Much of the driver uses cpu_to_le32() to convert values for descriptors
to little endian before writing. Use __le32 to define the hardware-
accessed parts of the descriptors, and ensure most places where it's
reasonable to do so use cpu_to_le32() when assigning to these.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When tdma->src is freed in mv_cesa_dma_cleanup(), we convert the DMA
address from a little-endian value prior to calling dma_pool_free().
However, mv_cesa_dma_add_op() assigns tdma->src without first converting
the DMA address to little endian. Fix this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
cur_dma is part of the software state, not read by the hardware.
Storing it in LE32 format is wrong, use dma_addr_t for this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use relaxed IO accessors where appropriate.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The CESA IP supports CPU offload through a dedicated DMA engine (TDMA)
which can control the crypto block.
When you use this mode, all the required data (operation metadata and
payload data) are transferred using DMA, and the results are retrieved
through DMA when possible (hash results are not retrieved through DMA yet),
thus reducing the involvement of the CPU and providing better performances
in most cases (for small requests, the cost of DMA preparation might
exceed the performance gain).
Note that some CESA IPs do not embed this dedicated DMA, hence the
activation of this feature on a per platform basis.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>