Nowadays output function has a 'synack_type' argument that tells us when
the syn/ack is emitted via syncookies.
The request already tells us when timestamps are supported, so check
both to detect special timestamp for tcp option encoding is needed.
We could remove cookie_ts altogether, but a followup patch would
otherwise need to adjust function signatures to pass 'want_cookie' to
mptcp core.
This way, the 'existing' bit can be used.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The UDP reuseport conflict was a little bit tricky.
The net-next code, via bpf-next, extracted the reuseport handling
into a helper so that the BPF sk lookup code could invoke it.
At the same time, the logic for reuseport handling of unconnected
sockets changed via commit efc6b6f6c3
which changed the logic to carry on the reuseport result into the
rest of the lookup loop if we do not return immediately.
This requires moving the reuseport_has_conns() logic into the callers.
While we are here, get rid of inline directives as they do not belong
in foo.c files.
The other changes were cases of more straightforward overlapping
modifications.
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously TLP may send multiple probes of new data in one
flight. This happens when the sender is cwnd limited. After the
initial TLP containing new data is sent, the sender receives another
ACK that acks partial inflight. It may re-arm another TLP timer
to send more, if no further ACK returns before the next TLP timeout
(PTO) expires. The sender may send in theory a large amount of TLP
until send queue is depleted. This only happens if the sender sees
such irregular uncommon ACK pattern. But it is generally undesirable
behavior during congestion especially.
The original TLP design restrict only one TLP probe per inflight as
published in "Reducing Web Latency: the Virtue of Gentle Aggression",
SIGCOMM 2013. This patch changes TLP to send at most one probe
per inflight.
Note that if the sender is app-limited, TLP retransmits old data
and did not have this issue.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Simple fixes which require no deep knowledge of the code.
Cc: Paul Moore <paul@paul-moore.com>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Whenever cookie_init_timestamp() has been used to encode
ECN,SACK,WSCALE options, we can not remove the TS option in the SYNACK.
Otherwise, tcp_synack_options() will still advertize options like WSCALE
that we can not deduce later when receiving the packet from the client
to complete 3WHS.
Note that modern linux TCP stacks wont use MD5+TS+SACK in a SYN packet,
but we can not know for sure that all TCP stacks have the same logic.
Before the fix a tcpdump would exhibit this wrong exchange :
10:12:15.464591 IP C > S: Flags [S], seq 4202415601, win 65535, options [nop,nop,md5 valid,mss 1400,sackOK,TS val 456965269 ecr 0,nop,wscale 8], length 0
10:12:15.464602 IP S > C: Flags [S.], seq 253516766, ack 4202415602, win 65535, options [nop,nop,md5 valid,mss 1400,nop,nop,sackOK,nop,wscale 8], length 0
10:12:15.464611 IP C > S: Flags [.], ack 1, win 256, options [nop,nop,md5 valid], length 0
10:12:15.464678 IP C > S: Flags [P.], seq 1:13, ack 1, win 256, options [nop,nop,md5 valid], length 12
10:12:15.464685 IP S > C: Flags [.], ack 13, win 65535, options [nop,nop,md5 valid], length 0
After this patch the exchange looks saner :
11:59:59.882990 IP C > S: Flags [S], seq 517075944, win 65535, options [nop,nop,md5 valid,mss 1400,sackOK,TS val 1751508483 ecr 0,nop,wscale 8], length 0
11:59:59.883002 IP S > C: Flags [S.], seq 1902939253, ack 517075945, win 65535, options [nop,nop,md5 valid,mss 1400,sackOK,TS val 1751508479 ecr 1751508483,nop,wscale 8], length 0
11:59:59.883012 IP C > S: Flags [.], ack 1, win 256, options [nop,nop,md5 valid,nop,nop,TS val 1751508483 ecr 1751508479], length 0
11:59:59.883114 IP C > S: Flags [P.], seq 1:13, ack 1, win 256, options [nop,nop,md5 valid,nop,nop,TS val 1751508483 ecr 1751508479], length 12
11:59:59.883122 IP S > C: Flags [.], ack 13, win 256, options [nop,nop,md5 valid,nop,nop,TS val 1751508483 ecr 1751508483], length 0
11:59:59.883152 IP S > C: Flags [P.], seq 1:13, ack 13, win 256, options [nop,nop,md5 valid,nop,nop,TS val 1751508484 ecr 1751508483], length 12
11:59:59.883170 IP C > S: Flags [.], ack 13, win 256, options [nop,nop,md5 valid,nop,nop,TS val 1751508484 ecr 1751508484], length 0
Of course, no SACK block will ever be added later, but nothing should break.
Technically, we could remove the 4 nops included in MD5+TS options,
but again some stacks could break seeing not conventional alignment.
Fixes: 4957faade1 ("TCPCT part 1g: Responder Cookie => Initiator")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mitigate RETPOLINE costs in __tcp_transmit_skb()
by using INDIRECT_CALL_INET() wrapper.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mitigate RETPOLINE costs in __tcp_transmit_skb()
by using INDIRECT_CALL_INET() wrapper.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As hinted in prior change ("tcp: refine tcp_pacing_delay()
for very low pacing rates"), it is probably best arming
the xmit timer only when all the packets have been scheduled,
rather than when the head of rtx queue has been re-sent.
This does matter for flows having extremely low pacing rates,
since their tp->tcp_wstamp_ns could be far in the future.
Note that the regular xmit path has a stronger limit
in tcp_small_queue_check(), meaning it is less likely to
go beyond the pacing horizon.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the addition of horizon feature to sch_fq, we noticed some
suboptimal behavior of extremely low pacing rate TCP flows, especially
when TCP is not aware of a drop happening in lower stacks.
Back in commit 3f80e08f40 ("tcp: add tcp_reset_xmit_timer() helper"),
tcp_pacing_delay() was added to estimate an extra delay to add to standard
rto timers.
This patch removes the skb argument from this helper and
tcp_reset_xmit_timer() because it makes more sense to simply
consider the time at which next packet is allowed to be sent,
instead of the time of whatever packet has been sent.
This avoids arming RTO timer too soon and removes
spurious horizon drops.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 86de5921a3 ("tcp: defer SACK compression after DupThresh")
I added a TCP_FASTRETRANS_THRESH bias to tp->compressed_ack in order
to enable sack compression only after 3 dupacks.
Since we plan to relax this rule for flows that involve
stacks not requiring this old rule, this patch adds
a distinct tp->dup_ack_counter.
This means the TCP_FASTRETRANS_THRESH value is now used
in a single location that a future patch can adjust:
if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
tp->dup_ack_counter++;
goto send_now;
}
This patch also introduces tcp_sack_compress_send_ack()
helper to ease following patch comprehension.
This patch refines LINUX_MIB_TCPACKCOMPRESSED to not
count the acks that we had to send if the timer expires
or tcp_sack_compress_send_ack() is sending an ack.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In MPTCP, the receive window is shared across all subflows, because it
refers to the mptcp-level sequence space.
MPTCP receivers already place incoming packets on the mptcp socket
receive queue and will charge it to the mptcp socket rcvbuf until
userspace consumes the data.
Update __tcp_select_window to use the occupancy of the parent/mptcp
socket instead of the subflow socket in case the tcp socket is part
of a logical mptcp connection.
This commit doesn't change choice of initial window for passive or active
connections.
While it would be possible to change those as well, this adds complexity
(especially when handling MP_JOIN requests). Furthermore, the MPTCP RFC
specifically says that a MPTCP sender 'MUST NOT use the RCV.WND field
of a TCP segment at the connection level if it does not also carry a DSS
option with a Data ACK field.'
SYN/SYNACK packets do not carry a DSS option with a Data ACK field.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
In rare cases retransmit logic will make a full skb copy, which will not
trigger the zeroing added in recent change
b738a185be ("tcp: ensure skb->dev is NULL before leaving TCP stack").
Cc: Eric Dumazet <edumazet@google.com>
Fixes: 75c119afe1 ("tcp: implement rb-tree based retransmit queue")
Fixes: 28f8bfd1ac ("netfilter: Support iif matches in POSTROUTING")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
skb->rbnode is sharing three skb fields : next, prev, dev
When a packet is sent, TCP keeps the original skb (master)
in a rtx queue, which was converted to rbtree a while back.
__tcp_transmit_skb() is responsible to clone the master skb,
and add the TCP header to the clone before sending it
to network layer.
skb_clone() already clears skb->next and skb->prev, but copies
the master oskb->dev into the clone.
We need to clear skb->dev, otherwise lower layers could interpret
the value as a pointer to a netdev.
This old bug surfaced recently when commit 28f8bfd1ac
("netfilter: Support iif matches in POSTROUTING") was merged.
Before this netfilter commit, skb->dev value was ignored and
changed before reaching dev_queue_xmit()
Fixes: 75c119afe1 ("tcp: implement rb-tree based retransmit queue")
Fixes: 28f8bfd1ac ("netfilter: Support iif matches in POSTROUTING")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Martin Zaharinov <micron10@gmail.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements MP_CAPABLE options parsing and writing according
to RFC 6824 bis / RFC 8684: MPTCP v1.
Local key is sent on syn/ack, and both keys are sent on 3rd ack.
MP_CAPABLE messages len are updated accordingly. We need the skbuff to
correctly emit the above, so we push the skbuff struct as an argument
all the way from tcp code to the relevant mptcp callbacks.
When processing incoming MP_CAPABLE + data, build a full blown DSS-like
map info, to simplify later processing. On child socket creation, we
need to record the remote key, if available.
Signed-off-by: Christoph Paasch <cpaasch@apple.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add hooks to tcp_output.c to add MP_CAPABLE to an outgoing SYN request,
to capture the MP_CAPABLE in the received SYN-ACK, to add MP_CAPABLE to
the final ACK of the three-way handshake.
Use the .sk_rx_dst_set() handler in the subflow proto to capture when the
responding SYN-ACK is received and notify the MPTCP connection layer.
Co-developed-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Co-developed-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com>
Signed-off-by: Christoph Paasch <cpaasch@apple.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add hooks to parse and format the MP_CAPABLE option.
This option is handled according to MPTCP version 0 (RFC6824).
MPTCP version 1 MP_CAPABLE (RFC6824bis/RFC8684) will be added later in
coordination with related code changes.
Co-developed-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Co-developed-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Florian Westphal <fw@strlen.de>
Co-developed-by: Davide Caratti <dcaratti@redhat.com>
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com>
Signed-off-by: Christoph Paasch <cpaasch@apple.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Latest commit 853697504d ("tcp: Fix highest_sack and highest_sack_seq")
apparently allowed syzbot to trigger various crashes in TCP stack [1]
I believe this commit only made things easier for syzbot to find
its way into triggering use-after-frees. But really the bugs
could lead to bad TCP behavior or even plain crashes even for
non malicious peers.
I have audited all calls to tcp_rtx_queue_unlink() and
tcp_rtx_queue_unlink_and_free() and made sure tp->highest_sack would be updated
if we are removing from rtx queue the skb that tp->highest_sack points to.
These updates were missing in three locations :
1) tcp_clean_rtx_queue() [This one seems quite serious,
I have no idea why this was not caught earlier]
2) tcp_rtx_queue_purge() [Probably not a big deal for normal operations]
3) tcp_send_synack() [Probably not a big deal for normal operations]
[1]
BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1864 [inline]
BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1856 [inline]
BUG: KASAN: use-after-free in tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891
Read of size 4 at addr ffff8880a488d068 by task ksoftirqd/1/16
CPU: 1 PID: 16 Comm: ksoftirqd/1 Not tainted 5.5.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x197/0x210 lib/dump_stack.c:118
print_address_description.constprop.0.cold+0xd4/0x30b mm/kasan/report.c:374
__kasan_report.cold+0x1b/0x41 mm/kasan/report.c:506
kasan_report+0x12/0x20 mm/kasan/common.c:639
__asan_report_load4_noabort+0x14/0x20 mm/kasan/generic_report.c:134
tcp_highest_sack_seq include/net/tcp.h:1864 [inline]
tcp_highest_sack_seq include/net/tcp.h:1856 [inline]
tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891
tcp_try_undo_partial net/ipv4/tcp_input.c:2730 [inline]
tcp_fastretrans_alert+0xf74/0x23f0 net/ipv4/tcp_input.c:2847
tcp_ack+0x2577/0x5bf0 net/ipv4/tcp_input.c:3710
tcp_rcv_established+0x6dd/0x1e90 net/ipv4/tcp_input.c:5706
tcp_v4_do_rcv+0x619/0x8d0 net/ipv4/tcp_ipv4.c:1619
tcp_v4_rcv+0x307f/0x3b40 net/ipv4/tcp_ipv4.c:2001
ip_protocol_deliver_rcu+0x5a/0x880 net/ipv4/ip_input.c:204
ip_local_deliver_finish+0x23b/0x380 net/ipv4/ip_input.c:231
NF_HOOK include/linux/netfilter.h:307 [inline]
NF_HOOK include/linux/netfilter.h:301 [inline]
ip_local_deliver+0x1e9/0x520 net/ipv4/ip_input.c:252
dst_input include/net/dst.h:442 [inline]
ip_rcv_finish+0x1db/0x2f0 net/ipv4/ip_input.c:428
NF_HOOK include/linux/netfilter.h:307 [inline]
NF_HOOK include/linux/netfilter.h:301 [inline]
ip_rcv+0xe8/0x3f0 net/ipv4/ip_input.c:538
__netif_receive_skb_one_core+0x113/0x1a0 net/core/dev.c:5148
__netif_receive_skb+0x2c/0x1d0 net/core/dev.c:5262
process_backlog+0x206/0x750 net/core/dev.c:6093
napi_poll net/core/dev.c:6530 [inline]
net_rx_action+0x508/0x1120 net/core/dev.c:6598
__do_softirq+0x262/0x98c kernel/softirq.c:292
run_ksoftirqd kernel/softirq.c:603 [inline]
run_ksoftirqd+0x8e/0x110 kernel/softirq.c:595
smpboot_thread_fn+0x6a3/0xa40 kernel/smpboot.c:165
kthread+0x361/0x430 kernel/kthread.c:255
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352
Allocated by task 10091:
save_stack+0x23/0x90 mm/kasan/common.c:72
set_track mm/kasan/common.c:80 [inline]
__kasan_kmalloc mm/kasan/common.c:513 [inline]
__kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:486
kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:521
slab_post_alloc_hook mm/slab.h:584 [inline]
slab_alloc_node mm/slab.c:3263 [inline]
kmem_cache_alloc_node+0x138/0x740 mm/slab.c:3575
__alloc_skb+0xd5/0x5e0 net/core/skbuff.c:198
alloc_skb_fclone include/linux/skbuff.h:1099 [inline]
sk_stream_alloc_skb net/ipv4/tcp.c:875 [inline]
sk_stream_alloc_skb+0x113/0xc90 net/ipv4/tcp.c:852
tcp_sendmsg_locked+0xcf9/0x3470 net/ipv4/tcp.c:1282
tcp_sendmsg+0x30/0x50 net/ipv4/tcp.c:1432
inet_sendmsg+0x9e/0xe0 net/ipv4/af_inet.c:807
sock_sendmsg_nosec net/socket.c:652 [inline]
sock_sendmsg+0xd7/0x130 net/socket.c:672
__sys_sendto+0x262/0x380 net/socket.c:1998
__do_sys_sendto net/socket.c:2010 [inline]
__se_sys_sendto net/socket.c:2006 [inline]
__x64_sys_sendto+0xe1/0x1a0 net/socket.c:2006
do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Freed by task 10095:
save_stack+0x23/0x90 mm/kasan/common.c:72
set_track mm/kasan/common.c:80 [inline]
kasan_set_free_info mm/kasan/common.c:335 [inline]
__kasan_slab_free+0x102/0x150 mm/kasan/common.c:474
kasan_slab_free+0xe/0x10 mm/kasan/common.c:483
__cache_free mm/slab.c:3426 [inline]
kmem_cache_free+0x86/0x320 mm/slab.c:3694
kfree_skbmem+0x178/0x1c0 net/core/skbuff.c:645
__kfree_skb+0x1e/0x30 net/core/skbuff.c:681
sk_eat_skb include/net/sock.h:2453 [inline]
tcp_recvmsg+0x1252/0x2930 net/ipv4/tcp.c:2166
inet_recvmsg+0x136/0x610 net/ipv4/af_inet.c:838
sock_recvmsg_nosec net/socket.c:886 [inline]
sock_recvmsg net/socket.c:904 [inline]
sock_recvmsg+0xce/0x110 net/socket.c:900
__sys_recvfrom+0x1ff/0x350 net/socket.c:2055
__do_sys_recvfrom net/socket.c:2073 [inline]
__se_sys_recvfrom net/socket.c:2069 [inline]
__x64_sys_recvfrom+0xe1/0x1a0 net/socket.c:2069
do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
entry_SYSCALL_64_after_hwframe+0x49/0xbe
The buggy address belongs to the object at ffff8880a488d040
which belongs to the cache skbuff_fclone_cache of size 456
The buggy address is located 40 bytes inside of
456-byte region [ffff8880a488d040, ffff8880a488d208)
The buggy address belongs to the page:
page:ffffea0002922340 refcount:1 mapcount:0 mapping:ffff88821b057000 index:0x0
raw: 00fffe0000000200 ffffea00022a5788 ffffea0002624a48 ffff88821b057000
raw: 0000000000000000 ffff8880a488d040 0000000100000006 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880a488cf00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8880a488cf80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8880a488d000: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
^
ffff8880a488d080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880a488d100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Fixes: 853697504d ("tcp: Fix highest_sack and highest_sack_seq")
Fixes: 50895b9de1 ("tcp: highest_sack fix")
Fixes: 737ff31456 ("tcp: use sequence distance to detect reordering")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Cambda Zhu <cambda@linux.alibaba.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-01-22
The following pull-request contains BPF updates for your *net-next* tree.
We've added 92 non-merge commits during the last 16 day(s) which contain
a total of 320 files changed, 7532 insertions(+), 1448 deletions(-).
The main changes are:
1) function by function verification and program extensions from Alexei.
2) massive cleanup of selftests/bpf from Toke and Andrii.
3) batched bpf map operations from Brian and Yonghong.
4) tcp congestion control in bpf from Martin.
5) bulking for non-map xdp_redirect form Toke.
6) bpf_send_signal_thread helper from Yonghong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Update the SACK check to work with zero option space available, a case
that's possible with MPTCP but not MD5+TS. Maintained only one
conditional branch for insufficient SACK space.
v1 -> v2:
- Moves the check inside the SACK branch by taking recent SACK fix:
9424e2e7ad (tcp: md5: fix potential overestimation of TCP option space)
in to account, but modifies it to work in MPTCP scenarios beyond the
MD5+TS corner case.
Co-developed-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Coalesce and collapse of packets carrying MPTCP extensions is allowed
when the newer packet has no extension or the extensions carried by both
packets are equal.
This allows merging of TSO packet trains and even cross-TSO packets, and
does not require any additional action when moving data into existing
SKBs.
v3 -> v4:
- allow collapsing, under mptcp_skb_can_collapse() constraint
v5 -> v6:
- clarify MPTCP skb extensions must always be cleared at allocation
time
Co-developed-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes "struct tcp_congestion_ops" to be the first user
of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops
in bpf.
The BPF implemented tcp_congestion_ops can be used like
regular kernel tcp-cc through sysctl and setsockopt. e.g.
[root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion
net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic
net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic
net.ipv4.tcp_congestion_control = bpf_cubic
There has been attempt to move the TCP CC to the user space
(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.
BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF. It allows a faster turnaround for testing algorithm
in the production while leveraging the existing (and continue growing)
BPF feature/framework instead of building one specifically for
userspace TCP CC.
This patch allows write access to a few fields in tcp-sock
(in bpf_tcp_ca_btf_struct_access()).
The optional "get_info" is unsupported now. It can be added
later. One possible way is to output the info with a btf-id
to describe the content.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
>From commit 50895b9de1 ("tcp: highest_sack fix"), the logic about
setting tp->highest_sack to the head of the send queue was removed.
Of course the logic is error prone, but it is logical. Before we
remove the pointer to the highest sack skb and use the seq instead,
we need to set tp->highest_sack to NULL when there is no skb after
the last sack, and then replace NULL with the real skb when new skb
inserted into the rtx queue, because the NULL means the highest sack
seq is tp->snd_nxt. If tp->highest_sack is NULL and new data sent,
the next ACK with sack option will increase tp->reordering unexpectedly.
This patch sets tp->highest_sack to the tail of the rtx queue if
it's NULL and new data is sent. The patch keeps the rule that the
highest_sack can only be maintained by sack processing, except for
this only case.
Fixes: 50895b9de1 ("tcp: highest_sack fix")
Signed-off-by: Cambda Zhu <cambda@linux.alibaba.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk->sk_pacing_shift can be read and written without lock
synchronization. This patch adds annotations to
document this fact and avoid future syzbot complains.
This might also avoid unexpected false sharing
in sk_pacing_shift_update(), as the compiler
could remove the conditional check and always
write over sk->sk_pacing_shift :
if (sk->sk_pacing_shift != val)
sk->sk_pacing_shift = val;
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to how tcp_sendmsg() is implemented, we can have an empty
skb at the tail of the write queue.
Most [1] tcp_write_queue_empty() callers want to know if there is
anything to send (payload and/or FIN)
Instead of checking if the sk_write_queue is empty, we need
to test if tp->write_seq == tp->snd_nxt
[1] tcp_send_fin() was the only caller that expected to
see if an skb was in the write queue, I have changed the code
to reuse the tcp_write_queue_tail() result.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Backport of commit fdfc5c8594 ("tcp: remove empty skb from
write queue in error cases") in linux-4.14 stable triggered
various bugs. One of them has been fixed in commit ba2ddb43f270
("tcp: Don't dequeue SYN/FIN-segments from write-queue"), but
we still have crashes in some occasions.
Root-cause is that when tcp_sendmsg() has allocated a fresh
skb and could not append a fragment before being blocked
in sk_stream_wait_memory(), tcp_write_xmit() might be called
and decide to send this fresh and empty skb.
Sending an empty packet is not only silly, it might have caused
many issues we had in the past with tp->packets_out being
out of sync.
Fixes: c65f7f00c5 ("[TCP]: Simplify SKB data portion allocation with NETIF_F_SG.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Christoph Paasch <cpaasch@apple.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Cc: Jason Baron <jbaron@akamai.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Back in 2008, Adam Langley fixed the corner case of packets for flows
having all of the following options : MD5 TS SACK
Since MD5 needs 20 bytes, and TS needs 12 bytes, no sack block
can be cooked from the remaining 8 bytes.
tcp_established_options() correctly sets opts->num_sack_blocks
to zero, but returns 36 instead of 32.
This means TCP cooks packets with 4 extra bytes at the end
of options, containing unitialized bytes.
Fixes: 33ad798c92 ("tcp: options clean up")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_make_synack() already uses tcp_clock_ns(), and can pass
the value to cookie_init_timestamp() to avoid another call
to ktime_get_ns() helper.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the sake of tcp_poll(), there are few places where we fetch
sk->sk_wmem_queued while this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make sure write
sides use corresponding WRITE_ONCE() to avoid store-tearing.
sk_wmem_queued_add() helper is added so that we can in
the future convert to ADD_ONCE() or equivalent if/when
available.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->snd_nxt while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->write_seq while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->copied_seq while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Note that tcp_inq_hint() was already using READ_ONCE(tp->copied_seq)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both tcp_v4_err() and tcp_v6_err() do the following operations
while they do not own the socket lock :
fastopen = tp->fastopen_rsk;
snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
The problem is that without appropriate barrier, the compiler
might reload tp->fastopen_rsk and trigger a NULL deref.
request sockets are protected by RCU, we can simply add
the missing annotations and barriers to solve the issue.
Fixes: 168a8f5805 ("tcp: TCP Fast Open Server - main code path")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When tcp sends a TSO packet, adding a PSH flag on it
reduces the sojourn time of GRO packet in GRO receivers.
This is particularly the case under pressure, since RX queues
receive packets for many concurrent flows.
A sender can give a hint to GRO engines when it is
appropriate to flush a super-packet, especially when pacing
is in the picture, since next packet is probably delayed by
one ms.
Having less packets in GRO engine reduces chance
of LRU eviction or inflated RTT, and reduces GRO cost.
We found recently that we must not set the PSH flag on
individual full-size MSS segments [1] :
Under pressure (CWR state), we better let the packet sit
for a small delay (depending on NAPI logic) so that the
ACK packet is delayed, and thus next packet we send is
also delayed a bit. Eventually the bottleneck queue can
be drained. DCTCP flows with CWND=1 have demonstrated
the issue.
This patch allows to slowdown the aggregate traffic without
involving high resolution timers on senders and/or
receivers.
It has been used at Google for about four years,
and has been discussed at various networking conferences.
[1] segments smaller than MSS already have PSH flag set
by tcp_sendmsg() / tcp_mark_push(), unless MSG_MORE
has been requested by the user.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tariq Toukan <tariqt@mellanox.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP associates tx timestamp requests with a byte in the bytestream.
If merging skbs in tcp_mtu_probe, migrate the tstamp request.
Similar to MSG_EOR, do not allow moving a timestamp from any segment
in the probe but the last. This to avoid merging multiple timestamps.
Tested with the packetdrill script at
https://github.com/wdebruij/packetdrill/commits/mtu_probe-1
Link: http://patchwork.ozlabs.org/patch/1143278/#2232897
Fixes: 4ed2d765df ("net-timestamp: TCP timestamping")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_validate_xmit_skb() and drivers depend on the sk member of
struct sk_buff to identify segments requiring encryption.
Any operation which removes or does not preserve the original TLS
socket such as skb_orphan() or skb_clone() will cause clear text
leaks.
Make the TCP socket underlying an offloaded TLS connection
mark all skbs as decrypted, if TLS TX is in offload mode.
Then in sk_validate_xmit_skb() catch skbs which have no socket
(or a socket with no validation) and decrypted flag set.
Note that CONFIG_SOCK_VALIDATE_XMIT, CONFIG_TLS_DEVICE and
sk->sk_validate_xmit_skb are slightly interchangeable right now,
they all imply TLS offload. The new checks are guarded by
CONFIG_TLS_DEVICE because that's the option guarding the
sk_buff->decrypted member.
Second, smaller issue with orphaning is that it breaks
the guarantee that packets will be delivered to device
queues in-order. All TLS offload drivers depend on that
scheduling property. This means skb_orphan_partial()'s
trick of preserving partial socket references will cause
issues in the drivers. We need a full orphan, and as a
result netem delay/throttling will cause all TLS offload
skbs to be dropped.
Reusing the sk_buff->decrypted flag also protects from
leaking clear text when incoming, decrypted skb is redirected
(e.g. by TC).
See commit 0608c69c9a ("bpf: sk_msg, sock{map|hash} redirect
through ULP") for justification why the internal flag is safe.
The only location which could leak the flag in is tcp_bpf_sendmsg(),
which is taken care of by clearing the previously unused bit.
v2:
- remove superfluous decrypted mark copy (Willem);
- remove the stale doc entry (Boris);
- rely entirely on EOR marking to prevent coalescing (Boris);
- use an internal sendpages flag instead of marking the socket
(Boris).
v3 (Willem):
- reorganize the can_skb_orphan_partial() condition;
- fix the flag leak-in through tcp_bpf_sendmsg.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Boris Pismenny <borisp@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use accessor functions for skb fragment's page_offset instead
of direct references, in preparation for bvec conversion.
Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some applications set tiny SO_SNDBUF values and expect
TCP to just work. Recent patches to address CVE-2019-11478
broke them in case of losses, since retransmits might
be prevented.
We should allow these flows to make progress.
This patch allows the first and last skb in retransmit queue
to be split even if memory limits are hit.
It also adds the some room due to the fact that tcp_sendmsg()
and tcp_sendpage() might overshoot sk_wmem_queued by about one full
TSO skb (64KB size). Note this allowance was already present
in stable backports for kernels < 4.15
Note for < 4.15 backports :
tcp_rtx_queue_tail() will probably look like :
static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
{
struct sk_buff *skb = tcp_send_head(sk);
return skb ? tcp_write_queue_prev(sk, skb) : tcp_write_queue_tail(sk);
}
Fixes: f070ef2ac6 ("tcp: tcp_fragment() should apply sane memory limits")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Andrew Prout <aprout@ll.mit.edu>
Tested-by: Andrew Prout <aprout@ll.mit.edu>
Tested-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Tested-by: Michal Kubecek <mkubecek@suse.cz>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Christoph Paasch <cpaasch@apple.com>
Cc: Jonathan Looney <jtl@netflix.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_fragment() might be called for skbs in the write queue.
Memory limits might have been exceeded because tcp_sendmsg() only
checks limits at full skb (64KB) boundaries.
Therefore, we need to make sure tcp_fragment() wont punish applications
that might have setup very low SO_SNDBUF values.
Fixes: f070ef2ac6 ("tcp: tcp_fragment() should apply sane memory limits")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Christoph Paasch <cpaasch@apple.com>
Tested-by: Christoph Paasch <cpaasch@apple.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some TCP peers announce a very small MSS option in their SYN and/or
SYN/ACK messages.
This forces the stack to send packets with a very high network/cpu
overhead.
Linux has enforced a minimal value of 48. Since this value includes
the size of TCP options, and that the options can consume up to 40
bytes, this means that each segment can include only 8 bytes of payload.
In some cases, it can be useful to increase the minimal value
to a saner value.
We still let the default to 48 (TCP_MIN_SND_MSS), for compatibility
reasons.
Note that TCP_MAXSEG socket option enforces a minimal value
of (TCP_MIN_MSS). David Miller increased this minimal value
in commit c39508d6f1 ("tcp: Make TCP_MAXSEG minimum more correct.")
from 64 to 88.
We might in the future merge TCP_MIN_SND_MSS and TCP_MIN_MSS.
CVE-2019-11479 -- tcp mss hardcoded to 48
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jonathan Looney reported that a malicious peer can force a sender
to fragment its retransmit queue into tiny skbs, inflating memory
usage and/or overflow 32bit counters.
TCP allows an application to queue up to sk_sndbuf bytes,
so we need to give some allowance for non malicious splitting
of retransmit queue.
A new SNMP counter is added to monitor how many times TCP
did not allow to split an skb if the allowance was exceeded.
Note that this counter might increase in the case applications
use SO_SNDBUF socket option to lower sk_sndbuf.
CVE-2019-11478 : tcp_fragment, prevent fragmenting a packet when the
socket is already using more than half the allowed space
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jonathan Looney reported that TCP can trigger the following crash
in tcp_shifted_skb() :
BUG_ON(tcp_skb_pcount(skb) < pcount);
This can happen if the remote peer has advertized the smallest
MSS that linux TCP accepts : 48
An skb can hold 17 fragments, and each fragment can hold 32KB
on x86, or 64KB on PowerPC.
This means that the 16bit witdh of TCP_SKB_CB(skb)->tcp_gso_segs
can overflow.
Note that tcp_sendmsg() builds skbs with less than 64KB
of payload, so this problem needs SACK to be enabled.
SACK blocks allow TCP to coalesce multiple skbs in the retransmit
queue, thus filling the 17 fragments to maximal capacity.
CVE-2019-11477 -- u16 overflow of TCP_SKB_CB(skb)->tcp_gso_segs
Fixes: 832d11c5cd ("tcp: Try to restore large SKBs while SACK processing")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding delays to TCP flows is crucial for studying behavior
of TCP stacks, including congestion control modules.
Linux offers netem module, but it has unpractical constraints :
- Need root access to change qdisc
- Hard to setup on egress if combined with non trivial qdisc like FQ
- Single delay for all flows.
EDT (Earliest Departure Time) adoption in TCP stack allows us
to enable a per socket delay at a very small cost.
Networking tools can now establish thousands of flows, each of them
with a different delay, simulating real world conditions.
This requires FQ packet scheduler or a EDT-enabled NIC.
This patchs adds TCP_TX_DELAY socket option, to set a delay in
usec units.
unsigned int tx_delay = 10000; /* 10 msec */
setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay));
Note that FQ packet scheduler limits might need some tweaking :
man tc-fq
PARAMETERS
limit
Hard limit on the real queue size. When this limit is
reached, new packets are dropped. If the value is lowered,
packets are dropped so that the new limit is met. Default
is 10000 packets.
flow_limit
Hard limit on the maximum number of packets queued per
flow. Default value is 100.
Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc,
so packets would be dropped if any of the previous limit is hit.
Use of a jump label makes this support runtime-free, for hosts
never using the option.
Also note that TSQ (TCP Small Queues) limits are slightly changed
with this patch : we need to account that skbs artificially delayed
wont stop us providind more skbs to feed the pipe (netem uses
skb_orphan_partial() for this purpose, but FQ can not use this trick)
Because of that, using big delays might very well trigger
old bugs in TSO auto defer logic and/or sndbuf limited detection.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Detecting spurious SYNACK timeout using timestamp option requires
recording the exact SYNACK skb timestamp. Previously the SYNACK
sent timestamp was stamped slightly earlier before the skb
was transmitted. This patch uses the SYNACK skb transmission
timestamp directly.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>