mirror of https://gitee.com/openkylin/linux.git
31 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Linus Torvalds | ae0cb7be35 |
Merge branch 'next-tpm' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull tpm updates from James Morris: - reduce polling delays in tpm_tis - support retrieving TPM 2.0 Event Log through EFI before ExitBootServices - replace tpm-rng.c with a hwrng device managed by the driver for each TPM device - TPM resource manager synthesizes TPM_RC_COMMAND_CODE response instead of returning -EINVAL for unknown TPM commands. This makes user space more sound. - CLKRUN fixes: * Keep #CLKRUN disable through the entier TPM command/response flow * Check whether #CLKRUN is enabled before disabling and enabling it again because enabling it breaks PS/2 devices on a system where it is disabled * 'next-tpm' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: tpm: remove unused variables tpm: remove unused data fields from I2C and OF device ID tables tpm: only attempt to disable the LPC CLKRUN if is already enabled tpm: follow coding style for variable declaration in tpm_tis_core_init() tpm: delete the TPM_TIS_CLK_ENABLE flag tpm: Update MAINTAINERS for Jason Gunthorpe tpm: Keep CLKRUN enabled throughout the duration of transmit_cmd() tpm_tis: Move ilb_base_addr to tpm_tis_data tpm2-cmd: allow more attempts for selftest execution tpm: return a TPM_RC_COMMAND_CODE response if command is not implemented tpm: Move Linux RNG connection to hwrng tpm: use struct tpm_chip for tpm_chip_find_get() tpm: parse TPM event logs based on EFI table efi: call get_event_log before ExitBootServices tpm: add event log format version tpm: rename event log provider files tpm: move tpm_eventlog.h outside of drivers folder tpm: use tpm_msleep() value as max delay tpm: reduce tpm polling delay in tpm_tis_core tpm: move wait_for_tpm_stat() to respective driver files |
|
Thiebaud Weksteen | 33b6d03469 |
efi: call get_event_log before ExitBootServices
With TPM 2.0 specification, the event logs may only be accessible by calling an EFI Boot Service. Modify the EFI stub to copy the log area to a new Linux-specific EFI configuration table so it remains accessible once booted. When calling this service, it is possible to specify the expected format of the logs: TPM 1.2 (SHA1) or TPM 2.0 ("Crypto Agile"). For now, only the first format is retrieved. Signed-off-by: Thiebaud Weksteen <tweek@google.com> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Tested-by: Javier Martinez Canillas <javierm@redhat.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> |
|
Tyler Baicar | c6d8c8ef1d |
efi: Move ARM CPER code to new file
The ARM CPER code is currently mixed in with the other CPER code. Move it to a new file to separate it from the rest of the CPER code. Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Arvind Yadav <arvind.yadav.cs@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasyl Gomonovych <gomonovych@gmail.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20180102181042.19074-5-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Greg Kroah-Hartman | b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
Bhupesh Sharma | 75def552bb |
x86/efi/bgrt: Move efi-bgrt handling out of arch/x86
Now with open-source boot firmware (EDK2) supporting ACPI BGRT table addition even for architectures like AARCH64, it makes sense to move out the 'efi-bgrt.c' file and supporting infrastructure from 'arch/x86' directory and house it inside 'drivers/firmware/efi', so that this common code can be used across architectures. Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-7-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Lukas Wunner | 58c5475aba |
x86/efi: Retrieve and assign Apple device properties
Apple's EFI drivers supply device properties which are needed to support Macs optimally. They contain vital information which cannot be obtained any other way (e.g. Thunderbolt Device ROM). They're also used to convey the current device state so that OS drivers can pick up where EFI drivers left (e.g. GPU mode setting). There's an EFI driver dubbed "AAPL,PathProperties" which implements a per-device key/value store. Other EFI drivers populate it using a custom protocol. The macOS bootloader /System/Library/CoreServices/boot.efi retrieves the properties with the same protocol. The kernel extension AppleACPIPlatform.kext subsequently merges them into the I/O Kit registry (see ioreg(8)) where they can be queried by other kernel extensions and user space. This commit extends the efistub to retrieve the device properties before ExitBootServices is called. It assigns them to devices in an fs_initcall so that they can be queried with the API in <linux/property.h>. Note that the device properties will only be available if the kernel is booted with the efistub. Distros should adjust their installers to always use the efistub on Macs. grub with the "linux" directive will not work unless the functionality of this commit is duplicated in grub. (The "linuxefi" directive should work but is not included upstream as of this writing.) The custom protocol has GUID 91BD12FE-F6C3-44FB-A5B7-5122AB303AE0 and looks like this: typedef struct { unsigned long version; /* 0x10000 */ efi_status_t (*get) ( IN struct apple_properties_protocol *this, IN struct efi_dev_path *device, IN efi_char16_t *property_name, OUT void *buffer, IN OUT u32 *buffer_len); /* EFI_SUCCESS, EFI_NOT_FOUND, EFI_BUFFER_TOO_SMALL */ efi_status_t (*set) ( IN struct apple_properties_protocol *this, IN struct efi_dev_path *device, IN efi_char16_t *property_name, IN void *property_value, IN u32 property_value_len); /* allocates copies of property name and value */ /* EFI_SUCCESS, EFI_OUT_OF_RESOURCES */ efi_status_t (*del) ( IN struct apple_properties_protocol *this, IN struct efi_dev_path *device, IN efi_char16_t *property_name); /* EFI_SUCCESS, EFI_NOT_FOUND */ efi_status_t (*get_all) ( IN struct apple_properties_protocol *this, OUT void *buffer, IN OUT u32 *buffer_len); /* EFI_SUCCESS, EFI_BUFFER_TOO_SMALL */ } apple_properties_protocol; Thanks to Pedro Vilaça for this blog post which was helpful in reverse engineering Apple's EFI drivers and bootloader: https://reverse.put.as/2016/06/25/apple-efi-firmware-passwords-and-the-scbo-myth/ If someone at Apple is reading this, please note there's a memory leak in your implementation of the del() function as the property struct is freed but the name and value allocations are not. Neither the macOS bootloader nor Apple's EFI drivers check the protocol version, but we do to avoid breakage if it's ever changed. It's been the same since at least OS X 10.6 (2009). The get_all() function conveniently fills a buffer with all properties in marshalled form which can be passed to the kernel as a setup_data payload. The number of device properties is dynamic and can change between a first invocation of get_all() (to determine the buffer size) and a second invocation (to retrieve the actual buffer), hence the peculiar loop which does not finish until the buffer size settles. The macOS bootloader does the same. The setup_data payload is later on unmarshalled in an fs_initcall. The idea is that most buses instantiate devices in "subsys" initcall level and drivers are usually bound to these devices in "device" initcall level, so we assign the properties in-between, i.e. in "fs" initcall level. This assumes that devices to which properties pertain are instantiated from a "subsys" initcall or earlier. That should always be the case since on macOS, AppleACPIPlatformExpert::matchEFIDevicePath() only supports ACPI and PCI nodes and we've fully scanned those buses during "subsys" initcall level. The second assumption is that properties are only needed from a "device" initcall or later. Seems reasonable to me, but should this ever not work out, an alternative approach would be to store the property sets e.g. in a btree early during boot. Then whenever device_add() is called, an EFI Device Path would have to be constructed for the newly added device, and looked up in the btree. That way, the property set could be assigned to the device immediately on instantiation. And this would also work for devices instantiated in a deferred fashion. It seems like this approach would be more complicated and require more code. That doesn't seem justified without a specific use case. For comparison, the strategy on macOS is to assign properties to objects in the ACPI namespace (AppleACPIPlatformExpert::mergeEFIProperties()). That approach is definitely wrong as it fails for devices not present in the namespace: The NHI EFI driver supplies properties for attached Thunderbolt devices, yet on Macs with Thunderbolt 1 only one device level behind the host controller is described in the namespace. Consequently macOS cannot assign properties for chained devices. With Thunderbolt 2 they started to describe three device levels behind host controllers in the namespace but this grossly inflates the SSDT and still fails if the user daisy-chained more than three devices. We copy the property names and values from the setup_data payload to swappable virtual memory and afterwards make the payload available to the page allocator. This is just for the sake of good housekeeping, it wouldn't occupy a meaningful amount of physical memory (4444 bytes on my machine). Only the payload is freed, not the setup_data header since otherwise we'd break the list linkage and we cannot safely update the predecessor's ->next link because there's no locking for the list. The payload is currently not passed on to kexec'ed kernels, same for PCI ROMs retrieved by setup_efi_pci(). This can be added later if there is demand by amending setup_efi_state(). The payload can then no longer be made available to the page allocator of course. Tested-by: Lukas Wunner <lukas@wunner.de> [MacBookPro9,1] Tested-by: Pierre Moreau <pierre.morrow@free.fr> [MacBookPro11,3] Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pedro Vilaça <reverser@put.as> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: grub-devel@gnu.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20161112213237.8804-9-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Lukas Wunner | 46cd4b75cd |
efi: Add device path parser
We're about to extended the efistub to retrieve device properties from EFI on Apple Macs. The properties use EFI Device Paths to indicate the device they belong to. This commit adds a parser which, given an EFI Device Path, locates the corresponding struct device and returns a reference to it. Initially only ACPI and PCI Device Path nodes are supported, these are the only types needed for Apple device properties (the corresponding macOS function AppleACPIPlatformExpert::matchEFIDevicePath() does not support any others). Further node types can be added with little to moderate effort. Apple device properties is currently the only use case of this parser, but Peter Jones intends to use it to match up devices with the ConInDev/ConOutDev/ErrOutDev variables and add sysfs attributes to these devices to say the hardware supports using them as console. Thus, make this parser a separate component which can be selected with config option EFI_DEV_PATH_PARSER. It can in principle be compiled as a module if acpi_get_first_physical_node() and acpi_bus_type are exported (and efi_get_device_by_path() itself is exported). The dependency on CONFIG_ACPI is needed for acpi_match_device_ids(). It can be removed if an empty inline stub is added for that function. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20161112213237.8804-7-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ivan Hu | ff6301dabc |
efi: Add efi_test driver for exporting UEFI runtime service interfaces
This driver is used by the Firmware Test Suite (FWTS) for testing the UEFI runtime interfaces readiness of the firmware. This driver exports UEFI runtime service interfaces into userspace, which allows to use and test UEFI runtime services provided by the firmware. This driver uses the efi.<service> function pointers directly instead of going through the efivar API to allow for direct testing of the UEFI runtime service interfaces provided by the firmware. Details for FWTS are available from, <https://wiki.ubuntu.com/FirmwareTestSuite> Signed-off-by: Ivan Hu <ivan.hu@canonical.com> Cc: joeyli <jlee@suse.com> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> |
|
Matt Fleming | 60863c0d1a |
efi: Split out EFI memory map functions into new file
Also move the functions from the EFI fake mem driver since future patches will require access to the memmap insertion code even if CONFIG_EFI_FAKE_MEM isn't enabled. This will be useful when we need to build custom EFI memory maps to allow drivers to mark regions as reserved. Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump] Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm] Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Peter Jones <pjones@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> |
|
Kweh, Hock Leong | 65117f1aa1 |
efi: Add misc char driver interface to update EFI firmware
This patch introduces a kernel module to expose a capsule loader interface (misc char device file note) for users to upload capsule binaries. Example: cat firmware.bin > /dev/efi_capsule_loader Any upload error will be returned while doing "cat" through file operation write() function call. Signed-off-by: Kweh, Hock Leong <hock.leong.kweh@intel.com> [ Update comments and Kconfig text ] Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Bryan O'Donoghue <pure.logic@nexus-software.ie> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sam Protsenko <semen.protsenko@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: joeyli <jlee@suse.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-30-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Matt Fleming | f0133f3c5b |
efi: Add 'capsule' update support
The EFI capsule mechanism allows data blobs to be passed to the EFI firmware. A common use case is performing firmware updates. This patch just introduces the main infrastructure for interacting with the firmware, and a driver that allows users to upload capsules will come in a later patch. Once a capsule has been passed to the firmware, the next reboot must be performed using the ResetSystem() EFI runtime service, which may involve overriding the reboot type specified by reboot=. This ensures the reset value returned by QueryCapsuleCapabilities() is used to reset the system, which is required for the capsule to be processed. efi_capsule_pending() is provided for this purpose. At the moment we only allow a single capsule blob to be sent to the firmware despite the fact that UpdateCapsule() takes a 'CapsuleCount' parameter. This simplifies the API and shouldn't result in any downside since it is still possible to send multiple capsules by repeatedly calling UpdateCapsule(). Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Bryan O'Donoghue <pure.logic@nexus-software.ie> Cc: Kweh Hock Leong <hock.leong.kweh@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: joeyli <jlee@suse.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-28-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Compostella, Jeremy | 06f7d4a161 |
efibc: Add EFI Bootloader Control module
This module installs a reboot callback, such that if reboot() is invoked with a string argument NNN, "NNN" is copied to the "LoaderEntryOneShot" EFI variable, to be read by the bootloader. If the string matches one of the boot labels defined in its configuration, the bootloader will boot once to that label. The "LoaderEntryRebootReason" EFI variable is set with the reboot reason: "reboot", "shutdown". The bootloader reads this reboot reason and takes particular action according to its policy. There are reboot implementations that do "reboot <reason>", such as Android's reboot command and Upstart's reboot replacement, which pass the reason as an argument to the reboot syscall. There is no platform-agnostic way how those could be modified to pass the reason to the bootloader, regardless of platform or bootloader. Signed-off-by: Jeremy Compostella <jeremy.compostella@intel.com> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stefan Stanacar <stefan.stanacar@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-26-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ard Biesheuvel | 10f0d2f577 |
efi: Implement generic support for the Memory Attributes table
This implements shared support for discovering the presence of the Memory Attributes table, and for parsing and validating its contents. The table is validated against the construction rules in the UEFI spec. Since this is a new table, it makes sense to complain if we encounter a table that does not follow those rules. The parsing and validation routine takes a callback that can be specified per architecture, that gets passed each unique validated region, with the virtual address retrieved from the ordinary memory map. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [ Trim pr_*() strings to 80 cols and use EFI consistently. ] Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Jones <pjones@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1461614832-17633-14-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Ard Biesheuvel | da58fb6571 |
ARM: wire up UEFI init and runtime support
This adds support to the kernel proper for booting via UEFI. It shares most of the code with arm64, so this patch mostly just wires it up for use with ARM. Note that this does not include the EFI stub, it is added in a subsequent patch. Tested-by: Ryan Harkin <ryan.harkin@linaro.org> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> |
|
Ard Biesheuvel | e5bc22a42e |
arm64/efi: split off EFI init and runtime code for reuse by 32-bit ARM
This splits off the early EFI init and runtime code that - discovers the EFI params and the memory map from the FDT, and installs the memblocks and config tables. - prepares and installs the EFI page tables so that UEFI Runtime Services can be invoked at the virtual address installed by the stub. This will allow it to be reused for 32-bit ARM. Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
Linus Torvalds | 2dc10ad81f |
arm64 updates for 4.4:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch merged from tip/irq/for-arm to allow the arm64-specific part to be upstreamed via the arm64 tree - CPU feature detection reworked to cope with heterogeneous systems where CPUs may not have exactly the same features. The features reported by the kernel via internal data structures or ELF_HWCAP are delayed until all the CPUs are up (and before user space starts) - Support for 16KB pages, with the additional bonus of a 36-bit VA space, though the latter only depending on EXPERT - Implement native {relaxed, acquire, release} atomics for arm64 - New ASID allocation algorithm which avoids IPI on roll-over, together with TLB invalidation optimisations (using local vs global where feasible) - KASan support for arm64 - EFI_STUB clean-up and isolation for the kernel proper (required by KASan) - copy_{to,from,in}_user optimisations (sharing the memcpy template) - perf: moving arm64 to the arm32/64 shared PMU framework - L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware - Support for the contiguous PTE hint on kernel mapping (16 consecutive entries may be able to use a single TLB entry) - Generic CONFIG_HZ now used on arm64 - defconfig updates -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJWOkmIAAoJEGvWsS0AyF7x4GgQAINU3NePjFFvWZNCkqobeH9+ jFKwtXamIudhTSdnXNXyYWmtRL9Krg3qI4zDQf68dvDFAZAze2kVuOi1yPpCbpFZ /j/afNyQc7+PoyqRAzmT+EMPZlcuOA84Prrl1r3QWZ58QaFeVk/6ZxrHunTHxN0x mR9PIXfWx73MTo+UnG8FChkmEY6LmV4XpemgTaMR9FqFhdT51OZSxDDAYXOTm4JW a5HdN9OWjjJ2rhLlFEaC7tszG9B5doHdy2tr5ge/YERVJzIPDogHkMe8ZhfAJc+x SQU5tKN6Pg4MOi+dLhxlk0/mKCvHLiEQ5KVREJnt8GxupAR54Bat+DQ+rP9cSnpq dRQTcARIOyy9LGgy+ROAsSo+NiyM5WuJ0/WJUYKmgWTJOfczRYoZv6TMKlwNOUYb tGLCZHhKPM3yBHJlWbQykl3xmSuudxCMmjlZzg7B+MVfTP6uo0CRSPmYl+v67q+J bBw/Z2RYXWYGnvlc6OfbMeImI6prXeE36+5ytyJFga0m+IqcTzRGzjcLxKEvdbiU pr8n9i+hV9iSsT/UwukXZ8ay6zH7PrTLzILWQlieutfXlvha7MYeGxnkbLmdYcfe GCj374io5cdImHcVKmfhnOMlFOLuOHphl9cmsd/O2LmCIqBj9BIeNH2Om8mHVK2F YHczMdpESlJApE7kUc1e =3six -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - "genirq: Introduce generic irq migration for cpu hotunplugged" patch merged from tip/irq/for-arm to allow the arm64-specific part to be upstreamed via the arm64 tree - CPU feature detection reworked to cope with heterogeneous systems where CPUs may not have exactly the same features. The features reported by the kernel via internal data structures or ELF_HWCAP are delayed until all the CPUs are up (and before user space starts) - Support for 16KB pages, with the additional bonus of a 36-bit VA space, though the latter only depending on EXPERT - Implement native {relaxed, acquire, release} atomics for arm64 - New ASID allocation algorithm which avoids IPI on roll-over, together with TLB invalidation optimisations (using local vs global where feasible) - KASan support for arm64 - EFI_STUB clean-up and isolation for the kernel proper (required by KASan) - copy_{to,from,in}_user optimisations (sharing the memcpy template) - perf: moving arm64 to the arm32/64 shared PMU framework - L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware - Support for the contiguous PTE hint on kernel mapping (16 consecutive entries may be able to use a single TLB entry) - Generic CONFIG_HZ now used on arm64 - defconfig updates * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits) arm64/efi: fix libstub build under CONFIG_MODVERSIONS ARM64: Enable multi-core scheduler support by default arm64/efi: move arm64 specific stub C code to libstub arm64: page-align sections for DEBUG_RODATA arm64: Fix build with CONFIG_ZONE_DMA=n arm64: Fix compat register mappings arm64: Increase the max granular size arm64: remove bogus TASK_SIZE_64 check arm64: make Timer Interrupt Frequency selectable arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED arm64: cachetype: fix definitions of ICACHEF_* flags arm64: cpufeature: declare enable_cpu_capabilities as static genirq: Make the cpuhotplug migration code less noisy arm64: Constify hwcap name string arrays arm64/kvm: Make use of the system wide safe values arm64/debug: Make use of the system wide safe value arm64: Move FP/ASIMD hwcap handling to common code arm64/HWCAP: Use system wide safe values arm64/capabilities: Make use of system wide safe value arm64: Delay cpu feature capability checks ... |
|
Andrey Ryabinin | 39d114ddc6 |
arm64: add KASAN support
This patch adds arch specific code for kernel address sanitizer (see Documentation/kasan.txt). 1/8 of kernel addresses reserved for shadow memory. There was no big enough hole for this, so virtual addresses for shadow were stolen from vmalloc area. At early boot stage the whole shadow region populated with just one physical page (kasan_zero_page). Later, this page reused as readonly zero shadow for some memory that KASan currently don't track (vmalloc). After mapping the physical memory, pages for shadow memory are allocated and mapped. Functions like memset/memmove/memcpy do a lot of memory accesses. If bad pointer passed to one of these function it is important to catch this. Compiler's instrumentation cannot do this since these functions are written in assembly. KASan replaces memory functions with manually instrumented variants. Original functions declared as weak symbols so strong definitions in mm/kasan/kasan.c could replace them. Original functions have aliases with '__' prefix in name, so we could call non-instrumented variant if needed. Some files built without kasan instrumentation (e.g. mm/slub.c). Original mem* function replaced (via #define) with prefixed variants to disable memory access checks for such files. Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
Taku Izumi | 0f96a99dab |
efi: Add "efi_fake_mem" boot option
This patch introduces new boot option named "efi_fake_mem". By specifying this parameter, you can add arbitrary attribute to specific memory range. This is useful for debugging of Address Range Mirroring feature. For example, if "efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000" is specified, the original (firmware provided) EFI memmap will be updated so that the specified memory regions have EFI_MEMORY_MORE_RELIABLE attribute (0x10000): <original> efi: mem36: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x00000020a0000000) (129536MB) <updated> efi: mem36: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x0000000180000000) (2048MB) efi: mem37: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000180000000-0x00000010a0000000) (61952MB) efi: mem38: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x00000010a0000000-0x0000001120000000) (2048MB) efi: mem39: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000001120000000-0x00000020a0000000) (63488MB) And you will find that the following message is output: efi: Memory: 4096M/131455M mirrored memory Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Peter Jones | 3846c15820 |
efi: Work around ia64 build problem with ESRT driver
So, I'm told this problem exists in the world: > Subject: Build error in -next due to 'efi: Add esrt support' > > Building ia64:defconfig ... failed > -------------- > Error log: > > drivers/firmware/efi/esrt.c:28:31: fatal error: asm/early_ioremap.h: No such file or directory > I'm not really sure how it's okay that we have things in asm-generic on some platforms but not others - is having it the same everywhere not the whole point of asm-generic? That said, ia64 doesn't have early_ioremap.h . So instead, since it's difficult to imagine new IA64 machines with UEFI 2.5, just don't build this code there. To me this looks like a workaround - doing something like: generic-y += early_ioremap.h in arch/ia64/include/asm/Kbuild would appear to be more correct, but ia64 has its own early_memremap() decl in arch/ia64/include/asm/io.h , and it's a macro. So adding the above /and/ requiring that asm/io.h be included /after/ asm/early_ioremap.h in all cases would fix it, but that's pretty ugly as well. Since I'm not going to spend the rest of my life rectifying ia64 headers vs "generic" headers that aren't generic, it's much simpler to just not build there. Note that I've only actually tried to build this patch on x86_64, but esrt.o still gets built there, and that would seem to demonstrate that the conditional building is working correctly at all the places the code built before. I no longer have any ia64 machines handy to test that the exclusion actually works there. Signed-off-by: Peter Jones <pjones@redhat.com> Acked-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> (Compile-)Tested-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Peter Jones | 0bb549052d |
efi: Add esrt support
Add sysfs files for the EFI System Resource Table (ESRT) under /sys/firmware/efi/esrt and for each EFI System Resource Entry under entries/ as a subdir. The EFI System Resource Table (ESRT) provides a read-only catalog of system components for which the system accepts firmware upgrades via UEFI's "Capsule Update" feature. This module allows userland utilities to evaluate what firmware updates can be applied to this system, and potentially arrange for those updates to occur. The ESRT is described as part of the UEFI specification, in version 2.5 which should be available from http://uefi.org/specifications in early 2015. If you're a member of the UEFI Forum, information about its addition to the standard is available as UEFI Mantis 1090. For some hardware platforms, additional restrictions may be found at http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx , and additional documentation may be found at http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx . Signed-off-by: Peter Jones <pjones@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Ard Biesheuvel | 243b6754cd |
efi/x86: Move x86 back to libstub
This reverts commit
|
|
Matt Fleming | 84be880560 |
Revert "efi/x86: efistub: Move shared dependencies to <asm/efi.h>"
This reverts commit |
|
Matt Fleming | 8562c99cdd |
efi/reboot: Add generic wrapper around EfiResetSystem()
Implement efi_reboot(), which is really just a wrapper around the EfiResetSystem() EFI runtime service, but it does at least allow us to funnel all callers through a single location. It also simplifies the callsites since users no longer need to check to see whether EFI_RUNTIME_SERVICES are enabled. Cc: Tony Luck <tony.luck@intel.com> Tested-by: Mark Salter <msalter@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Ard Biesheuvel | f4f75ad574 |
efi: efistub: Convert into static library
This patch changes both x86 and arm64 efistub implementations from #including shared .c files under drivers/firmware/efi to building shared code as a static library. The x86 code uses a stub built into the boot executable which uncompresses the kernel at boot time. In this case, the library is linked into the decompressor. In the arm64 case, the stub is part of the kernel proper so the library is linked into the kernel proper as well. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Ard Biesheuvel | 022ee6c558 |
efi/x86: Move UEFI Runtime Services wrappers to generic code
In order for other archs (such as arm64) to be able to reuse the virtual mode function call wrappers, move them to drivers/firmware/efi/runtime-wrappers.c. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Ingo Molnar | ef0b8b9a52 |
Linux 3.13-rc7
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJSyJVbAAoJEHm+PkMAQRiGa28H/0m7GpZSpT8mvBthITxzqWCq JRkSPS4KTurAWlA5CJMJePyCM30DgN90s06bYUen9sTecZUwnL+qSV5OqAmg2r+0 PrfwtXtGZR6/Y12XlZ/3oFxVfUxjmgJyDAS76TIH1IvIum52nvJmLrR+6AyVphIX DkgBOuapdA7lia+U+ZM1cRkeHxUOKTUEw9v611VgoN3LYZyzyRb6d0rB7JtZN1RV dnXRi27enaPhwxelsCnORioRjsByMwD40CERxfLHmr5CGhmvCehBjO6bJ+KAdp14 52bfwWcNdbFMzUobcR7qlfS3Hy3AYJci+P6JzeeZ+kWEdv/eh5/1lvNuXtBJRlc= =iwzJ -----END PGP SIGNATURE----- Merge tag 'v3.13-rc7' into x86/efi-kexec to resolve conflicts Conflicts: arch/x86/platform/efi/efi.c drivers/firmware/efi/Kconfig Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Dave Young | 926172d460 |
efi: Export EFI runtime memory mapping to sysfs
kexec kernel will need exactly same mapping for EFI runtime memory ranges. Thus here export the runtime ranges mapping to sysfs, kexec-tools will assemble them and pass to 2nd kernel via setup_data. Introducing a new directory /sys/firmware/efi/runtime-map just like /sys/firmware/memmap. Containing below attribute in each file of that directory: attribute num_pages phys_addr type virt_addr Signed-off-by: Dave Young <dyoung@redhat.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Jan Beulich | fce7d3bfc0 |
x86/efi: Don't select EFI from certain special ACPI drivers
Commit
|
|
Luck, Tony | 7ea6c6c15e |
Move cper.c from drivers/acpi/apei to drivers/firmware/efi
cper.c contains code to decode and print "Common Platform Error Records". Originally added under drivers/acpi/apei because the only user was in that same directory - but now we have another consumer, and we shouldn't have to force CONFIG_ACPI_APEI get access to this code. Since CPER is defined in the UEFI specification - the logical home for this code is under drivers/firmware/efi/ Acked-by: Matt Fleming <matt.fleming@intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Tony Luck <tony.luck@intel.com> |
|
Tom Gundersen | a9499fa7cd |
efi: split efisubsystem from efivars
This registers /sys/firmware/efi/{,systab,efivars/} whenever EFI is enabled and the system is booted with EFI. This allows *) userspace to check for the existence of /sys/firmware/efi as a way to determine whether or it is running on an EFI system. *) 'mount -t efivarfs none /sys/firmware/efi/efivars' without manually loading any modules. [ Also, move the efivar API into vars.c and unconditionally compile it. This allows us to move efivars.c, which now only contains the sysfs variable code, into the firmware/efi directory. Note that the efivars.c filename is kept to maintain backwards compatability with the old efivars.ko module. With this patch it is now possible for efivarfs to be built without CONFIG_EFI_VARS - Matt ] Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Mike Waychison <mikew@google.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Jeremy Kerr <jk@ozlabs.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Chun-Yi Lee <jlee@suse.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Tobias Powalowski <tpowa@archlinux.org> Signed-off-by: Tom Gundersen <teg@jklm.no> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |
|
Matt Fleming | 048517722c |
efivars: Move pstore code into the new EFI directory
efivars.c has grown far too large and needs to be divided up. Create a new directory and move the persistence storage code to efi-pstore.c now that it uses the new efivar API. This helps us to greatly reduce the size of efivars.c and paves the way for moving other code out of efivars.c. Note that because CONFIG_EFI_VARS can be built as a module efi-pstore must also include support for building as a module. Reviewed-by: Tom Gundersen <teg@jklm.no> Tested-by: Tom Gundersen <teg@jklm.no> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Anton Vorontsov <cbouatmailru@gmail.com> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> |