mirror of https://gitee.com/openkylin/linux.git
21 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Kees Cook | 6da2ec5605 |
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
|
Mike Snitzer | d5ffebdd79 |
dm: backfill missing calls to mutex_destroy()
Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Ingo Molnar | 8c5db92a70 |
Merge branch 'linus' into locking/core, to resolve conflicts
Conflicts: include/linux/compiler-clang.h include/linux/compiler-gcc.h include/linux/compiler-intel.h include/uapi/linux/stddef.h Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Greg Kroah-Hartman | b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
Mark Rutland | 6aa7de0591 |
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
Michal Hocko | a7c3e901a4 |
mm: introduce kv[mz]alloc helpers
Patch series "kvmalloc", v5. There are many open coded kmalloc with vmalloc fallback instances in the tree. Most of them are not careful enough or simply do not care about the underlying semantic of the kmalloc/page allocator which means that a) some vmalloc fallbacks are basically unreachable because the kmalloc part will keep retrying until it succeeds b) the page allocator can invoke a really disruptive steps like the OOM killer to move forward which doesn't sound appropriate when we consider that the vmalloc fallback is available. As it can be seen implementing kvmalloc requires quite an intimate knowledge if the page allocator and the memory reclaim internals which strongly suggests that a helper should be implemented in the memory subsystem proper. Most callers, I could find, have been converted to use the helper instead. This is patch 6. There are some more relying on __GFP_REPEAT in the networking stack which I have converted as well and Eric Dumazet was not opposed [2] to convert them as well. [1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com This patch (of 9): Using kmalloc with the vmalloc fallback for larger allocations is a common pattern in the kernel code. Yet we do not have any common helper for that and so users have invented their own helpers. Some of them are really creative when doing so. Let's just add kv[mz]alloc and make sure it is implemented properly. This implementation makes sure to not make a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also to not warn about allocation failures. This also rules out the OOM killer as the vmalloc is a more approapriate fallback than a disruptive user visible action. This patch also changes some existing users and removes helpers which are specific for them. In some cases this is not possible (e.g. ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and require GFP_NO{FS,IO} context which is not vmalloc compatible in general (note that the page table allocation is GFP_KERNEL). Those need to be fixed separately. While we are at it, document that __vmalloc{_node} about unsupported gfp mask because there seems to be a lot of confusion out there. kvmalloc_node will warn about GFP_KERNEL incompatible (which are not superset) flags to catch new abusers. Existing ones would have to die slowly. [sfr@canb.auug.org.au: f2fs fixup] Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part] Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
Mikulas Patocka | 6085831883 |
dm stats: fix a leaked s->histogram_boundaries array
Fixes:
|
|
Mike Snitzer | 4cc96131af |
dm: move request-based code out to dm-rq.[hc]
Add some seperation between bio-based and request-based DM core code. 'struct mapped_device' and other DM core only structures and functions have been moved to dm-core.h and all relevant DM core .c files have been updated to include dm-core.h rather than dm.h DM targets should _never_ include dm-core.h! [block core merge conflict resolution from Stephen Rothwell] Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> |
|
Mike Christie | 528ec5abe6 |
dm: pass dm stats data dir instead of bi_rw
It looks like dm stats cares about the data direction (READ vs WRITE) and does not need the bio/request flags. Commands like REQ_FLUSH, REQ_DISCARD and REQ_WRITE_SAME are currently always set with REQ_WRITE, so the extra check for REQ_DISCARD in dm_stats_account_io is not needed. This patch has it use the bio and request data_dir helpers instead of accessing the bi_rw/cmd_flags directly. This makes the next patches that remove the operation from the cmd_flags and bi_rw easier, because we will no longer have the REQ_WRITE bit set for operations like discards. Signed-off-by: Mike Christie <mchristi@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com> |
|
Mikulas Patocka | bd49784fd1 |
dm stats: report precise_timestamps and histogram in @stats_list output
If the user selected the precise_timestamps or histogram options, report it in the @stats_list message output. If the user didn't select these options, no extra tokens are reported, thus it is backward compatible with old software that doesn't know about precise timestamps and histogram. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 4.2 |
|
Mikulas Patocka | e262f34741 |
dm stats: add support for request-based DM devices
This makes it possible to use dm stats with DM multipath. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Mikulas Patocka | dfcfac3e4c |
dm stats: collect and report histogram of IO latencies
Add an option to dm statistics to collect and report a histogram of IO latencies. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Mikulas Patocka | c96aec344d |
dm stats: support precise timestamps
Make it possible to use precise timestamps with nanosecond granularity in dm statistics. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Mikulas Patocka | dd4c1b7d0c |
dm stats: fix divide by zero if 'number_of_areas' arg is zero
If the number_of_areas argument was zero the kernel would crash on div-by-zero. Add better input validation. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # v3.12+ |
|
Pekka Enberg | 0f24b79b52 |
dm stats: Use kvfree() in dm_kvfree()
Use kvfree() instead of open-coding it. Signed-off-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Linus Torvalds | 140dfc9299 |
- Significant DM thin-provisioning performance improvements to meet
performance requirements that were requested by the Gluster distributed filesystem. Specifically, dm-thinp now takes care to aggregate IO that will be issued to the same thinp block before issuing IO to the underlying devices. This really helps improve performance on HW RAID6 devices that have a writeback cache because it avoids RMW in the HW RAID controller. - Some stable fixes: fix leak in DM bufio if integrity profiles were enabled, use memzero_explicit in DM crypt to avoid any potential for information leak, and a DM cache fix to properly mark a cache block dirty if it was promoted to the cache via the overwrite optimization. - A few simple DM persistent data library fixes - DM cache multiqueue policy block promotion improvements. - DM cache discard improvements that take advantage of range (multiblock) discard support in the DM bio-prison. This allows for much more efficient bulk discard processing (e.g. when mkfs.xfs discards the entire device). - Some small optimizations in DM core and RCU deference cleanups - DM core changes to suspend/resume code to introduce the new internal suspend/resume interface that the DM thin-pool target now uses to suspend/resume active thin devices when the thin-pool must suspend/resume. This avoids forcing userspace to track all active thin volumes in a thin-pool when the thin-pool is suspended for the purposes of metadata or data space resize. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJUhcvVAAoJEMUj8QotnQNaB78H+wSA6sDJGOhc6e1KlWoFh4Hx hTmwm/O8Fxrp9StO3NPlcv9l+l9FX9pGzN/lo3OsxgWMTs/vLTKZ5SAe3/YT3/b9 6SFC7pC70+glakgMhhXWRvoeSEQC1OWb5BuvOF8irl2n+7B9NAn/zHd9pgpmyWHp nBXK2GJBMzVSiI47NMjo2n6007LgQq0xxSJ9luwdrpwjDqD1d406DrhzbHou5H2Y b8XJGQzUy0GZCX8ycwPVXo9svp2Bc+XajVcgOj5Qg7s2uV5car8NN7TxhSOKSXn2 VpiSyEa2MLHAbFuWtGs8XO98z/m5JlGf1eIgRO4s7w59URgpzdxOHXLlAoyqIGw= =opXi -----END PGP SIGNATURE----- Merge tag 'dm-3.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm Pull device mapper updates from Mike Snitzer: - Significant DM thin-provisioning performance improvements to meet performance requirements that were requested by the Gluster distributed filesystem. Specifically, dm-thinp now takes care to aggregate IO that will be issued to the same thinp block before issuing IO to the underlying devices. This really helps improve performance on HW RAID6 devices that have a writeback cache because it avoids RMW in the HW RAID controller. - Some stable fixes: fix leak in DM bufio if integrity profiles were enabled, use memzero_explicit in DM crypt to avoid any potential for information leak, and a DM cache fix to properly mark a cache block dirty if it was promoted to the cache via the overwrite optimization. - A few simple DM persistent data library fixes - DM cache multiqueue policy block promotion improvements. - DM cache discard improvements that take advantage of range (multiblock) discard support in the DM bio-prison. This allows for much more efficient bulk discard processing (e.g. when mkfs.xfs discards the entire device). - Some small optimizations in DM core and RCU deference cleanups - DM core changes to suspend/resume code to introduce the new internal suspend/resume interface that the DM thin-pool target now uses to suspend/resume active thin devices when the thin-pool must suspend/resume. This avoids forcing userspace to track all active thin volumes in a thin-pool when the thin-pool is suspended for the purposes of metadata or data space resize. * tag 'dm-3.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (49 commits) dm crypt: use memzero_explicit for on-stack buffer dm space map metadata: fix sm_bootstrap_get_count() dm space map metadata: fix sm_bootstrap_get_nr_blocks() dm bufio: fix memleak when using a dm_buffer's inline bio dm cache: fix spurious cell_defer when dealing with partial block at end of device dm cache: dirty flag was mistakenly being cleared when promoting via overwrite dm cache: only use overwrite optimisation for promotion when in writeback mode dm cache: discard block size must be a multiple of cache block size dm cache: fix a harmless race when working out if a block is discarded dm cache: when reloading a discard bitset allow for a different discard block size dm cache: fix some issues with the new discard range support dm array: if resizing the array is a noop set the new root to the old one dm: use rcu_dereference_protected instead of rcu_dereference dm thin: fix pool_io_hints to avoid looking at max_hw_sectors dm thin: suspend/resume active thin devices when reloading thin-pool dm: enhance internal suspend and resume interface dm thin: do not allow thin device activation while pool is suspended dm: add presuspend_undo hook to target_type dm: return earlier from dm_blk_ioctl if target doesn't implement .ioctl dm thin: remove stale 'trim' message in block comment above pool_message ... |
|
Mike Snitzer | ffcc393641 |
dm: enhance internal suspend and resume interface
Rename dm_internal_{suspend,resume} to dm_internal_{suspend,resume}_fast -- dm-stats will continue using these methods to avoid all the extra suspend/resume logic that is not needed in order to quickly flush IO. Introduce dm_internal_suspend_noflush() variant that actually calls the mapped_device's target callbacks -- otherwise target-specific hooks are avoided (e.g. dm-thin's thin_presuspend and thin_postsuspend). Common code between dm_internal_{suspend_noflush,resume} and dm_{suspend,resume} was factored out as __dm_{suspend,resume}. Update dm_internal_{suspend_noflush,resume} to always take and release the mapped_device's suspend_lock. Also update dm_{suspend,resume} to be aware of potential for DM_INTERNAL_SUSPEND_FLAG to be set and respond accordingly by interruptibly waiting for the DM_INTERNAL_SUSPEND_FLAG to be cleared. Add lockdep annotation to dm_suspend() and dm_resume(). The existing DM_SUSPEND_FLAG remains unchanged. DM_INTERNAL_SUSPEND_FLAG is set by dm_internal_suspend_noflush() and cleared by dm_internal_resume(). Both DM_SUSPEND_FLAG and DM_INTERNAL_SUSPEND_FLAG may be set if a device was already suspended when dm_internal_suspend_noflush() was called -- this can be thought of as a "nested suspend". A "nested suspend" can occur with legacy userspace dm-thin code that might suspend all active thin volumes before suspending the pool for resize. But otherwise, in the normal dm-thin-pool suspend case moving forward: the thin-pool will have DM_SUSPEND_FLAG set and all active thins from that thin-pool will have DM_INTERNAL_SUSPEND_FLAG set. Also add DM_INTERNAL_SUSPEND_FLAG to status report. This new DM_INTERNAL_SUSPEND_FLAG state is being reported to assist with debugging (e.g. 'dmsetup info' will report an internally suspended device accordingly). Signed-off-by: Mike Snitzer <snitzer@redhat.com> Acked-by: Joe Thornber <ejt@redhat.com> |
|
Christoph Lameter | 1f125e76f5 |
md: Replace __this_cpu_ptr with raw_cpu_ptr
__this_cpu_ptr is being phased out. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
Mikulas Patocka | 76f5bee5c3 |
dm stats: initialize read-only module parameter
The module parameter stats_current_allocated_bytes in dm-mod is read-only. This parameter informs the user about memory consumption. It is not supposed to be changed by the user. However, despite being read-only, this parameter can be set on modprobe or insmod command line: modprobe dm-mod stats_current_allocated_bytes=12345 The kernel doesn't expect that this variable can be non-zero at module initialization and if the user sets it, it results in warning. This patch initializes the variable in the module init routine, so that user-supplied value is ignored. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 3.12+ |
|
Mikulas Patocka | bbf3f8cbdc |
dm stats: fix possible counter corruption on 32-bit systems
There was a deliberate race condition in dm_stat_for_entry() to avoid the overhead of disabling and enabling interrupts. The race could result in some events not being counted on 64-bit architectures. However, on 32-bit architectures, operations on long long variables are not atomic, so the race condition could cause the counter to jump by 2^32. Such jumps could be disruptive, so we need to do proper locking on 32-bit architectures. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: Alasdair G. Kergon <agk@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> |
|
Mikulas Patocka | fd2ed4d252 |
dm: add statistics support
Support the collection of I/O statistics on user-defined regions of a DM device. If no regions are defined no statistics are collected so there isn't any performance impact. Only bio-based DM devices are currently supported. Each user-defined region specifies a starting sector, length and step. Individual statistics will be collected for each step-sized area within the range specified. The I/O statistics counters for each step-sized area of a region are in the same format as /sys/block/*/stat or /proc/diskstats but extra counters (12 and 13) are provided: total time spent reading and writing in milliseconds. All these counters may be accessed by sending the @stats_print message to the appropriate DM device via dmsetup. The creation of DM statistics will allocate memory via kmalloc or fallback to using vmalloc space. At most, 1/4 of the overall system memory may be allocated by DM statistics. The admin can see how much memory is used by reading /sys/module/dm_mod/parameters/stats_current_allocated_bytes See Documentation/device-mapper/statistics.txt for more details. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com> |