Currently the idle injection framework uses the play_idle() function
which puts the current CPU in an idle state. The idle state is the
deepest one, as specified by the latency constraint when calling the
subsequent play_idle_precise() function with the INT_MAX.
The idle_injection is used by the cpuidle_cooling device which
computes the idle / run duration to mitigate the temperature by
injecting idle cycles. The cooling device has no control on the depth
of the idle state.
Allow finer control of the idle injection mechanism by allowing to
specify the latency for the idle state. Thus the cooling device has
the ability to have a guarantee on the exit latency of the idle states
it is injecting.
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Amit Kucheria <amit.kucheria@linaro.org>
Link: https://lore.kernel.org/r/20200429103644.5492-1-daniel.lezcano@linaro.org
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
Lastly, fix the following checkpatch warning:
WARNING: Prefer 'unsigned long' over 'unsigned long int' as the int is unnecessary
+ unsigned long int cpumask[];
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The resolution of the idle injection is limited to 1ms. If there is
a need for an injection of 1.2 ms, it is not possible.
The idle injection API is not yet used, so it is safe to convert the
existing API to the new time unit instead of adding more functions.
Convert to microsecond in order to use a finer grain time unit when
injecting idle cycles.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The play_idle resolution is 1ms. The intel_powerclamp bases the idle
duration on jiffies. The idle injection API is also using msec based
duration but has no user yet.
Unfortunately, msec based time does not fit well when we want to
inject idle cycle precisely with shallow idle state.
In order to set the scene for the incoming idle injection user, move
the precision up to usec when calling play_idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Initially, the cpu_cooling device for ARM was changed by adding a new
policy inserting idle cycles. The intel_powerclamp driver does a
similar action.
Instead of implementing idle injections privately in the cpu_cooling
device, move the idle injection code in a dedicated framework and give
the opportunity to other frameworks to make use of it.
The framework relies on the smpboot kthreads which handles via its
main loop the common code for hotplugging and [un]parking.
This code was previously tested with the cpu cooling device and went
through several iterations. It results now in split code and API
exported in the header file. It was tested with the cpu cooling device
with success.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Rewrite of all comments ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>