free space btrees was subsequently fixed up in
commit 5fe6abb82f76 ("Add space for inode and allocation btrees to
ITRUNCATE log reservation"), but the res. for full inobt joins has
never been added.
Further review of the ifree reservation uncovered a couple more
problems:
- The undocumented +2 blocks are intended for the AGF and AGFL, but
are also not sized correctly and should be logged as full sectors
(not FSBs).
- The additional single block header is undocumented and serves no
apparent purpose.
Update xfs_calc_ifree_reservation() to include a full inobt join in
the reservation calculation. Refactor the undocumented blocks
appropriately and fix up the comments to reflect the current
calculation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For rmap removal, refactor the rmap owner checks into a separate
function, then skip the checks if we are performing an unknown-owner
removal.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Calling xfs_rmap_free with an unknown owner is supposed to remove any
rmaps covering that range regardless of owner. This is used by the EFI
recovery code to say "we're freeing this, it mustn't be owned by
anything anymore", but for whatever reason xfs_free_ag_extent filters
them out.
Therefore, remove the filter and make xfs_rmap_unmap actually treat it
as a wildcard owner -- free anything that's already there, and if
there's no owner at all then that's fine too.
There are two existing callers of bmap_add_free that take care the rmap
deferred ops themselves and use OWN_UNKNOWN to skip the EFI-based rmap
cleanup; convert these to use OWN_NULL (via helpers), and now we really
require that an RUI (if any) gets added to the defer ops before any EFI.
Lastly, now that xfs_free_extent filters out OWN_NULL rmap free requests,
growfs will have to consult directly with the rmap to ensure that there
aren't any rmaps in the grown region.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Under the deferred rmap operation scheme, there's a certain order in
which the rmap deferred ops have to be queued to maintain integrity
during log replay. For alloc/map operations that order is cui -> rui;
for free/unmap operations that order is cui -> rui -> efi. However, the
initial refcount code got the ordering wrong in the free side of things
because it queued refcount free op and an EFI and the refcount free op
queued a rmap free op, resulting in the order cui -> efi -> rui.
If we fail before the efd finishes, the efi recovery will try to do a
wildcard rmap removal and the subsequent rui will fail to find the rmap
and blow up. This didn't ever happen due to other screws up in handling
unknown owner rmap removals, but those other screw ups broke recovery in
other ways, so fix the ordering to follow the intended rules.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the tracepoint in xfs_iext_insert to after the point where we've
inserted the extent because otherwise we report stale extent data in
the ftrace output.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In e1a4e37cc7 ("xfs: try to avoid blowing out the transaction
reservation when bunmaping a shared extent"), we try to constrain the
amount of real extents we unmap from the data fork in a given call so
that we don't blow out transaction reservations.
However, not all bunmapi operations require a transaction -- if we're
only removing a delalloc extent, no transaction is needed, so we have to
code against that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The new attribute leaf buffer is not held locked across the transaction
roll between the shortform->leaf modification and the addition of the
new entry. As a result, the attribute buffer modification being made is
not atomic from an operational perspective. Hence the AIL push can grab
it in the transient state of "just created" after the initial
transaction is rolled, because the buffer has been released. This leads
to xfs_attr3_leaf_verify() asserting that hdr.count is zero, treating
this as in-memory corruption, and shutting down the filesystem.
Darrick ported the original patch to 4.15 and reworked it use the
xfs_defer_bjoin helper and hold/join the buffer correctly across the
second transaction roll.
Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In certain cases, defer_ops callers will lock a buffer and want to hold
the lock across transaction rolls. Similar to ijoined inodes, we want
to dirty & join the buffer with each transaction roll in defer_finish so
that afterwards the caller still owns the buffer lock and we haven't
inadvertently pinned the log.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use _GOTO instead of _RETURN so we can free the allocated
cursor on error.
Fixes: bf80628 ("xfs: remove xfs_bmse_shift_one")
Fixes-coverity-id: 1423813, 1423676
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
And move them to xfs_linux.h so that xfsprogs can stub them out more
easily.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
found the issue by kmemleak.
unreferenced object 0xffff8800674611c0 (size 16):
xfs_iext_insert+0x82a/0xa90 [xfs]
xfs_bmap_add_extent_hole_delay+0x1e5/0x5b0 [xfs]
xfs_bmapi_reserve_delalloc+0x483/0x530 [xfs]
xfs_file_iomap_begin+0xac8/0xd40 [xfs]
iomap_apply+0xb8/0x1b0
iomap_file_buffered_write+0xac/0xe0
xfs_file_buffered_aio_write+0x198/0x420 [xfs]
xfs_file_write_iter+0x23f/0x2a0 [xfs]
__vfs_write+0x23e/0x340
vfs_write+0xe9/0x240
SyS_write+0xa1/0x120
do_syscall_64+0xda/0x260
Signed-off-by: Shu Wang <shuwang@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Be consistent about using uint32_t/uint8_t instead of u32/u8. This is
more so that we don't have to maintain /those/ types in xfsprogs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
- Refactor the incore extent map manipulations to use a cursor instead of
directly modifying extent data.
- Refactor the incore extent map cursor to use an in-memory btree instead
of a single high-order allocation. This eliminates a major source of
complaints about insufficient memory when opening a heavily fragmented
file into a system whose memory is also heavily fragmented.
- Fix a longstanding bug where deleting a file with a complex extended
attribute btree incorrectly handled memory pointers, which could lead
to memory corruption.
- Improve metadata validation to eliminate crashing problems found while
fuzzing xfs.
- Move the error injection tag definitions into libxfs to be shared with
userspace components.
- Fix some log recovery bugs where we'd underflow log block position
vector and incorrectly fail log recovery.
- Drain the buffer lru after log recovery to force recovered buffers back
through the verifiers after mount. On a v4 filesystem the log never
attaches verifiers during log replay (v5 does), so we could end up with
buffers marked verified but without having ever been verified.
- Fix various other bugs.
- Introduce the first part of a new online fsck tool. The new fsck tool
will be able to iterate every piece of metadata in the filesystem to
look for obvious errors and corruptions. In the next release cycle
the checking will be extended to cross-reference with the other fs
metadata, so this feature should only be used by the developers in the
mean time.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJaBdbZAAoJEPh/dxk0SrTrKoUP/RroXfZX3PSn3Z0Qo99E6Ev9
+Z3CoJSSfXPJtSPBh6mUgonzzpKMqoN3kj8ZezYRLaeSEo+36ZkBtdLOb/8PydOZ
4agNvtGDhwt88+1vSAccbT6l4wB/Z16NfzGaVN4dioHF1LpC4rORqdEuoq5xXxzo
JVjuwTbz8uPSCpTTukzll9XFghvvj+YXm20MgEOCJiR5uULlGW5gZ38mNCmS76Bk
Nks5dNSmNzlGwIpwsVmthd0s0jwj8WeQPnUOv27naRm4J6GOvB5gE8vn15e07AHT
EqeTTHy25lnJhmpazphvDwbN3B6UdWCHGoG8ll2B+45pZegS7SKt4G6b4ittHq9x
+ErCHFElrNCO77QDQmQoXHy6+DJV/Rdnyb5K575rA91TAb0q2C7OP6vQt6oV0rDM
obZ7M3MvW9jBVn9A07Hdsk4+J2/SYW0jf5Dv4O69U1KuvZYUES2B++PL+u7pdTpy
JPg1+pWO+AgxRKQNviFFzRwQDPE3JSp854TCE/5D/59h2ZeSWg+g4ZH5jcLjKwKM
+uHbJgqOdgk2/WPHiEFCOouom3RUxdE1Yg7S87sbaQC4iU5oWWQ8Kenl2AUyNQEN
yaU/leq6rqX3Z2z+T70ujWSvh5xl07YHLW3LJszZMi4w+i8C7c0lIX9F8CNu26Cf
yJApOvMWhhY3Mf7Gn1l5
=vQrJ
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.15-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"xfs: great scads of new stuff for 4.15.
This merge cycle, we're making some substantive changes to XFS. The
in-core extent mappings have been refactored to use proper iterators
and a btree to handle heavily fragmented files without needing
high-order memory allocations; some important log recovery bug fixes;
and the first part of the online fsck functionality.
(The online fsck feature is disabled by default and more pieces of it
will be coming in future release cycles.)
This giant pile of patches has been run through a full xfstests run
over the weekend and through a quick xfstests run against this
morning's master, with no major failures reported.
New in this version:
- Refactor the incore extent map manipulations to use a cursor
instead of directly modifying extent data.
- Refactor the incore extent map cursor to use an in-memory btree
instead of a single high-order allocation. This eliminates a major
source of complaints about insufficient memory when opening a
heavily fragmented file into a system whose memory is also heavily
fragmented.
- Fix a longstanding bug where deleting a file with a complex
extended attribute btree incorrectly handled memory pointers, which
could lead to memory corruption.
- Improve metadata validation to eliminate crashing problems found
while fuzzing xfs.
- Move the error injection tag definitions into libxfs to be shared
with userspace components.
- Fix some log recovery bugs where we'd underflow log block position
vector and incorrectly fail log recovery.
- Drain the buffer lru after log recovery to force recovered buffers
back through the verifiers after mount. On a v4 filesystem the log
never attaches verifiers during log replay (v5 does), so we could
end up with buffers marked verified but without having ever been
verified.
- Fix various other bugs.
- Introduce the first part of a new online fsck tool. The new fsck
tool will be able to iterate every piece of metadata in the
filesystem to look for obvious errors and corruptions. In the next
release cycle the checking will be extended to cross-reference with
the other fs metadata, so this feature should only be used by the
developers in the mean time"
* tag 'xfs-4.15-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (131 commits)
xfs: on failed mount, force-reclaim inodes after unmounting quota controls
xfs: check the uniqueness of the AGFL entries
xfs: remove u_int* type usage
xfs: handle zero entries case in xfs_iext_rebalance_leaf
xfs: add comments documenting the rebalance algorithm
xfs: trivial indentation fixup for xfs_iext_remove_node
xfs: remove a superflous assignment in xfs_iext_remove_node
xfs: add some comments to xfs_iext_insert/xfs_iext_insert_node
xfs: fix number of records handling in xfs_iext_split_leaf
fs/xfs: Remove NULL check before kmem_cache_destroy
xfs: only check da node header padding on v5 filesystems
xfs: fix btree scrub deref check
xfs: fix uninitialized return values in scrub code
xfs: pass inode number to xfs_scrub_ino_set_{preen,warning}
xfs: refactor the directory data block bestfree checks
xfs: mark xlog_verify_dest_ptr STATIC
xfs: mark xlog_recover_check_summary STATIC
xfs: mark xfs_btree_check_lblock and xfs_btree_check_ptr static
xfs: remove unreachable error injection code in xfs_qm_dqget
xfs: remove unused debug counts for xfs_lock_inodes
...
Use the uint* types instead of the u_int* types. This will (hopefully)
pair with an xfsprogs cleanup.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
And also rename fill to nr_entries to match the rest of the code.
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix to check the correct value, and remove a duplicate handling of the
uneven record number split algorith,
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Neither defines an on-disk format, so move them out of xfs_format.h.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This removed an unaligned load per extent, as well as the manual poking
into the on-disk extent format.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only have two places that remove 2 extents at the same time, so unroll
the loop there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only have two places that insert 2 extents at the same time, so unroll
the loop there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the current linear list and the indirection array for the in-core
extent list with a b+tree to avoid the need for larger memory allocations
for the indirection array when lots of extents are present. The current
extent list implementations leads to heavy pressure on the memory
allocator when modifying files with a high extent count, and can lead
to high latencies because of that.
The replacement is a b+tree with a few quirks. The leaf nodes directly
store the extent record in two u64 values. The encoding is a little bit
different from the existing in-core extent records so that the start
offset and length which are required for lookups can be retreived with
simple mask operations. The inner nodes store a 64-bit key containing
the start offset in the first half of the node, and the pointers to the
next lower level in the second half. In either case we walk the node
from the beginninig to the end and do a linear search, as that is more
efficient for the low number of cache lines touched during a search
(2 for the inner nodes, 4 for the leaf nodes) than a binary search.
We store termination markers (zero length for the leaf nodes, an
otherwise impossible high bit for the inner nodes) to terminate the key
list / records instead of storing a count to use the available cache
lines as efficiently as possible.
One quirk of the algorithm is that while we normally split a node half and
half like usual btree implementations we just spill over entries added at
the very end of the list to a new node on its own. This means we get a
100% fill grade for the common cases of bulk insertion when reading an
inode into memory, and when only sequentially appending to a file. The
downside is a slightly higher chance of splits on the first random
insertions.
Both insert and removal manually recurse into the lower levels, but
the bulk deletion of the whole tree is still implemented as a recursive
function call, although one limited by the overall depth and with very
little stack usage in every iteration.
For the first few extents we dynamically grow the list from a single
extent to the next powers of two until we have a first full leaf block
and that building the actual tree.
The code started out based on the generic lib/btree.c code from Joern
Engel based on earlier work from Peter Zijlstra, but has since been
rewritten beyond recognition.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
To make life a little simpler make xfs_bmbt_set_all unaligned access
aware so that we can use it directly on the destination buffer.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Supporting a small bit of data inside the inode fork blows up the fork size
a lot, removing the 32 bytes of inline data halves the effective size of
the inode fork (and it still has a lot of unused padding left), and the
performance of a single kmalloc doesn't show up compared to the size to read
an inode or create one.
It also simplifies the fork management code a lot.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of looking up extents to convert and calling xfs_bmapi_write on
each of them just let xfs_bmapi_write handle the full range. To make
this robust add a new XFS_BMAPI_CONVERT_ONLY that only converts ranges
and never allocates blocks.
[darrick: shorten the stringified CONVERT_ONLY trace flag]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new xfs_iext_cursor structure to hide the direct extent map
index manipulations. In addition to the existing lookup/get/insert/
remove and update routines new primitives to get the first and last
extent cursor, as well as moving up and down by one extent are
provided. Also new are convenience to increment/decrement the
cursor and retreive the new extent, as well as to peek into the
previous/next extent without updating the cursor and last but not
least a macro to iterate over all extents in a fork.
[darrick: rename for_each_iext to for_each_xfs_iext]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This actually makes the function very slightly less efficient for now as we
detour through the expanded irect format between the in-core extent format
and the on-disk one instead of just endian swapping them. But with the
incore extent btree the in-core one will use a different format and the
representation will be entirely hidden.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This actually makes the function very slightly less efficient for now as we
detour through the expanded irect format between the in-core extent format
and the on-disk one instead of just endian swapping them. But with the
incore extent btree the in-core one will use a different format and the
representation will be entirely hidden. It also happens to make the
function a whole more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This prepares for getting rid of the current in-memory extent format.
At the end of the series we will change the calling convention again
to pass the xfs_bmbt_irec structure once it is available everywhere.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stop poking before and after the index and just increment or decrement
it while doing our operations on it to prepare for a new extent list
implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Two cases in xfs_bmap_add_extent_delay_real currently insert a new
extent before updating the existing one that is being split. While
this works fine with a simple extent list, a more complex tree can't
easily cope with overlapping extent. Reshuffle the code a bit to update
the slot of the existing delalloc extent to the new real extent before
inserting the shortened delalloc extent before or after it. This
avoids the overlapping extents while still allowing to update the
br_startblock field of the delalloc extent with the updated indirect
block reservation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some were missed in the pass that converted the function return
values from int to bool. Update the remaining ones for consistency.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the error injection tag names into a libxfs header so that we can
share it between kernel and userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove xfs_inode_log_format_t now that xfs_inode_log_format is
explicitly padded and therefore is a real on-disk structure. This
enables xfs/122 to check the size of the structure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Variable bit is being assigned a value that is never read, hence
the assignment is redundant and can be removed. Cleans up clang
warning:
fs/xfs/libxfs/xfs_rtbitmap.c:675:3: warning: Value stored to
'bit' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're done checking all the records/keys in a btree block, compute
the low and high key of the block and compare them to the associated key
in the parent btree block.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Abort an dir/attr btree operation if the attr btree has obvious problems
like loops back to the root or pointers don't point down the tree.
Found by fuzzing btree[0].before to zero in xfs/402, which livelocks on
the cycle in the attr btree.
Apply the same checks to xfs_da3_node_lookup_int.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This helper looks up the last extent the covers space before the passed
in block number. This is useful for truncate and similar operations that
operate backwards over the extent list. For xfs_bunmapi it also is
a slight optimization as we can return early if there are not extents
at or below the end of the to be truncated range.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iread_extents is just a trivial wrapper, there is no good reason
to keep the two separate.
[darrick: minor fixups having left xfs_bmbt_validate_extent intact]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Look at the return value of xfs_iext_get_extent instead of figuring out
the extent count first and looping up to it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rewrite xfs_bmap_insert_extents so that we don't rely on extent indices
except for iterating over them. Not being able to iterate to the previous
extent or finding the extent that stop_fsb is in are sufficient exit
conditions, and we don't need to do any extent count games given that:
a) we already flushed all delalloc extents past our start offset
before doing the operation
b) xfs_iext_count() includes delalloc extents anyway
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rewrite xfs_bmap_collapse_extents so that we don't rely on extent indices
except for iterating over them. Not being able to iterate to the next
extent is a sufficient exit condition, and we don't need to do any extent
count games given that:
a) we already flushed all delalloc extents past our start offset
before doing the operation
b) xfs_iext_count() includes delalloc extents anyway
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This way the caller gets the proper updated extent returned in got.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead do the actual left and right shift work in the callers, and just
keep a helper to update the bmap and rmap btrees as well as the in-core
extent list.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Have a separate helper for insert vs collapse, as this prepares us for
simplifying the code in the next patches.
Also changed the done output argument to a bool intead of int for both
new functions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The define was always set to 1, which means looping until we reach is
was dead code from the start.
Also remove an initialization of next_fsb for the done case that doesn't
fit the new code flow - it was never checked by the caller in the done
case to start with.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can simply use the i_rdev field in the Linux inode and just convert
to and from the XFS dev_t when reading or logging/writing the inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the dead code dealing with the UUID fork format that was never
implemented in Linux (and neither in IRIX as far as I know).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of looping over all extents in some debug-only helper just
insert trace points into the loops that already exist in the calling
functions.
Also split the xfs_extlist trace point into one each for reading and
writing extents from disk.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iext_update_extent already has basically all the information needed
to centralize the bmap pre/post tracing. We just need to pass inode +
bmap state instead of the inode fork pointer to get all trace annotations.
In addition to covering all the existing trace points this gives us
tracing coverage for the extent shifting operations for free.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we use xfs_iext_insert this is already covered by the tracing
in that function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We already have all the information about the fork a=D1=95 well as additional
tracing information, so pass that to xfs_iext_remove().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This creates the right initial bmap state from the passed in inode
fork enum.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Perform some quick sanity testing of the disk quota information.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Perform simple tests of the realtime bitmap and summary.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Scrub parent pointers, sort of. For directories, we can ride the
'..' entry up to the parent to confirm that there's at most one
dentry that points back to this directory.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create the infrastructure to scrub symbolic link data.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Scrub the hash tree, keys, and values in an extended attribute structure.
Refactor the attribute code to use the transaction if the caller supplied
one to avoid buffer deadocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Scrub the hash tree and all the entries in a directory.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Scrub an individual inode's block mappings to make sure they make sense.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Plumb in the pieces necessary to check the refcount btree. If rmap is
available, check the reference count by performing an interval query
against the rmapbt.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Check the reverse mapping records to make sure that the contents
make sense.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Check the records of the inode btrees to make sure that the values
make sense given the inode records themselves.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Check the extent records free space btrees to ensure that the values
look sane.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a forgotten check to the AGI verifier, then wire up the scrub
infrastructure to check the AGI contents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Check the block references in the AGF and AGFL headers to make sure
they make sense.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Ensure that the geometry presented in the backup superblocks matches
the primary superblock so that repair can recover the filesystem if
that primary gets corrupted.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a function that can check the shape of a btree -- each block
passes basic inspection and all the pointers look ok. In the next patch
we'll add the ability to check the actual keys and records stored within
the btree. Add some helper functions so that we report detailed scrub
errors in a uniform manner in dmesg. These are helper functions for
subsequent patches.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a probe scrubber with id 0. This will be used by xfs_scrub to
probe the kernel's abilities to scrub (and repair) the metadata. We do
this by validating the ioctl inputs from userspace, preparing the
filesystem for a scrub (or a repair) operation, and immediately
returning to userspace. Userspace can use the returned errno and
structure state to decide (in broad terms) if scrub/repair are
supported by the running kernel.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create an ioctl that can be used to scrub internal filesystem metadata.
The new ioctl takes the metadata type, an (optional) AG number, an
(optional) inode number and generation, and a flags argument. This will
be used by the upcoming XFS online scrub tool.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create some helper functions to check that inode pointers point to
somewhere within the filesystem and not at the static AG metadata.
Move xfs_internal_inum and create a directory inode check function.
We will use these functions in scrub and elsewhere.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor the btree block header checks to have an internal function that
returns the address of the failing check without logging errors. The
scrubber will call the internal function, while the external version
will maintain the current logging behavior.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor the btree pointer checks so that we can call them from the
scrub code without logging errors to dmesg. Preserve the existing error
reporting for regular operations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create some helper functions to check that a block pointer points
within the filesystem (or AG) and doesn't point at static metadata.
We will use this for scrub.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Unused after the big bmap refactor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Unused after the big bmap refactor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only use xfs_bmbt_lookup_ge to look up the first bmap record in an
inode, so replace xfs_bmbt_lookup_ge with a special purpose helper that
is a bit more descriptive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we've massaged the callers into the right form we can always
pass the actual extent record instead of the individual fields.
As an additional benefit the btree cursor will now be prepoulated with
the correct extent state instead of having to fix it up later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we've massaged the callers into the right form we can always
pass the actual extent record instead of the individual fields.
With that xfs_bmbt_disk_set_allf can go away, and xfs_bmbt_disk_set_all
can be merged into the former implementation of xfs_bmbt_disk_set_allf.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Also get rid of the oldext and newext variables as using the extent
records is a lot more descriptive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Account for all changes to the delalloc reservation in da_new, and use a
single call xfs_mod_fdblocks to reserve/free blocks, including always
checking for an error.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_update_extent to update entries in the in-core extent list.
This isolates the function from the detailed layout of the extent list,
and generally makes the code a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_update_extent to update entries in the in-core extent list.
This isolates the function from the detailed layout of the extent list,
and generally makes the code a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>