As now we have xchg_no_kill/tce_kill, these are not used anymore so
remove them.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-6-aik@ozlabs.ru
At the moment updates in a TCE table are made by iommu_table_ops::exchange
which update one TCE and invalidates an entry in the PHB/NPU TCE cache
via set of registers called "TCE Kill" (hence the naming).
Writing a TCE is a simple xchg() but invalidating the TCE cache is
a relatively expensive OPAL call. Mapping a 100GB guest with PCI+NPU
passed through devices takes about 20s.
Thankfully we can do better. Since such big mappings happen at the boot
time and when memory is plugged/onlined (i.e. not often), these requests
come in 512 pages so we call call OPAL 512 times less which brings 20s
from the above to less than 10s. Also, since TCE caches can be flushed
entirely, calling OPAL for 512 TCEs helps skiboot [1] to decide whether
to flush the entire cache or not.
This implements 2 new iommu_table_ops callbacks:
- xchg_no_kill() to update a single TCE with no TCE invalidation;
- tce_kill() to invalidate multiple TCEs.
This uses the same xchg_no_kill() callback for IODA1/2.
This implements 2 new wrappers on top of the new callbacks similar to
the existing iommu_tce_xchg().
This does not use the new callbacks yet, the next patches will;
so this should not cause any behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190829085252.72370-2-aik@ozlabs.ru
At the moment we create a small window only for 32bit devices, the window
maps 0..2GB of the PCI space only. For other devices we either use
a sketchy bypass or hardware bypass but the former can only work if
the amount of RAM is no bigger than the device's DMA mask and the latter
requires devices to support at least 59bit DMA.
This extends the default DMA window to the maximum size possible to allow
a wider DMA mask than just 32bit. The default window size is now limited
by the the iommu_table::it_map allocation bitmap which is a contiguous
array, 1 bit per an IOMMU page.
This increases the default IOMMU page size from hard coded 4K to
the system page size to allow wider DMA masks.
This increases the level number to not exceed the max order allocation
limit per TCE level. By the same time, this keeps minimal levels number
as 2 in order to save memory.
As the extended window now overlaps the 32bit MMIO region, this adds
an area reservation to iommu_init_table().
After this change the default window size is 0x80000000000==1<<43 so
devices limited to DMA mask smaller than the amount of system RAM can
still use more than just 2GB of memory for DMA.
This is an optimization and not a bug fix for DMA API usage.
With the on-demand allocation of indirect TCE table levels enabled and
2 levels, the first TCE level size is just
1<<ceil((log2(0x7ffffffffff+1)-16)/2)=16384 TCEs or 2 system pages.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190718051139.74787-5-aik@ozlabs.ru
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 02111 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1334 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Including (in no particular order):
- Page table code for AMD IOMMU now supports large pages where
smaller page-sizes were mapped before. VFIO had to work around
that in the past and I included a patch to remove it (acked by
Alex Williamson)
- Patches to unmodularize a couple of IOMMU drivers that would
never work as modules anyway.
- Work to unify the the iommu-related pointers in
'struct device' into one pointer. This work is not finished
yet, but will probably be in the next cycle.
- NUMA aware allocation in iommu-dma code
- Support for r8a774a1 and r8a774c0 in the Renesas IOMMU driver
- Scalable mode support for the Intel VT-d driver
- PM runtime improvements for the ARM-SMMU driver
- Support for the QCOM-SMMUv2 IOMMU hardware from Qualcom
- Various smaller fixes and improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJcKkEoAAoJECvwRC2XARrjCCoQAJxsgaAF5Z0s7z8j2A9SkaGp
SIMnUAI5mDOdyhTOAI+eehpRzg5UVYt/JjFYnHz8HWqbSc8YOvDvHafmhMFIwYvO
hq5knbs6ns2jJNFO+M4dioDq+3THdqkGIF5xoHdGTP7cn9+XyQ8lAoHo0RuL122U
PJGqX7Cp4XnFP4HMb3uQYhVeBV7mU+XqAdB+4aDnQkzI5LkQCRr74GcqOm+Rlnyc
cmQWc2arUMjgc1TJIrex8dx9dT6lq8kOmhyEg/IjHeGaZyJ3HqA+30XDDLEExN0G
MeVawuxJz40HgXlkXr+iZTQtIFYkXdKvJH6rptMbOfbDeDz+YZ01TbtAMMH9o4jX
yxjjMjdcWTsWYQ/MHHdsoMP34cajCi/EYPMNksbycw+E3Y+X/bSReCoWC0HUK8/+
Z4TpZ9mZVygtJR+QNZ+pE9oiJpb4sroM10zTnbMoVHNnvfsO01FYk7FMPkolSKLw
zB4MDswQYgchoFR9Z4ZB4PycYTzeafLKYgDPDoD1vIJgDavuidwvDWDRTDc+aMWM
siIIewq19To9jDJkVjX4dsT/p99KVKgAR/Ps6jjWkAroha7g6GcmlYZHIJnyop04
jiaSXUsk8aRucP/CRz5xdMmaGoN7BsNmpUjcrquc6Povk/6gvXvpY04oCs1+gNMX
ipL9E3GTFCVBubRFrksv
=DT9A
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- Page table code for AMD IOMMU now supports large pages where smaller
page-sizes were mapped before. VFIO had to work around that in the
past and I included a patch to remove it (acked by Alex Williamson)
- Patches to unmodularize a couple of IOMMU drivers that would never
work as modules anyway.
- Work to unify the the iommu-related pointers in 'struct device' into
one pointer. This work is not finished yet, but will probably be in
the next cycle.
- NUMA aware allocation in iommu-dma code
- Support for r8a774a1 and r8a774c0 in the Renesas IOMMU driver
- Scalable mode support for the Intel VT-d driver
- PM runtime improvements for the ARM-SMMU driver
- Support for the QCOM-SMMUv2 IOMMU hardware from Qualcom
- Various smaller fixes and improvements
* tag 'iommu-updates-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (78 commits)
iommu: Check for iommu_ops == NULL in iommu_probe_device()
ACPI/IORT: Don't call iommu_ops->add_device directly
iommu/of: Don't call iommu_ops->add_device directly
iommu: Consolitate ->add/remove_device() calls
iommu/sysfs: Rename iommu_release_device()
dmaengine: sh: rcar-dmac: Use device_iommu_mapped()
xhci: Use device_iommu_mapped()
powerpc/iommu: Use device_iommu_mapped()
ACPI/IORT: Use device_iommu_mapped()
iommu/of: Use device_iommu_mapped()
driver core: Introduce device_iommu_mapped() function
iommu/tegra: Use helper functions to access dev->iommu_fwspec
iommu/qcom: Use helper functions to access dev->iommu_fwspec
iommu/of: Use helper functions to access dev->iommu_fwspec
iommu/mediatek: Use helper functions to access dev->iommu_fwspec
iommu/ipmmu-vmsa: Use helper functions to access dev->iommu_fwspec
iommu/dma: Use helper functions to access dev->iommu_fwspec
iommu/arm-smmu: Use helper functions to access dev->iommu_fwspec
ACPI/IORT: Use helper functions to access dev->iommu_fwspec
iommu: Introduce wrappers around dev->iommu_fwspec
...
A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for architectures
that have devices that perform DMA that is not cache coherent. Based
on the existing arm64 implementation and also used for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel data
leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlwctQgLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMxgQ//dBpAfS4/J76CdAbYry2zqgcOUU9hIrD6NHiEMWov
ltJxyvEl3LsUmIdEj3aCrYL9jZN0qsnCzn5BVj2c3jDIVgD64fAr7HDf/PbEEfKb
j6/GgEnVLPZV+sQMvhNA5jOzHrkseaqPa4/pNLFZ/l8jnuZ2d+btusDWJpMoVDer
TXVwtIfgeIu0gTygYOShLYXd5qptWKWsZEpbTZOO2sE6+x+ZJX7yQYUxYDTlcOIj
JWVO2l5QNHPc5T9o2at+6L5aNUvnZOxT79sWgyZLn0Kc+FagKAVwfLqUEl0v7foG
8k/xca5/8p3afB1DfrIrtplJqis7cVgdyGxriwuuoO8X4F0nPyWwpGmxsBhrWwwl
xTqC4UorEJ7QwoP6Azopk/vYI2QXIUBLjuCJCuFXZj9+2BGf4IfvBY1S2cLM9qLs
HMcxQonuXJii044KEFS96ePEuiT+igVINweIFBKWcgNCEG0UQtyL6RQ1U5297ipF
JiWZAqD+p9X52UdKS+oKfAiZEekMXn6Xyo97+YCiNpfOo0GP5eEcwhL+JpY4AiRq
apPXtsRy2o1s8yfjdraUIM2Mc2n62vFKb35oUbGCd/QO9piPrFQHl6T0HHcHk4YR
XrUXcHieFZBCYqh7ZVa4RL8Msq1wvGuTL4Dxl43mXdsMoUFRR6eSNWLoAV4IpOLZ
WgA=
=in72
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping
Pull DMA mapping updates from Christoph Hellwig:
"A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for
architectures that have devices that perform DMA that is not cache
coherent. Based on the existing arm64 implementation and also used
for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel
data leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script"
* tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping: (73 commits)
dma-mapping: fix inverted logic in dma_supported
dma-mapping: deprecate dma_zalloc_coherent
dma-mapping: zero memory returned from dma_alloc_*
sparc/iommu: fix ->map_sg return value
sparc/io-unit: fix ->map_sg return value
arm64: default to the direct mapping in get_arch_dma_ops
PCI: Remove unused attr variable in pci_dma_configure
ia64: only select ARCH_HAS_DMA_COHERENT_TO_PFN if swiotlb is enabled
dma-mapping: bypass indirect calls for dma-direct
vmd: use the proper dma_* APIs instead of direct methods calls
dma-direct: merge swiotlb_dma_ops into the dma_direct code
dma-direct: use dma_direct_map_page to implement dma_direct_map_sg
dma-direct: improve addressability error reporting
swiotlb: remove dma_mark_clean
swiotlb: remove SWIOTLB_MAP_ERROR
ACPI / scan: Refactor _CCA enforcement
dma-mapping: factor out dummy DMA ops
dma-mapping: always build the direct mapping code
dma-mapping: move dma_cache_sync out of line
dma-mapping: move various slow path functions out of line
...
The powernv platform registers IOMMU groups and adds devices to them
from the pci_controller_ops::setup_bridge() hook except one case when
virtual functions (SRIOV VFs) are added from a bus notifier.
The pseries platform registers IOMMU groups from
the pci_controller_ops::dma_bus_setup() hook and adds devices from
the pci_controller_ops::dma_dev_setup() hook. The very same bus notifier
used for powernv does not add devices for pseries though as
__of_scan_bus() adds devices first, then it does the bus/dev DMA setup.
Both platforms use iommu_add_device() which takes a device and expects
it to have a valid IOMMU table struct with an iommu_table_group pointer
which in turn points the iommu_group struct (which represents
an IOMMU group). Although the helper seems easy to use, it relies on
some pre-existing device configuration and associated data structures
which it does not really need.
This simplifies iommu_add_device() to take the table_group pointer
directly. Pseries already has a table_group pointer handy and the bus
notified is not used anyway. For powernv, this copies the existing bus
notifier, makes it work for powernv only which means an easy way of
getting to the table_group pointer. This was tested on VFs but should
also support physical PCI hotplug.
Since iommu_add_device() receives the table_group pointer directly,
pseries does not do TCE cache invalidation (the hypervisor does) nor
allow multiple groups per a VFIO container (in other words sharing
an IOMMU table between partitionable endpoints), this removes
iommu_table_group_link from pseries.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This new memory does not have page structs as it is not plugged to
the host so gup() will fail anyway.
This adds 2 helpers:
- mm_iommu_newdev() to preregister the "memory device" memory so
the rest of API can still be used;
- mm_iommu_is_devmem() to know if the physical address is one of thise
new regions which we must avoid unpinning of.
This adds @mm to tce_page_is_contained() and iommu_tce_xchg() to test
if the memory is device memory to avoid pfn_to_page().
This adds a check for device memory in mm_iommu_ua_mark_dirty_rm() which
does delayed pages dirtying.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Use the new function to replace the open-coded iommu check.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell Currey <ruscur@russell.cc>
Cc: Sam Bobroff <sbobroff@linux.ibm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The powerpc iommu code already returns (~(dma_addr_t)0x0) on mapping
failures, so we can switch over to returning DMA_MAPPING_ERROR and let
the core dma-mapping code handle the rest.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of fairly
complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for each
process and preload them on context switch. Leading to a 27% speedup for our
context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print more debug
information when they occur, and try to continue running by flushing the SLB
and reloading, rather than treating them as fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on 64-bit
Book3S. We only support up to 512TB as regular system memory, otherwise the
percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are presented
to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE flags.
- Add a driver for the PAPR SCM (storage class memory) interface, allowing
guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we need to use
a trampoline to get to ftrace_caller().
Many other smaller enhancements and cleanups.
Thanks to:
Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton Blanchard, Aravinda
Prasad, Bartlomiej Zolnierkiewicz, Benjamin Herrenschmidt, Breno Leitao,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Dan Carpenter, Daniel
Axtens, Finn Thain, Gautham R. Shenoy, Gustavo Romero, Haren Myneni, Hari
Bathini, Jia Hongtao, Joel Stanley, John Allen, Laurent Dufour, Madhavan
Srinivasan, Mahesh Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael
Bringmann, Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran,
Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab, Rob Herring, Sam
Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan Johnson, Stephen Rothwell,
Stewart Smith, Suraj Jitindar Singh, Tyrel Datwyler, Vaibhav Jain, Vasant
Hegde, YueHaibing, zhong jiang,
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJb01vTAAoJEFHr6jzI4aWADsEP/jqL3+2qxs098ra80tpXCpXJ
tgXCosEs4b35sGtyHeUWZZZfWXeisaPAIlP8zTx1n50HACZduDYRAl0Ew9XB7Xdw
enDHRVccD21FsmHBOx/Ii1rVJlovWlj6EQCWHKeZmNjeRoFuClVZ7CYmf+mBifKR
sw2Db2fKA/59wMTq2zIMy5pqYgqlAs4jTWS6uN5hKPoBmO/82ARnNG+qgLuloD3Z
O8zSDM9QQ7PpuyDgTjO9SAo2YjmEfXlEG6cOCCejsU3DMctaEAK5PUZ+blsHYHBH
BYZYKs/x4pcw0SO41GtTh0M2YqDYBVuBIpRw8lLZap97Xo9ucSkAm5WD3rGxk4CY
YeZKEPUql6MHN3+DKl8mx2F0V+Et/tio2HNqc9KReR1tfoolZAbe+SFZHfgmc/Rq
RD9nnG8KRd4K2K1BTqpkTmI1EtE7jPtPJPSV8gMGhgL/N5vPmH3mql/qyOtYx48E
6/hPzWESgs16VRZ/opLh8VvjlY1HBDODQhehhhl+o23/Vb8qEgRf8Uqhq50rQW1H
EeOqyyYQ90txSU31Sgy1kQkvOgIFAsBObWT1ZCJ3RbfGbB4/tdEAvZqTZRlXo2OY
7P0Sqcw/9Le5eJkHIlLtBv0TF7y1OYemCbLgRQzFlcRP+UKtYyg8eFnFjqbPEEmP
ulwhn/BfFVSgaYKQ503u
=I0pj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of
fairly complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for
each process and preload them on context switch. Leading to a 27%
speedup for our context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print
more debug information when they occur, and try to continue running
by flushing the SLB and reloading, rather than treating them as
fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on
64-bit Book3S. We only support up to 512TB as regular system
memory, otherwise the percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task
canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are
presented to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE
flags.
- Add a driver for the PAPR SCM (storage class memory) interface,
allowing guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we
need to use a trampoline to get to ftrace_caller().
And many other smaller enhancements and cleanups.
Thanks to: Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton
Blanchard, Aravinda Prasad, Bartlomiej Zolnierkiewicz, Benjamin
Herrenschmidt, Breno Leitao, Cédric Le Goater, Christophe Leroy,
Christophe Lombard, Dan Carpenter, Daniel Axtens, Finn Thain, Gautham
R. Shenoy, Gustavo Romero, Haren Myneni, Hari Bathini, Jia Hongtao,
Joel Stanley, John Allen, Laurent Dufour, Madhavan Srinivasan, Mahesh
Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael Bringmann,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver
O'Halloran, Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab,
Rob Herring, Sam Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan
Johnson, Stephen Rothwell, Stewart Smith, Suraj Jitindar Singh, Tyrel
Datwyler, Vaibhav Jain, Vasant Hegde, YueHaibing, zhong jiang"
* tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (221 commits)
Revert "selftests/powerpc: Fix out-of-tree build errors"
powerpc/msi: Fix compile error on mpc83xx
powerpc: Fix stack protector crashes on CPU hotplug
powerpc/traps: restore recoverability of machine_check interrupts
powerpc/64/module: REL32 relocation range check
powerpc/64s/radix: Fix radix__flush_tlb_collapsed_pmd double flushing pmd
selftests/powerpc: Add a test of wild bctr
powerpc/mm: Fix page table dump to work on Radix
powerpc/mm/radix: Display if mappings are exec or not
powerpc/mm/radix: Simplify split mapping logic
powerpc/mm/radix: Remove the retry in the split mapping logic
powerpc/mm/radix: Fix small page at boundary when splitting
powerpc/mm/radix: Fix overuse of small pages in splitting logic
powerpc/mm/radix: Fix off-by-one in split mapping logic
powerpc/ftrace: Handle large kernel configs
powerpc/mm: Fix WARN_ON with THP NUMA migration
selftests/powerpc: Fix out-of-tree build errors
powerpc/time: no steal_time when CONFIG_PPC_SPLPAR is not selected
powerpc/time: Only set CONFIG_ARCH_HAS_SCALED_CPUTIME on PPC64
powerpc/time: isolate scaled cputime accounting in dedicated functions.
...
The tbl pointer is being derefenced by IOMMU_PAGE_SIZE prior the check
if it is not NULL.
Just moving the dereference code to after the check, where there will
be guarantee that 'tbl' will not be NULL.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm()
which in turn reads the old TCE and if it was a valid entry, marks
the physical page dirty if it was mapped for writing. Since it is in
real mode, realmode_pfn_to_page() is used instead of pfn_to_page()
to get the page struct. However SetPageDirty() itself reads the compound
page head and returns a virtual address for the head page struct and
setting dirty bit for that kills the system.
This adds additional dirty bit tracking into the MM/IOMMU API for use
in the real mode. Note that this does not change how VFIO and
KVM (in virtual mode) set this bit. The KVM (real mode) changes include:
- use the lowest bit of the cached host phys address to carry
the dirty bit;
- mark pages dirty when they are unpinned which happens when
the preregistered memory is released which always happens in virtual
mode;
- add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit;
- change iommu_tce_xchg_rm() to take the kvm struct for the mm to use
in the new mm_iommu_ua_mark_dirty_rm() helper;
- move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only
caller anyway) to reduce the real mode KVM and IOMMU knowledge
across different subsystems.
This removes realmode_pfn_to_page() as it is not used anymore.
While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for
the real mode only and modules cannot call it anyway.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use DEVICE_ATTR_RW for read-write attributes. This simplifies the
source code, improves readbility, and reduces the chance of
inconsistencies.
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In iommu_range_alloc() we generate a mask by right shifting ~0,
however if the specified alignment is 0 then we right shift by 64,
which is undefined. UBSAN tells us so:
UBSAN: Undefined behaviour in ../arch/powerpc/kernel/iommu.c:193:35
shift exponent 64 is too large for 64-bit type 'long unsigned int'
We can avoid it by instead generating the mask with:
align_mask = (1ull << align_order) - 1;
That will also generate an undefined shift if align_order is 64 or
greater, but that shouldn't be a problem for a while.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Replace the __this_cpu_read() with raw_cpu_read() in
iommu_range_alloc(). Otherwise we get a warning about using
__this_cpu_read() in preemptible code:
BUG: using __this_cpu_read() in preemptible
caller is iommu_range_alloc+0xa8/0x3d0
Preemption doesn't need to be disabled since according to the comment
any CPU can safely use any IOMMU pool.
Signed-off-by: Victor Aoqui <victora@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
DMA_ERROR_CODE is going to go away, so don't rely on it. Instead
define a ->mapping_error method for all IOMMU based dma operation
instances. The direct ops don't ever return an error and don't
need a ->mapping_error method.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
This reworks helpers for checking TCE update parameters in way they
can be used in KVM.
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
So far iommu_table obejcts were only used in virtual mode and had
a single owner. We are going to change this by implementing in-kernel
acceleration of DMA mapping requests. The proposed acceleration
will handle requests in real mode and KVM will keep references to tables.
This adds a kref to iommu_table and defines new helpers to update it.
This replaces iommu_free_table() with iommu_tce_table_put() and makes
iommu_free_table() static. iommu_tce_table_get() is not used in this patch
but it will be in the following patch.
Since this touches prototypes, this also removes @node_name parameter as
it has never been really useful on powernv and carrying it for
the pseries platform code to iommu_free_table() seems to be quite
useless as well.
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment iommu_table can be disposed by either calling
iommu_table_free() directly or it_ops::free(); the only implementation
of free() is in IODA2 - pnv_ioda2_table_free() - and it calls
iommu_table_free() anyway.
As we are going to have reference counting on tables, we need an unified
way of disposing tables.
This moves it_ops::free() call into iommu_free_table() and makes use
of the latter. The free() callback now handles only platform-specific
data.
As from now on the iommu_free_table() calls it_ops->free(), we need
to have it_ops initialized before calling iommu_free_table() so this
moves this initialization in pnv_pci_ioda2_create_table().
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In real mode, TCE tables are invalidated using special
cache-inhibited store instructions which are not available in
virtual mode
This defines and implements exchange_rm() callback. This does not
define set_rm/clear_rm/flush_rm callbacks as there is no user for those -
exchange/exchange_rm are only to be used by KVM for VFIO.
The exchange_rm callback is defined for IODA1/IODA2 powernv platforms.
This replaces list_for_each_entry_rcu with its lockless version as
from now on pnv_pci_ioda2_tce_invalidate() can be called in
the real mode too.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add support for the DMA_ATTR_NO_WARN attribute on powerpc iommu code.
Link: http://lkml.kernel.org/r/1470092390-25451-3-git-send-email-mauricfo@linux.vnet.ibm.com
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dma-mapping core and the implementations do not change the DMA
attributes passed by pointer. Thus the pointer can point to const data.
However the attributes do not have to be a bitfield. Instead unsigned
long will do fine:
1. This is just simpler. Both in terms of reading the code and setting
attributes. Instead of initializing local attributes on the stack
and passing pointer to it to dma_set_attr(), just set the bits.
2. It brings safeness and checking for const correctness because the
attributes are passed by value.
Semantic patches for this change (at least most of them):
virtual patch
virtual context
@r@
identifier f, attrs;
@@
f(...,
- struct dma_attrs *attrs
+ unsigned long attrs
, ...)
{
...
}
@@
identifier r.f;
@@
f(...,
- NULL
+ 0
)
and
// Options: --all-includes
virtual patch
virtual context
@r@
identifier f, attrs;
type t;
@@
t f(..., struct dma_attrs *attrs);
@@
identifier r.f;
@@
f(...,
- NULL
+ 0
)
Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Acked-by: Mark Salter <msalter@redhat.com> [c6x]
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris]
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm]
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
Acked-by: Joerg Roedel <jroedel@suse.de> [iommu]
Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp]
Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core]
Acked-by: David Vrabel <david.vrabel@citrix.com> [xen]
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb]
Acked-by: Joerg Roedel <jroedel@suse.de> [iommu]
Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32]
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc]
Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment writing new TCE value to the IOMMU table fails with EBUSY
if there is a valid entry already. However PAPR specification allows
the guest to write new TCE value without clearing it first.
Another problem this patch is addressing is the use of pool locks for
external IOMMU users such as VFIO. The pool locks are to protect
DMA page allocator rather than entries and since the host kernel does
not control what pages are in use, there is no point in pool locks and
exchange()+put_page(oldtce) is sufficient to avoid possible races.
This adds an exchange() callback to iommu_table_ops which does the same
thing as set() plus it returns replaced TCE and DMA direction so
the caller can release the pages afterwards. The exchange() receives
a physical address unlike set() which receives linear mapping address;
and returns a physical address as the clear() does.
This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement
for a platform to have exchange() implemented in order to support VFIO.
This replaces iommu_tce_build() and iommu_clear_tce() with
a single iommu_tce_xchg().
This makes sure that TCE permission bits are not set in TCE passed to
IOMMU API as those are to be calculated by platform code from
DMA direction.
This moves SetPageDirty() to the IOMMU code to make it work for both
VFIO ioctl interface in in-kernel TCE acceleration (when it becomes
available later).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds missing locks in iommu_take_ownership()/
iommu_release_ownership().
This marks all pages busy in iommu_table::it_map in order to catch
errors if there is an attempt to use this table while ownership over it
is taken.
This only clears TCE content if there is no page marked busy in it_map.
Clearing must be done outside of the table locks as iommu_clear_tce()
called from iommu_clear_tces_and_put_pages() does this.
In order to use bitmap_empty(), the existing code clears bit#0 which
is set even in an empty table if it is bus-mapped at 0 as
iommu_init_table() reserves page#0 to prevent buggy drivers
from crashing when allocated page is bus-mapped at zero
(which is correct). This restores the bit in the case of failure
to bring the it_map to the state it was in when we called
iommu_take_ownership().
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds tce_iommu_take_ownership() and tce_iommu_release_ownership
which call in a loop iommu_take_ownership()/iommu_release_ownership()
for every table on the group. As there is just one now, no change in
behaviour is expected.
At the moment the iommu_table struct has a set_bypass() which enables/
disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code
which calls this callback when external IOMMU users such as VFIO are
about to get over a PHB.
The set_bypass() callback is not really an iommu_table function but
IOMMU/PE function. This introduces a iommu_table_group_ops struct and
adds take_ownership()/release_ownership() callbacks to it which are
called when an external user takes/releases control over the IOMMU.
This replaces set_bypass() with ownership callbacks as it is not
necessarily just bypass enabling, it can be something else/more
so let's give it more generic name.
The callbacks is implemented for IODA2 only. Other platforms (P5IOC2,
IODA1) will use the old iommu_take_ownership/iommu_release_ownership API.
The following patches will replace iommu_take_ownership/
iommu_release_ownership calls in IODA2 with full IOMMU table release/
create.
As we here and touching bypass control, this removes
pnv_pci_ioda2_setup_bypass_pe() as it does not do much
more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base
initialization to pnv_pci_ioda2_setup_dma_pe.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
So far one TCE table could only be used by one IOMMU group. However
IODA2 hardware allows programming the same TCE table address to
multiple PE allowing sharing tables.
This replaces a single pointer to a group in a iommu_table struct
with a linked list of groups which provides the way of invalidating
TCE cache for every PE when an actual TCE table is updated. This adds
pnv_pci_link_table_and_group() and pnv_pci_unlink_table_and_group()
helpers to manage the list. However without VFIO, it is still going
to be a single IOMMU group per iommu_table.
This changes iommu_add_device() to add a device to a first group
from the group list of a table as it is only called from the platform
init code or PCI bus notifier and at these moments there is only
one group per table.
This does not change TCE invalidation code to loop through all
attached groups in order to simplify this patch and because
it is not really needed in most cases. IODA2 is fixed in a later
patch.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Modern IBM POWERPC systems support multiple (currently two) TCE tables
per IOMMU group (a.k.a. PE). This adds a iommu_table_group container
for TCE tables. Right now just one table is supported.
This defines iommu_table_group struct which stores pointers to
iommu_group and iommu_table(s). This replaces iommu_table with
iommu_table_group where iommu_table was used to identify a group:
- iommu_register_group();
- iommudata of generic iommu_group;
This removes @data from iommu_table as it_table_group provides
same access to pnv_ioda_pe.
For IODA, instead of embedding iommu_table, the new iommu_table_group
keeps pointers to those. The iommu_table structs are allocated
dynamically.
For P5IOC2, both iommu_table_group and iommu_table are embedded into
PE struct. As there is no EEH and SRIOV support for P5IOC2,
iommu_free_table() should not be called on iommu_table struct pointers
so we can keep it embedded in pnv_phb::p5ioc2.
For pSeries, this replaces multiple calls of kzalloc_node() with a new
iommu_pseries_alloc_group() helper and stores the table group struct
pointer into the pci_dn struct. For release, a iommu_table_free_group()
helper is added.
This moves iommu_table struct allocation from SR-IOV code to
the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and
pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized.
This change is here because those lines had to be changed anyway.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a iommu_table_ops struct and puts pointer to it into
the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush
callbacks from ppc_md to the new struct where they really belong to.
This adds the requirement for @it_ops to be initialized before calling
iommu_init_table() to make sure that we do not leave any IOMMU table
with iommu_table_ops uninitialized. This is not a parameter of
iommu_init_table() though as there will be cases when iommu_init_table()
will not be called on TCE tables, for example - VFIO.
This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_"
redundant prefixes.
This removes tce_xxx_rm handlers from ppc_md but does not add
them to iommu_table_ops as this will be done later if we decide to
support TCE hypercalls in real mode. This removes _vm callbacks as
only virtual mode is supported by now so this also removes @rm parameter.
For pSeries, this always uses tce_buildmulti_pSeriesLP/
tce_buildmulti_pSeriesLP. This changes multi callback to fall back to
tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not
present. The reason for this is we still have to support "multitce=off"
boot parameter in disable_multitce() and we do not want to walk through
all IOMMU tables in the system and replace "multi" callbacks with single
ones.
For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2.
This makes the callbacks for them public. Later patches will extend
callbacks for IODA1/2.
No change in behaviour is expected.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Normally a bitmap from the iommu_table is used to track what TCE entry
is in use. Since we are going to use iommu_table without its locks and
do xchg() instead, it becomes essential not to put bits which are not
implied in the direction flag as the old TCE value (more precisely -
the permission bits) will be used to decide whether to put the page or not.
This adds iommu_direction_to_tce_perm() (its counterpart is there already)
and uses it for powernv's pnv_tce_build().
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves page pinning (get_user_pages_fast()/put_page()) code out of
the platform IOMMU code and puts it to VFIO IOMMU driver where it belongs
to as the platform code does not deal with page pinning.
This makes iommu_take_ownership()/iommu_release_ownership() deal with
the IOMMU table bitmap only.
This removes page unpinning from iommu_take_ownership() as the actual
TCE table might contain garbage and doing put_page() on it is undefined
behaviour.
Besides the last part, the rest of the patch is mechanical.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment iommu_free_table() only releases memory if
the table was initialized for the platform code use, i.e. it had
it_map initialized (which purpose is to track DMA memory space use).
With dynamic DMA windows, we will need to be able to release
iommu_table even if it was used for VFIO in which case it_map is NULL
so does the patch.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
So far an iommu_table lifetime was the same as PE. Dynamic DMA windows
will change this and iommu_free_table() will not always require
the group to be released.
This moves iommu_group_put() out of iommu_free_table().
This adds a iommu_pseries_free_table() helper which does
iommu_group_put() and iommu_free_table(). Later it will be
changed to receive a table_group and we will have to change less
lines then.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After d905c5df9a ("PPC: POWERNV: move iommu_add_device earlier"), the
refcnt on the kobject backing the IOMMU group for a PCI device is
elevated by each call to pci_dma_dev_setup_pSeriesLP() (via
set_iommu_table_base_and_group). When we go to dlpar a multi-function
PCI device out:
iommu_reconfig_notifier ->
iommu_free_table ->
iommu_group_put
BUG_ON(tbl->it_group)
We trip this BUG_ON, because there are still references on the table, so
it is not freed. Fix this by moving the powernv bus notifier to common
code and calling it for both powernv and pseries.
Fixes: d905c5df9a ("PPC: POWERNV: move iommu_add_device earlier")
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Tested-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some nice cleanups like removing bootmem, and removal of __get_cpu_var().
There is one patch to mm/gup.c. This is the generic GUP implementation, but is
only used by us and arm(64). We have an ack from Steve Capper, and although we
didn't get an ack from Andrew he told us to take the patch through the powerpc
tree.
There's one cxl patch. This is in drivers/misc, but Greg said he was happy for
us to manage fixes for it.
There is an infrastructure patch to support an IPMI driver for OPAL. That patch
also appears in Corey Minyard's IPMI tree, you may see a conflict there.
There is also an RTC driver for OPAL. We weren't able to get any response from
the RTC maintainer, Alessandro Zummo, so in the end we just merged the driver.
The usual batch of Freescale updates from Scott.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUiSTSAAoJEFHr6jzI4aWAirQP/3rIEng0LzLu5kW2zkGylIaM
SNDum1vze3mHiTFl+CFcSIGpC1UEULoB49HA+2oE/ExKpIceG6lpL2LP+wNh2FW5
mozjMjS6mZt4w1Fu1D2ZtgQc3O1T1pxkqsnZmPa8gVf5k5d5IQNPY6yB0pgVWwbV
gwBKxe4VwPAzJjppE9i9MDhNTJwmHZq0lI8XuoTXOOU/f+4G1WxmjrbyveQ7cRP5
i/sq2cKjxpWA+KDeIXo0GR0DpXR7qMeAvFX5xXY7oKuUJIFDM4kSHfmMYP6qLf5c
2vlsJqHVqfOgQdve41z1ooaPzNtg7ezVo+VqqguSgtSgwy2JUo/uHpnzz3gD1Olo
AP5+6xj8LZac0rTPxF4n4Hoyrp7AaaFjEFt1zqT9PWniZW4B41wtia0QORBNUf1S
UEmKAC9T3WZJ47mH7WMSadtOPF9E3Yd/zuiPD4udtptCNKPbr6/k1MpJPIW2D4Rn
BJ0QZTRd7V0yRofXxZtHxaMxq8pWd/Tip7J/zr/ghz+ulnH8BuFamuhCCLuJlESU
+A2PMfuseyTMpH9sMAmmTwSGPDKjaUFWvmFvY/n88NZL7r2LlomNrDWFSSQOIHUP
FxjYmjUMpZeexsfyRdgFV/INhYC3o3cso2fRGO45YK6nkxNnjNFEBS6WhQLvNLBu
sknd1WjXkuJtoMC15SrQ
=jvyT
-----END PGP SIGNATURE-----
Merge tag 'powerpc-3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
Pull powerpc updates from Michael Ellerman:
"Some nice cleanups like removing bootmem, and removal of
__get_cpu_var().
There is one patch to mm/gup.c. This is the generic GUP
implementation, but is only used by us and arm(64). We have an ack
from Steve Capper, and although we didn't get an ack from Andrew he
told us to take the patch through the powerpc tree.
There's one cxl patch. This is in drivers/misc, but Greg said he was
happy for us to manage fixes for it.
There is an infrastructure patch to support an IPMI driver for OPAL.
There is also an RTC driver for OPAL. We weren't able to get any
response from the RTC maintainer, Alessandro Zummo, so in the end we
just merged the driver.
The usual batch of Freescale updates from Scott"
* tag 'powerpc-3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux: (101 commits)
powerpc/powernv: Return to cpu offline loop when finished in KVM guest
powerpc/book3s: Fix partial invalidation of TLBs in MCE code.
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault
powerpc/xmon: Cleanup the breakpoint flags
powerpc/xmon: Enable HW instruction breakpoint on POWER8
powerpc/mm/thp: Use tlbiel if possible
powerpc/mm/thp: Remove code duplication
powerpc/mm/hugetlb: Sanity check gigantic hugepage count
powerpc/oprofile: Disable pagefaults during user stack read
powerpc/mm: Check for matching hpte without taking hpte lock
powerpc: Drop useless warning in eeh_init()
powerpc/powernv: Cleanup unused MCE definitions/declarations.
powerpc/eeh: Dump PHB diag-data early
powerpc/eeh: Recover EEH error on ownership change for BCM5719
powerpc/eeh: Set EEH_PE_RESET on PE reset
powerpc/eeh: Refactor eeh_reset_pe()
powerpc: Remove more traces of bootmem
powerpc/pseries: Initialise nvram_pstore_info's buf_lock
cxl: Name interrupts in /proc/interrupt
cxl: Return error to PSL if IRQ demultiplexing fails & print clearer warning
...
The IOMMU-API gained support for a new iommu_map_sg
function. This causes compile failures on powerpc because
the function name is already globally used there.
This patch renames adds a ppc_ prefix to these functions to
solve the compile problem.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This still has not been merged and now powerpc is the only arch that does
not have this change. Sorry about missing linuxppc-dev before.
V2->V2
- Fix up to work against 3.18-rc1
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
[mpe: Fix build errors caused by set/or_softirq_pending(), and rework
assignment in __set_breakpoint() to use memcpy().]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we take full hotplug to recover from EEH errors, PCI buses
could be involved. For the case, the child devices of involved
PCI buses can't be attached to IOMMU group properly, which is
caused by commit 3f28c5a ("powerpc/powernv: Reduce multi-hit of
iommu_add_device()").
When adding the PCI devices of the newly created PCI buses to
the system, the IOMMU group is expected to be added in (C).
(A) fails to bind the IOMMU group because bus->is_added is
false. (B) fails because the device doesn't have binding IOMMU
table yet. bus->is_added is set to true at end of (C) and
pdev->is_added is set to true at (D).
pcibios_add_pci_devices()
pci_scan_bridge()
pci_scan_child_bus()
pci_scan_slot()
pci_scan_single_device()
pci_scan_device()
pci_device_add()
pcibios_add_device() A: Ignore
device_add() B: Ignore
pcibios_fixup_bus()
pcibios_setup_bus_devices()
pcibios_setup_device() C: Hit
pcibios_finish_adding_to_bus()
pci_bus_add_devices()
pci_bus_add_device() D: Add device
If the parent PCI bus isn't involved in hotplug, the IOMMU
group is expected to be bound in (B). (A) should fail as the
sysfs entries aren't populated.
The patch fixes the issue by reverting commit 3f28c5a and remove
WARN_ON() in iommu_add_device() to allow calling the function
even the specified device already has associated IOMMU group.
Cc: <stable@vger.kernel.org> # 3.16+
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There is a couple of commented debug prints which still use
IOMMU_PAGE_SHIFT() which is not defined for POWERPC anymore, replace
them with it_page_shift.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the support for to create a direct iommu "bypass"
window on IODA2 bridges (such as Power8) allowing to bypass iommu
page translation completely for 64-bit DMA capable devices, thus
significantly improving DMA performances.
Additionally, this adds a hook to the struct iommu_table so that
the IOMMU API / VFIO can disable the bypass when external ownership
is requested, since in that case, the device will be used by an
environment such as userspace or a KVM guest which must not be
allowed to bypass translations.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some devices, for example PCI root port, don't have IOMMU table and
group. We needn't detach them from their IOMMU group. Otherwise, it
potentially incurs kernel crash because of referring NULL IOMMU group
as following backtrace indicates:
.iommu_group_remove_device+0x74/0x1b0
.iommu_bus_notifier+0x94/0xb4
.notifier_call_chain+0x78/0xe8
.__blocking_notifier_call_chain+0x7c/0xbc
.blocking_notifier_call_chain+0x38/0x48
.device_del+0x50/0x234
.pci_remove_bus_device+0x88/0x138
.pci_stop_and_remove_bus_device+0x2c/0x40
.pcibios_remove_pci_devices+0xcc/0xfc
.pcibios_remove_pci_devices+0x3c/0xfc
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch updates the generic iommu backend code to use the
it_page_shift field to determine the iommu page size instead of
using hardcoded values.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The powerpc iommu uses a hardcoded page size of 4K. This patch changes
the name of the IOMMU_PAGE_* macros to reflect the hardcoded values. A
future patch will use the existing names to support dynamic page
sizes.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current implementation of IOMMU on sPAPR does not use iommu_ops
and therefore does not call IOMMU API's bus_set_iommu() which
1) sets iommu_ops for a bus
2) registers a bus notifier
Instead, PCI devices are added to IOMMU groups from
subsys_initcall_sync(tce_iommu_init) which does basically the same
thing without using iommu_ops callbacks.
However Freescale PAMU driver (https://lkml.org/lkml/2013/7/1/158)
implements iommu_ops and when tce_iommu_init is called, every PCI device
is already added to some group so there is a conflict.
This patch does 2 things:
1. removes the loop in which PCI devices were added to groups and
adds explicit iommu_add_device() calls to add devices as soon as they get
the iommu_table pointer assigned to them.
2. moves a bus notifier to powernv code in order to avoid conflict with
the notifier from Freescale driver.
iommu_add_device() and iommu_del_device() are public now.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Under heavy (DLPAR?) stress, we tripped this panic() in
arch/powerpc/kernel/iommu.c::iommu_init_table():
page = alloc_pages_node(nid, GFP_ATOMIC, get_order(sz));
if (!page)
panic("iommu_init_table: Can't allocate %ld bytes\n", sz);
Before the panic() we got a page allocation failure for an order-2
allocation. There appears to be memory free, but perhaps not in the
ATOMIC context. I looked through all the call-sites of
iommu_init_table() and didn't see any obvious reason to need an ATOMIC
allocation. Most call-sites in fact have an explicit GFP_KERNEL
allocation shortly before the call to iommu_init_table(), indicating we
are not in an atomic context. There is some indirection for some paths,
but I didn't see any locks indicating that GFP_KERNEL is inappropriate.
With this change under the same conditions, we have not been able to
reproduce the panic.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org>
This initializes IOMMU groups based on the IOMMU configuration
discovered during the PCI scan on POWERNV (POWER non virtualized)
platform. The IOMMU groups are to be used later by the VFIO driver,
which is used for PCI pass through.
It also implements an API for mapping/unmapping pages for
guest PCI drivers and providing DMA window properties.
This API is going to be used later by QEMU-VFIO to handle
h_put_tce hypercalls from the KVM guest.
The iommu_put_tce_user_mode() does only a single page mapping
as an API for adding many mappings at once is going to be
added later.
Although this driver has been tested only on the POWERNV
platform, it should work on any platform which supports
TCE tables. As h_put_tce hypercall is received by the host
kernel and processed by the QEMU (what involves calling
the host kernel again), performance is not the best -
circa 220MB/s on 10Gb ethernet network.
To enable VFIO on POWER, enable SPAPR_TCE_IOMMU config
option and configure VFIO as required.
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When a device DMA window includes the address 0, it's reserved in the
TCE bitmap to avoid returning that address to drivers.
When the device is removed, the bitmap is checked for any mappings not
removed by the driver, indicating a possible DMA mapping leak. Since the
reserved address is not cleared, a message is printed, warning of such a
leak.
Check for the reservation, and clear it before checking for any other
standing mappings.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>