__jbd2_log_space_left() and jbd_space_needed() were kind of odd.
jbd_space_needed() accounted also credits needed for currently
committing transaction while it didn't account for credits needed for
control blocks. __jbd2_log_space_left() then accounted for control
blocks as a fraction of free space. Since results of these two
functions are always only compared against each other, this works
correct but is somewhat strange. Move the estimates so that
jbd_space_needed() returns number of blocks needed for a transaction
including control blocks and __jbd2_log_space_left() returns free
space in the journal (with the committing transaction already
subtracted). Rename functions to jbd2_log_space_left() and
jbd2_space_needed() while we are changing them.
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The comment about credit estimates isn't true anymore. We do what the
comment describes now.
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Currently when we add a buffer to a transaction, we wait until the
buffer is removed from BJ_Shadow list (so that we prevent any changes
to the buffer that is just written to the journal). This can take
unnecessarily long as a lot happens between the time the buffer is
submitted to the journal and the time when we remove the buffer from
BJ_Shadow list. (e.g. We wait for all data buffers in the
transaction, we issue a cache flush, etc.) Also this creates a
dependency of do_get_write_access() on transaction commit (namely
waiting for data IO to complete) which we want to avoid when
implementing transaction reservation.
So we modify commit code to set new BH_Shadow flag when temporary
shadowing buffer is created and we clear that flag once IO on that
buffer is complete. This allows do_get_write_access() to wait only
for BH_Shadow bit and thus removes the dependency on data IO
completion.
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Similarly as for metadata buffers, also log descriptor buffers don't
really need the journal head. So strip it and remove BJ_LogCtl list.
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When writing metadata to the journal, we create temporary buffer heads
for that task. We also attach journal heads to these buffer heads but
the only purpose of the journal heads is to keep buffers linked in
transaction's BJ_IO list. We remove the need for journal heads by
reusing buffer_head's b_assoc_buffers list for that purpose. Also
since BJ_IO list is just a temporary list for transaction commit, we
use a private list in jbd2_journal_commit_transaction() for that thus
removing BJ_IO list from transaction completely.
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Change writeback path to create just one io_end structure for the
extent to which we submit IO and share it among bios writing that
extent. This prevents needless splitting and joining of unwritten
extents when they cannot be submitted as a single bio.
Bugs in ENOMEM handling found by Linux File System Verification project
(linuxtesting.org) and fixed by Alexey Khoroshilov
<khoroshilov@ispras.ru>.
CC: Alexey Khoroshilov <khoroshilov@ispras.ru>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The arithmetics adding delalloc blocks to the number of used blocks in
ext4_getattr() can easily overflow on 32-bit archs as we first multiply
number of blocks by blocksize and then divide back by 512. Make the
arithmetics more clever and also use proper type (unsigned long long
instead of unsigned long).
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
On 32-bit architectures with 32-bit sector_t computation of data offset
in ext4_xattr_fiemap() can overflow resulting in reporting bogus data
location. Fix the problem by typing block number to proper type before
shifting.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
ext4_lblk_t is just u32 so multiplying it by blocksize can easily
overflow for files larger than 4 GB. Fix that by properly typing the
block offsets before shifting.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
On 32-bit archs when sector_t is defined as 32-bit the logic computing
data offset in ext4_inline_data_fiemap(). Fix that by properly typing
the shifted value.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Suppress the messages releating to processing the ext4 orphan list
("truncating inode" and "deleting unreferenced inode") unless the
debug option is on, since otherwise they end up taking up space in the
log that could be used for more useful information.
Tested by opening several files, unlinking them, then
crashing the system, rebooting the system and examining
/var/log/messages.
Addresses the problem described in http://crbug.com/220976
Signed-off-by: Paul Taysom <taysom@chromium.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Al Viro complained of a ton of bogosity with regards to the jbd2 block
tag header checksum. This one checksum is 16 bits, so cut off the
upper 16 bits and treat it as a 16-bit value and don't mess around
with be32* conversions. Fortunately metadata checksumming is still
"experimental" and not in a shipping e2fsprogs, so there should be few
users affected by this.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This commit tries to use kmem_cache_zalloc instead of kmem_cache_alloc/
memset when a new journal head is alloctated.
Signed-off-by: Zheng Liu <wenqing.lz@taobao.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Currently punch hole is disabled in file systems with bigalloc
feature enabled. However the recent changes in punch hole patch should
make it easier to support punching holes on bigalloc enabled file
systems.
This commit changes partial_cluster handling in ext4_remove_blocks(),
ext4_ext_rm_leaf() and ext4_ext_remove_space(). Currently
partial_cluster is unsigned long long type and it makes sure that we
will free the partial cluster if all extents has been released from that
cluster. However it has been specifically designed only for truncate.
With punch hole we can be freeing just some extents in the cluster
leaving the rest untouched. So we have to make sure that we will notice
cluster which still has some extents. To do this I've changed
partial_cluster to be signed long long type. The only scenario where
this could be a problem is when cluster_size == block size, however in
that case there would not be any partial clusters so we're safe. For
bigger clusters the signed type is enough. Now we use the negative value
in partial_cluster to mark such cluster used, hence we know that we must
not free it even if all other extents has been freed from such cluster.
This scenario can be described in simple diagram:
|FFF...FF..FF.UUU|
^----------^
punch hole
. - free space
| - cluster boundary
F - freed extent
U - used extent
Also update respective tracepoints to use signed long long type for
partial_cluster.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The "head removal" branch in the condition is never used in any code
path in ext4 since the function only caller ext4_ext_rm_leaf() will make
sure that the extent is properly split before removing blocks. Note that
there is a bug in this branch anyway.
This commit removes the unused code completely and makes use of
ext4_error() instead of printk if dubious range is provided.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The discard_partial_page_buffers is no longer used anywhere so we can
simply remove it including the *_no_lock variant and
EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED define.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
We're doing to get rid of ext4_discard_partial_page_buffers() since it is
duplicating some code and also partially duplicating work of
truncate_pagecache_range(), moreover the old implementation was much
clearer.
Now when the truncate_inode_pages_range() can handle truncating non page
aligned regions we can use this to invalidate and zero out block aligned
region of the punched out range and then use ext4_block_truncate_page()
to zero the unaligned blocks on the start and end of the range. This
will greatly simplify the punch hole code. Moreover after this commit we
can get rid of the ext4_discard_partial_page_buffers() completely.
We also introduce function ext4_prepare_punch_hole() to do come common
operations before we attempt to do the actual punch hole on
indirect or extent file which saves us some code duplication.
This has been tested on ppc64 with 1k block size with fsx and xfstests
without any problems.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently we do not tell mm to zero out tail of the page before truncate
in orphan_cleanup(). This is ok, because the page should not be
uptodate, however this may eventually change and I might cause problems.
Call truncate_inode_pages() as precautionary measure. Thanks Jan Kara
for pointing this out.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This reverts commit 189e868fa8.
This commit reintroduces the use of ext4_block_truncate_page() in ext4
truncate operation instead of ext4_discard_partial_page_buffers().
The statement in the commit description that the truncate operation only
zero block unaligned portion of the last page is not exactly right,
since truncate_pagecache_range() also zeroes and invalidate the unaligned
portion of the page. Then there is no need to zero and unmap it once more
and ext4_block_truncate_page() was doing the right job, although we
still need to update the buffer head containing the last block, which is
exactly what ext4_block_truncate_page() is doing.
Moreover the problem described in the commit is fixed more properly with
commit
15291164b2
jbd2: clear BH_Delay & BH_Unwritten in journal_unmap_buffer
This was tested on ppc64 machine with block size of 1024 bytes without
any problems.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In data=ordered mode we should call ext4_jbd2_file_inode() so that crash
after the truncate transaction has committed does not expose stall data
in the tail of the block.
Thanks Jan Kara for pointing that out.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This reverts commit ccb4d7af91.
This commit reintroduces functions ext4_block_truncate_page() and
ext4_block_zero_page_range() which has been previously removed in favour
of ext4_discard_partial_page_buffers().
In future commits we want to reintroduce those function and remove
ext4_discard_partial_page_buffers() since it is duplicating some code
and also partially duplicating work of truncate_pagecache_range(),
moreover the old implementation was much clearer.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in reiserfs_invalidatepage()
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: reiserfs-devel@vger.kernel.org
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in gfs2_invalidatepage().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: cluster-devel@redhat.com
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in ceph_invalidatepage().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Sage Weil <sage@inktank.com>
Cc: ceph-devel@vger.kernel.org
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in ocfs2_invalidatepage().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Joel Becker <jlbec@evilplan.org>
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in xfs_vm_invalidatepage()
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Cc: xfs@oss.sgi.com
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in journal_invalidatepage() and all the users in ext3 file
system. Also update ext3 trace point to print out length argument.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
->invalidatepage() aop now accepts range to invalidate so we can make
use of it in all ext4 invalidatepage routines.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
invalidatepage now accepts range to invalidate and there are two file
system using jbd2 also implementing punch hole feature which can benefit
from this. We need to implement the same thing for jbd2 layer in order to
allow those file system take benefit of this functionality.
This commit adds length argument to the jbd2_journal_invalidatepage()
and updates all instances in ext4 and ocfs2.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Currently there is no way to truncate partial page where the end
truncate point is not at the end of the page. This is because it was not
needed and the functionality was enough for file system truncate
operation to work properly. However more file systems now support punch
hole feature and it can benefit from mm supporting truncating page just
up to the certain point.
Specifically, with this functionality truncate_inode_pages_range() can
be changed so it supports truncating partial page at the end of the
range (currently it will BUG_ON() if 'end' is not at the end of the
page).
This commit changes the invalidatepage() address space operation
prototype to accept range to be invalidated and update all the instances
for it.
We also change the block_invalidatepage() in the same way and actually
make a use of the new length argument implementing range invalidation.
Actual file system implementations will follow except the file systems
where the changes are really simple and should not change the behaviour
in any way .Implementation for truncate_page_range() which will be able
to accept page unaligned ranges will follow as well.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Pull btrfs fixes from Chris Mason:
"Miao Xie has been very busy, fixing races and enospc problems and many
other small but important pieces.
Alexandre Oliva discovered some problems with how our error handling
was interacting with the block layer and for now has disabled our
partial handling of sub-page writes. The real sub-page work is in a
series of patches from IBM that we still need to integrate and test.
The code Alexandre has turned off was really incomplete.
Josef has more error handling fixes and an important fix for the new
skinny extent format.
This also has my fix for the tracepoint crash from late in 3.9. It's
the first stage in a larger clean up to get rid of btrfs_bio and make
a proper bioset for all the items we need to tack into the bio. For
now the bioset only holds our mirror_num and stripe_index, but for the
next merge window I'll shuffle more in."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: use a btrfs bioset instead of abusing bio internals
Btrfs: make sure roots are assigned before freeing their nodes
Btrfs: explicitly use global_block_rsv for quota_tree
btrfs: do away with non-whole_page extent I/O
Btrfs: don't invoke btrfs_invalidate_inodes() in the spin lock context
Btrfs: remove BUG_ON() in btrfs_read_fs_tree_no_radix()
Btrfs: pause the space balance when remounting to R/O
Btrfs: fix unprotected root node of the subvolume's inode rb-tree
Btrfs: fix accessing a freed tree root
Btrfs: return errno if possible when we fail to allocate memory
Btrfs: update the global reserve if it is empty
Btrfs: don't steal the reserved space from the global reserve if their space type is different
Btrfs: optimize the error handle of use_block_rsv()
Btrfs: don't use global block reservation for inode cache truncation
Btrfs: don't abort the current transaction if there is no enough space for inode cache
Correct allowed raid levels on balance.
Btrfs: fix possible memory leak in replace_path()
Btrfs: fix possible memory leak in the find_parent_nodes()
Btrfs: don't allow device replace on RAID5/RAID6
Btrfs: handle running extent ops with skinny metadata
...
Btrfs has been pointer tagging bi_private and using bi_bdev
to store the stripe index and mirror number of failed IOs.
As bios bubble back up through the call chain, we use these
to decide if and how to retry our IOs. They are also used
to count IO failures on a per device basis.
Recently a bio tracepoint was added lead to crashes because
we were abusing bi_bdev.
This commit adds a btrfs bioset, and creates explicit fields
for the mirror number and stripe index. The plan is to
extend this structure for all of the fields currently in
struct btrfs_bio, which will mean one less kmalloc in
our IO path.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Tejun Heo <tj@kernel.org>
If we fail to load the chunk tree we'll call free_root_pointers, except we may
not have assigned the roots for the dev_root/extent_root/csum_root yet, so we
could NULL pointer deref at this point. Just add checks to make sure these
roots are set to keep us from panicing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The quota_tree was set up to use the empty_block_rsv before
which would be problematic when the filesystem is filled up
and ENOSPC happens during internal operations while the quota
tree is updated and COWed (when the btrfs_qgroup_info_item
items) are written. In fact, use_block_rsv() which is used
in btrfs_cow_block() falls back to the global_block_rsv in
this case. But just in order to make it more clear what is
happening, change it to explicitly use the global_block_rsv.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
end_bio_extent_readpage computes whole_page based on bv_offset and
bv_len, without taking into account that blk_update_request may modify
them when some of the blocks to be read into a page produce a read
error. This would cause the read to unlock only part of the file
range associated with the page, which would in turn leave the entire
page locked, which would not only keep the process blocked instead of
returning -EIO to it, but also prevent any further access to the file.
It turns out that btrfs always issues whole-page reads and writes.
The special handling of non-whole_page appears to be a mistake or a
left-over from a time when this wasn't the case. Indeed,
end_bio_extent_writepage distinguished between whole_page and
non-whole_page writes but behaved identically in both cases!
I've replaced the whole_page computations with warnings, just to be
sure that we're not issuing partial page reads or writes. The
warnings should probably just go away some time.
Signed-off-by: Alexandre Oliva <oliva@gnu.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_invalidate_inodes() may sleep, so we should not invoke it in the
spin lock context. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We have checked if ->node is NULL or not, so it is unnecessary to
use BUG_ON() to check again. Remove it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The root node of the rb-tree may be changed, so we should get it under
the lock. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
inode_tree_del() will move the tree root into the dead root list, and
then the tree will be destroyed by the cleaner. So if we remove the
delayed node which is cached in the inode after inode_tree_del(),
we may access a freed tree root. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We need to set return value explicitly, otherwise we'll lose the error
value.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Before applying this patch, we reserved the space for the global reserve
by the minimum unit if we found it is empty, it was unreasonable and
inefficient, because if the global reserve space was depleted, it implied
that the size of the global reserve was too small. In this case, we shoud
update the global reserve and fill it.
Cc: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If the type of the space we need is different with the global reserve, we
can not steal the space from the global reserve, because we can not allocate
the space from the free space cache that the global reserve points to.
Cc: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
It is very likely that there are lots of subvolumes/snapshots in the filesystem,
so if we use global block reservation to do inode cache truncation, we may hog
all the free space that is reserved in global rsv. So it is better that we do
the free space reservation for inode cache truncation by ourselves.
Cc: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The filesystem with inode cache was forced to be read-only when we umounted it.
Steps to reproduce:
# mkfs.btrfs -f ${DEV}
# mount -o inode_cache ${DEV} ${MNT}
# dd if=/dev/zero of=${MNT}/file1 bs=1M count=8192
# btrfs fi syn ${MNT}
# dd if=${MNT}/file1 of=/dev/null bs=1M
# rm -f ${MNT}/file1
# btrfs fi syn ${MNT}
# umount ${MNT}
It is because there was no enough space to do inode cache truncation, and then
we aborted the current transaction.
But no space error is not a serious problem when we write out the inode cache,
and it is safe that we just skip this step if we meet this problem. So we need
not abort the current transaction.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Raid5 with 3 devices is well defined while the old logic allowed
raid5 only with a minimum of 4 devices when converting the block group
profile via btrfs balance. Creating a raid5 with just three devices
using mkfs.btrfs worked always as expected. This is now fixed and the
whole logic is rewritten.
Signed-off-by: Andreas Philipp <philipp.andreas@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
In replace_path(), if read_tree_block() fails, we cannot return
directly, we should free some allocated memory otherwise memory
leak happens.
Similar to Wang's "Btrfs: fix possible memory leak in the
find_parent_nodes()" patch, the current commit fixes an issue that
is related to the "Btrfs: fix all callers of read_tree_block"
commit.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>