We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"Several noteworthy changes.
- Parav's rdma controller is finally merged. It is very straight
forward and can limit the abosolute numbers of common rdma
constructs used by different cgroups.
- kernel/cgroup.c got too chubby and disorganized. Created
kernel/cgroup/ subdirectory and moved all cgroup related files
under kernel/ there and reorganized the core code. This hurts for
backporting patches but was long overdue.
- cgroup v2 process listing reimplemented so that it no longer
depends on allocating a buffer large enough to cache the entire
result to sort and uniq the output. v2 has always mangled the sort
order to ensure that users don't depend on the sorted output, so
this shouldn't surprise anybody. This makes the pid listing
functions use the same iterators that are used internally, which
have to have the same iterating capabilities anyway.
- perf cgroup filtering now works automatically on cgroup v2. This
patch was posted a long time ago but somehow fell through the
cracks.
- misc fixes asnd documentation updates"
* 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (27 commits)
kernfs: fix locking around kernfs_ops->release() callback
cgroup: drop the matching uid requirement on migration for cgroup v2
cgroup, perf_event: make perf_event controller work on cgroup2 hierarchy
cgroup: misc cleanups
cgroup: call subsys->*attach() only for subsystems which are actually affected by migration
cgroup: track migration context in cgroup_mgctx
cgroup: cosmetic update to cgroup_taskset_add()
rdmacg: Fixed uninitialized current resource usage
cgroup: Add missing cgroup-v2 PID controller documentation.
rdmacg: Added documentation for rdmacg
IB/core: added support to use rdma cgroup controller
rdmacg: Added rdma cgroup controller
cgroup: fix a comment typo
cgroup: fix RCU related sparse warnings
cgroup: move namespace code to kernel/cgroup/namespace.c
cgroup: rename functions for consistency
cgroup: move v1 mount functions to kernel/cgroup/cgroup-v1.c
cgroup: separate out cgroup1_kf_syscall_ops
cgroup: refactor mount path and clearly distinguish v1 and v2 paths
cgroup: move cgroup v1 specific code to kernel/cgroup/cgroup-v1.c
...
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use "proc_dointvec_minmax" instead of "proc_dointvec" to check the input
value from user-space.
If not, we can set a big value and some vars will overflow like
"sysctl_perf_event_sample_rate" which will cause a lot of unexpected
problems.
Signed-off-by: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <acme@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1487829879-56237-1-git-send-email-tanxiaojun@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Where commit:
7fce250915 ("perf: Fix scaling vs. perf_event_enable_on_exec()")
disabled the ctx-time a-priory, such that all events get enabled and
scheduled at the time point in time, there is one hole in that patch,
when no events do get enabled nothing re-enables the ctx-time.
Reported-by: Ravi Bangoria <ravi.bangoria@linux.vnet.ibm.com>
Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 7fce250915 ("perf: Fix scaling vs. perf_event_enable_on_exec()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
321027c1fe ("perf/core: Fix concurrent sys_perf_event_open() vs. 'move_group' race")
... the code looks like (assuming move_group==1):
gctx = __perf_event_ctx_lock_double(group_leader, ctx);
perf_remove_from_context(group_leader, 0);
list_for_each_entry(sibling, &group_leader->sibling_list, group_entry) {
perf_remove_from_context(sibling, 0);
put_ctx(gctx);
}
/* ... */
/* misleading comment about how this is the last reference */
put_ctx(gctx);
perf_event_ctx_unlock(group_leader, gctx);
What that 'last' put_ctx() does is drop @group_leader's reference on
gctx after having dropped all its potential sibling references.
But the thing is that __perf_event_ctx_lock_double() returns with a
reference _and_ a held lock, and perf_event_ctx_unlock() unlocks that
lock and drops that reference. Therefore that put_ctx() cannot be the
'last' of anything, nor is there an unbalance in puts.
To reduce confusion, remove the comment and place the put_ctx() next
to the remove_from_context() call.
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While supporting file-based address filters for CPU events requires some
extra context switch handling, kernel address filters are easy, since the
kernel mapping is preserved across address spaces. It is also useful as
it permits tracing scheduling paths of the kernel.
This patch allows setting up kernel filters for CPU events.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170126094057.13805-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is currently possible to configure a kernel address filter for a
event that excludes kernel from its traces (attr.exclude_kernel==1).
While in reality this doesn't make sense, the SET_FILTER ioctl() should
return a error in such case, currently it does not. Furthermore, it
will still silently discard the filter and any potentially valid filters
that came with it.
This patch makes the SET_FILTER ioctl() error out in such cases.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170126094057.13805-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Alexei had his box explode because doing read() on a package
(rapl/uncore) event that isn't currently scheduled in ends up doing an
out-of-bounds load.
Rework the code to more explicitly deal with event->oncpu being -1.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Fixes: d6a2f9035b ("perf/core: Introduce PMU_EV_CAP_READ_ACTIVE_PKG")
Link: http://lkml.kernel.org/r/20170131102710.GL6515@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
perf_event is a utility controller whose primary role is identifying
cgroup membership to filter perf events; however, because it also
tracks some per-css state, it can't be replaced by pure cgroup
membership test. Mark the controller as implicitly enabled on the
default hierarchy so that perf events can always be filtered based on
cgroup v2 path as long as the controller is not mounted on a legacy
hierarchy.
"perf record" is updated accordingly so that it searches for both v1
and v2 hierarchies. A v1 hierarchy is used if perf_event is mounted
on it; otherwise, it uses the v2 hierarchy.
v2: Doc updated to reflect more flexible rebinding behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
perf has additional overhead when monitoring the task which
frequently generates child tasks.
perf_init_event() is one of the hotspots for the additional overhead:
Currently, to get the PMU, it tries to search the type in pmu_idr at
first. But it is not always successful, especially for the widely used
PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events. So it has to go to the
slow path which go through the whole PMUs list.
It will be a big performance issue, if the PMUs list is long (e.g. server
with many uncore boxes) and the task frequently generates child tasks.
The child event inherits its parent event. So the child event should
try its parent PMU first.
Here is some data from the overhead test on Broadwell server:
perf record -e $TEST_EVENTS -- ./loop.sh 50000
loop.sh
start=$(date +%s%N)
i=0
while [ "$i" -le "$1" ]
do
date > /dev/null
i=`expr $i + 1`
done
end=$(date +%s%N)
elapsed=`expr $end - $start`
Event# Original elapsed time Elapsed time with patch delta
1 196,573,192,397 189,162,029,998 -3.77%
2 257,567,753,013 241,620,788,683 -6.19%
4 398,730,726,971 370,518,938,714 -7.08%
8 824,983,761,120 740,702,489,329 -10.22%
16 1,883,411,923,498 1,672,027,508,355 -11.22%
... which shows a nice performance improvement.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1484745662-15928-2-git-send-email-kan.liang@intel.com
[ Tidied up the changelog and the code comment. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When new events are added to an active context, we go and reschedule
all cpu groups and all task groups in order to preserve the priority
(cpu pinned, task pinned, cpu flexible, task flexible), but in
reality we only need to reschedule groups of the same priority as
that of the events being added, and below.
This patch changes the behavior so that only groups that need to be
rescheduled are rescheduled.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170119164330.22887-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the sched-in path, we first remove a CPU's flexible events in order to
give priority to the task's pinned events. However, this step can be safely
skipped if the task doesn't have its own pinned events.
This patch implements this skipping.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170119164330.22887-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpuctx->unique_pmu was originally introduced as a way to identify cpuctxs
with shared pmus in order to avoid visiting the same cpuctx more than once
in a for_each_pmu loop.
cpuctx->unique_pmu == cpuctx->pmu in non-software task contexts since they
have only one pmu per cpuctx. Since perf_pmu_sched_task() is only called in
hw contexts, this patch replaces cpuctx->unique_pmu by cpuctx->pmu in it.
The change above, together with the previous patch in this series, removed
the remaining uses of cpuctx->unique_pmu, so we remove it altogether.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Vince Weaver <vince@deater.net>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20170118192454.58008-3-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch follows from a conversation in CQM/CMT's last series about
speeding up the context switch for cgroup events:
https://patchwork.kernel.org/patch/9478617/
This is a low-hanging fruit optimization. It replaces the iteration over
the "pmus" list in cgroup switch by an iteration over a new list that
contains only cpuctxs with at least one cgroup event.
This is necessary because the number of PMUs have increased over the years
e.g modern x86 server systems have well above 50 PMUs.
The iteration over the full PMU list is unneccessary and can be costly in
heavy cache contention scenarios.
Below are some instrumentation measurements with 10, 50 and 90 percentiles
of the total cost of context switch before and after this optimization for
a simple array read/write microbenchark.
Contention
Level Nr events Before (us) After (us) Median
L2 L3 types (10%, 50%, 90%) (10%, 50%, 90% Speedup
--------------------------------------------------------------------------
Low Low 1 (1.72, 2.42, 5.85) (1.35, 1.64, 5.46) 29%
High Low 1 (2.08, 4.56, 19.8) (1720, 2.20, 13.7) 51%
High High 1 (2.86, 10.4, 12.7) (2.54, 4.32, 12.1) 58%
Low Low 2 (1.98, 3.20, 6.89) (1.68, 2.41, 8.89) 24%
High Low 2 (2.48, 5.28, 22.4) (2150, 3.69, 14.6) 30%
High High 2 (3.32, 8.09, 13.9) (2.80, 5.15, 13.7) 36%
where:
1 event type = cycles
2 event types = cycles,intel_cqm/llc_occupancy/
Contention L2 Low: workset < L2 cache size.
High: " >> L2 " " .
Contention L3 Low: workset of task on all sockets < L3 cache size.
High: " " " " " " >> L3 " " .
Median Speedup is (50%ile Before - 50%ile After) / 50%ile Before
Unsurprisingly, the benefits of this optimization decrease with the number
of cpuctxs with a cgroup events, yet, is never detrimental.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Vince Weaver <vince@deater.net>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20170118192454.58008-2-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andres reported that MMAP2 records for anonymous memory always have
their protection field 0.
Turns out, someone daft put the prot/flags generation code in the file
branch, leaving them unset for anonymous memory.
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Don Zickus <dzickus@redhat.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: anton@ozlabs.org
Cc: namhyung@kernel.org
Cc: stable@vger.kernel.org # v3.16+
Fixes: f972eb63b1 ("perf: Pass protection and flags bits through mmap2 interface")
Link: http://lkml.kernel.org/r/20170126221508.GF6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dmitry reported a KASAN use-after-free on event->group_leader.
It turns out there's a hole in perf_remove_from_context() due to
event_function_call() not calling its function when the task
associated with the event is already dead.
In this case the event will have been detached from the task, but the
grouping will have been retained, such that group operations might
still work properly while there are live child events etc.
This does however mean that we can miss a perf_group_detach() call
when the group decomposes, this in turn can then lead to
use-after-free.
Fix it by explicitly doing the group detach if its still required.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # v4.5+
Cc: syzkaller <syzkaller@googlegroups.com>
Fixes: 63b6da39bb ("perf: Fix perf_event_exit_task() race")
Link: http://lkml.kernel.org/r/20170126153955.GD6515@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's possible to set up PEBS events to get only errors and not
any data, like on SNB-X (model 45) and IVB-EP (model 62)
via 2 perf commands running simultaneously:
taskset -c 1 ./perf record -c 4 -e branches:pp -j any -C 10
This leads to a soft lock up, because the error path of the
intel_pmu_drain_pebs_nhm() does not account event->hw.interrupt
for error PEBS interrupts, so in case you're getting ONLY
errors you don't have a way to stop the event when it's over
the max_samples_per_tick limit:
NMI watchdog: BUG: soft lockup - CPU#22 stuck for 22s! [perf_fuzzer:5816]
...
RIP: 0010:[<ffffffff81159232>] [<ffffffff81159232>] smp_call_function_single+0xe2/0x140
...
Call Trace:
? trace_hardirqs_on_caller+0xf5/0x1b0
? perf_cgroup_attach+0x70/0x70
perf_install_in_context+0x199/0x1b0
? ctx_resched+0x90/0x90
SYSC_perf_event_open+0x641/0xf90
SyS_perf_event_open+0x9/0x10
do_syscall_64+0x6c/0x1f0
entry_SYSCALL64_slow_path+0x25/0x25
Add perf_event_account_interrupt() which does the interrupt
and frequency checks and call it from intel_pmu_drain_pebs_nhm()'s
error path.
We keep the pending_kill and pending_wakeup logic only in the
__perf_event_overflow() path, because they make sense only if
there's any data to deliver.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vince@deater.net>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1482931866-6018-2-git-send-email-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Di Shen reported a race between two concurrent sys_perf_event_open()
calls where both try and move the same pre-existing software group
into a hardware context.
The problem is exactly that described in commit:
f63a8daa58 ("perf: Fix event->ctx locking")
... where, while we wait for a ctx->mutex acquisition, the event->ctx
relation can have changed under us.
That very same commit failed to recognise sys_perf_event_context() as an
external access vector to the events and thereby didn't apply the
established locking rules correctly.
So while one sys_perf_event_open() call is stuck waiting on
mutex_lock_double(), the other (which owns said locks) moves the group
about. So by the time the former sys_perf_event_open() acquires the
locks, the context we've acquired is stale (and possibly dead).
Apply the established locking rules as per perf_event_ctx_lock_nested()
to the mutex_lock_double() for the 'move_group' case. This obviously means
we need to validate state after we acquire the locks.
Reported-by: Di Shen (Keen Lab)
Tested-by: John Dias <joaodias@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Min Chong <mchong@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: f63a8daa58 ("perf: Fix event->ctx locking")
Link: http://lkml.kernel.org/r/20170106131444.GZ3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is problem with installing an event in a task that is 'stuck' on
an offline CPU.
Blocked tasks are not dis-assosciated from offlined CPUs, after all, a
blocked task doesn't run and doesn't require a CPU etc.. Only on
wakeup do we ammend the situation and place the task on a available
CPU.
If we hit such a task with perf_install_in_context() we'll loop until
either that task wakes up or the CPU comes back online, if the task
waking depends on the event being installed, we're stuck.
While looking into this issue, I also spotted another problem, if we
hit a task with perf_install_in_context() that is in the middle of
being migrated, that is we observe the old CPU before sending the IPI,
but run the IPI (on the old CPU) while the task is already running on
the new CPU, things also go sideways.
Rework things to rely on task_curr() -- outside of rq->lock -- which
is rather tricky. Imagine the following scenario where we're trying to
install the first event into our task 't':
CPU0 CPU1 CPU2
(current == t)
t->perf_event_ctxp[] = ctx;
smp_mb();
cpu = task_cpu(t);
switch(t, n);
migrate(t, 2);
switch(p, t);
ctx = t->perf_event_ctxp[]; // must not be NULL
smp_function_call(cpu, ..);
generic_exec_single()
func();
spin_lock(ctx->lock);
if (task_curr(t)) // false
add_event_to_ctx();
spin_unlock(ctx->lock);
perf_event_context_sched_in();
spin_lock(ctx->lock);
// sees event
So its CPU0's store of t->perf_event_ctxp[] that must not go 'missing'.
Because if CPU2's load of that variable were to observe NULL, it would
not try to schedule the ctx and we'd have a task running without its
counter, which would be 'bad'.
As long as we observe !NULL, we'll acquire ctx->lock. If we acquire it
first and not see the event yet, then CPU0 must observe task_curr()
and retry. If the install happens first, then we must see the event on
sched-in and all is well.
I think we can translate the first part (until the 'must not be NULL')
of the scenario to a litmus test like:
C C-peterz
{
}
P0(int *x, int *y)
{
int r1;
WRITE_ONCE(*x, 1);
smp_mb();
r1 = READ_ONCE(*y);
}
P1(int *y, int *z)
{
WRITE_ONCE(*y, 1);
smp_store_release(z, 1);
}
P2(int *x, int *z)
{
int r1;
int r2;
r1 = smp_load_acquire(z);
smp_mb();
r2 = READ_ONCE(*x);
}
exists
(0:r1=0 /\ 2:r1=1 /\ 2:r2=0)
Where:
x is perf_event_ctxp[],
y is our tasks's CPU, and
z is our task being placed on the rq of CPU2.
The P0 smp_mb() is the one added by this patch, ordering the store to
perf_event_ctxp[] from find_get_context() and the load of task_cpu()
in task_function_call().
The smp_store_release/smp_load_acquire model the RCpc locking of the
rq->lock and the smp_mb() of P2 is the context switch switching from
whatever CPU2 was running to our task 't'.
This litmus test evaluates into:
Test C-peterz Allowed
States 7
0:r1=0; 2:r1=0; 2:r2=0;
0:r1=0; 2:r1=0; 2:r2=1;
0:r1=0; 2:r1=1; 2:r2=1;
0:r1=1; 2:r1=0; 2:r2=0;
0:r1=1; 2:r1=0; 2:r2=1;
0:r1=1; 2:r1=1; 2:r2=0;
0:r1=1; 2:r1=1; 2:r2=1;
No
Witnesses
Positive: 0 Negative: 7
Condition exists (0:r1=0 /\ 2:r1=1 /\ 2:r2=0)
Observation C-peterz Never 0 7
Hash=e427f41d9146b2a5445101d3e2fcaa34
And the strong and weak model agree.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: jeremy.linton@arm.com
Link: http://lkml.kernel.org/r/20161209135900.GU3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull vfs updates from Al Viro:
- more ->d_init() stuff (work.dcache)
- pathname resolution cleanups (work.namei)
- a few missing iov_iter primitives - copy_from_iter_full() and
friends. Either copy the full requested amount, advance the iterator
and return true, or fail, return false and do _not_ advance the
iterator. Quite a few open-coded callers converted (and became more
readable and harder to fuck up that way) (work.iov_iter)
- several assorted patches, the big one being logfs removal
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
logfs: remove from tree
vfs: fix put_compat_statfs64() does not handle errors
namei: fold should_follow_link() with the step into not-followed link
namei: pass both WALK_GET and WALK_MORE to should_follow_link()
namei: invert WALK_PUT logics
namei: shift interpretation of LOOKUP_FOLLOW inside should_follow_link()
namei: saner calling conventions for mountpoint_last()
namei.c: get rid of user_path_parent()
switch getfrag callbacks to ..._full() primitives
make skb_add_data,{_nocache}() and skb_copy_to_page_nocache() advance only on success
[iov_iter] new primitives - copy_from_iter_full() and friends
don't open-code file_inode()
ceph: switch to use of ->d_init()
ceph: unify dentry_operations instances
lustre: switch to use of ->d_init()
The warning introduced in commit:
864c2357ca ("perf/core: Do not set cpuctx->cgrp for unscheduled cgroups")
assumed that a cgroup switch always precedes list_del_event. This is
not the case. Remove warning.
Make sure that cpuctx->cgrp is NULL until a cgroup event is sched in
or ctx->nr_cgroups == 0.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1480841177-27299-1-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since long already bpf_func is not only about struct sk_buff * as
input anymore. Make it generic as void *, so that callers don't
need to cast for it each time they call BPF_PROG_RUN().
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The token table passed into match_token() must be null-terminated, which
it currently is not in the perf's address filter string parser, as caught
by Vince's perf_fuzzer and KASAN.
It doesn't blow up otherwise because of the alignment padding of the table
to the next element in the .rodata, which is luck.
Fixing by adding a null-terminator to the token table.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: stable@vger.kernel.org # v4.7+
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Link: http://lkml.kernel.org/r/877f81f264.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
db4a835601 ("perf/core: Set cgroup in CPU contexts for new cgroup events")
failed to verify that event->cgrp is actually the scheduled cgroup
in a CPU before setting cpuctx->cgrp. This patch fixes that.
Now that there is a different path for scheduled and unscheduled
cgroup, add a warning to catch when cpuctx->cgrp is still set after
the last cgroup event has been unsheduled.
To verify the bug:
# Create 2 cgroups.
mkdir /dev/cgroups/devices/g1
mkdir /dev/cgroups/devices/g2
# launch a task, bind it to a cpu and move it to g1
CPU=2
while :; do : ; done &
P=$!
taskset -pc $CPU $P
echo $P > /dev/cgroups/devices/g1/tasks
# monitor g2 (it runs no tasks) and observe output
perf stat -e cycles -I 1000 -C $CPU -G g2
# time counts unit events
1.000091408 7,579,527 cycles g2
2.000350111 <not counted> cycles g2
3.000589181 <not counted> cycles g2
4.000771428 <not counted> cycles g2
# note first line that displays that a task run in g2, despite
# g2 having no tasks. This is because cpuctx->cgrp was wrongly
# set when context of new event was installed.
# After applying the fix we obtain the right output:
perf stat -e cycles -I 1000 -C $CPU -G g2
# time counts unit events
1.000119615 <not counted> cycles g2
2.000389430 <not counted> cycles g2
3.000590962 <not counted> cycles g2
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Link: http://lkml.kernel.org/r/1478026378-86083-1-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The trinity syscall fuzzer triggered following WARN() on powerpc:
WARNING: CPU: 9 PID: 2998 at arch/powerpc/kernel/hw_breakpoint.c:278
...
NIP [c00000000093aedc] .hw_breakpoint_handler+0x28c/0x2b0
LR [c00000000093aed8] .hw_breakpoint_handler+0x288/0x2b0
Call Trace:
[c0000002f7933580] [c00000000093aed8] .hw_breakpoint_handler+0x288/0x2b0 (unreliable)
[c0000002f7933630] [c0000000000f671c] .notifier_call_chain+0x7c/0xf0
[c0000002f79336d0] [c0000000000f6abc] .__atomic_notifier_call_chain+0xbc/0x1c0
[c0000002f7933780] [c0000000000f6c40] .notify_die+0x70/0xd0
[c0000002f7933820] [c00000000001a74c] .do_break+0x4c/0x100
[c0000002f7933920] [c0000000000089fc] handle_dabr_fault+0x14/0x48
Followed by a lockdep warning:
===============================
[ INFO: suspicious RCU usage. ]
4.8.0-rc5+ #7 Tainted: G W
-------------------------------
./include/linux/rcupdate.h:556 Illegal context switch in RCU read-side critical section!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
2 locks held by ls/2998:
#0: (rcu_read_lock){......}, at: [<c0000000000f6a00>] .__atomic_notifier_call_chain+0x0/0x1c0
#1: (rcu_read_lock){......}, at: [<c00000000093ac50>] .hw_breakpoint_handler+0x0/0x2b0
stack backtrace:
CPU: 9 PID: 2998 Comm: ls Tainted: G W 4.8.0-rc5+ #7
Call Trace:
[c0000002f7933150] [c00000000094b1f8] .dump_stack+0xe0/0x14c (unreliable)
[c0000002f79331e0] [c00000000013c468] .lockdep_rcu_suspicious+0x138/0x180
[c0000002f7933270] [c0000000001005d8] .___might_sleep+0x278/0x2e0
[c0000002f7933300] [c000000000935584] .mutex_lock_nested+0x64/0x5a0
[c0000002f7933410] [c00000000023084c] .perf_event_ctx_lock_nested+0x16c/0x380
[c0000002f7933500] [c000000000230a80] .perf_event_disable+0x20/0x60
[c0000002f7933580] [c00000000093aeec] .hw_breakpoint_handler+0x29c/0x2b0
[c0000002f7933630] [c0000000000f671c] .notifier_call_chain+0x7c/0xf0
[c0000002f79336d0] [c0000000000f6abc] .__atomic_notifier_call_chain+0xbc/0x1c0
[c0000002f7933780] [c0000000000f6c40] .notify_die+0x70/0xd0
[c0000002f7933820] [c00000000001a74c] .do_break+0x4c/0x100
[c0000002f7933920] [c0000000000089fc] handle_dabr_fault+0x14/0x48
While it looks like the first WARN() is probably valid, the other one is
triggered by disabling event via perf_event_disable() from atomic context.
The event is disabled here in case we were not able to emulate
the instruction that hit the breakpoint. By disabling the event
we unschedule the event and make sure it's not scheduled back.
But we can't call perf_event_disable() from atomic context, instead
we need to use the event's pending_disable irq_work method to disable it.
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161026094824.GA21397@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CAI Qian reported a crash in the PMU uncore device removal code,
enabled by the CONFIG_DEBUG_TEST_DRIVER_REMOVE=y option:
https://marc.info/?l=linux-kernel&m=147688837328451
The reason for the crash is that perf_pmu_unregister() tries to remove
a PMU device which is not added at this point. We add PMU devices
only after pmu_bus is registered, which happens in the
perf_event_sysfs_init() call and sets the 'pmu_bus_running' flag.
The fix is to get the 'pmu_bus_running' flag state at the point
the PMU is taken out of the PMU list and remove the device
later only if it's set.
Reported-by: CAI Qian <caiqian@redhat.com>
Tested-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161020111011.GA13361@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull networking updates from David Miller:
1) BBR TCP congestion control, from Neal Cardwell, Yuchung Cheng and
co. at Google. https://lwn.net/Articles/701165/
2) Do TCP Small Queues for retransmits, from Eric Dumazet.
3) Support collect_md mode for all IPV4 and IPV6 tunnels, from Alexei
Starovoitov.
4) Allow cls_flower to classify packets in ip tunnels, from Amir Vadai.
5) Support DSA tagging in older mv88e6xxx switches, from Andrew Lunn.
6) Support GMAC protocol in iwlwifi mwm, from Ayala Beker.
7) Support ndo_poll_controller in mlx5, from Calvin Owens.
8) Move VRF processing to an output hook and allow l3mdev to be
loopback, from David Ahern.
9) Support SOCK_DESTROY for UDP sockets. Also from David Ahern.
10) Congestion control in RXRPC, from David Howells.
11) Support geneve RX offload in ixgbe, from Emil Tantilov.
12) When hitting pressure for new incoming TCP data SKBs, perform a
partial rathern than a full purge of the OFO queue (which could be
huge). From Eric Dumazet.
13) Convert XFRM state and policy lookups to RCU, from Florian Westphal.
14) Support RX network flow classification to igb, from Gangfeng Huang.
15) Hardware offloading of eBPF in nfp driver, from Jakub Kicinski.
16) New skbmod packet action, from Jamal Hadi Salim.
17) Remove some inefficiencies in snmp proc output, from Jia He.
18) Add FIB notifications to properly propagate route changes to
hardware which is doing forwarding offloading. From Jiri Pirko.
19) New dsa driver for qca8xxx chips, from John Crispin.
20) Implement RFC7559 ipv6 router solicitation backoff, from Maciej
Żenczykowski.
21) Add L3 mode to ipvlan, from Mahesh Bandewar.
22) Support 802.1ad in mlx4, from Moshe Shemesh.
23) Support hardware LRO in mediatek driver, from Nelson Chang.
24) Add TC offloading to mlx5, from Or Gerlitz.
25) Convert various drivers to ethtool ksettings interfaces, from
Philippe Reynes.
26) TX max rate limiting for cxgb4, from Rahul Lakkireddy.
27) NAPI support for ath10k, from Rajkumar Manoharan.
28) Support XDP in mlx5, from Rana Shahout and Saeed Mahameed.
29) UDP replicast support in TIPC, from Richard Alpe.
30) Per-queue statistics for qed driver, from Sudarsana Reddy Kalluru.
31) Support BQL in thunderx driver, from Sunil Goutham.
32) TSO support in alx driver, from Tobias Regnery.
33) Add stream parser engine and use it in kcm.
34) Support async DHCP replies in ipconfig module, from Uwe
Kleine-König.
35) DSA port fast aging for mv88e6xxx driver, from Vivien Didelot.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1715 commits)
mlxsw: switchx2: Fix misuse of hard_header_len
mlxsw: spectrum: Fix misuse of hard_header_len
net/faraday: Stop NCSI device on shutdown
net/ncsi: Introduce ncsi_stop_dev()
net/ncsi: Rework the channel monitoring
net/ncsi: Allow to extend NCSI request properties
net/ncsi: Rework request index allocation
net/ncsi: Don't probe on the reserved channel ID (0x1f)
net/ncsi: Introduce NCSI_RESERVED_CHANNEL
net/ncsi: Avoid unused-value build warning from ia64-linux-gcc
net: Add netdev all_adj_list refcnt propagation to fix panic
net: phy: Add Edge-rate driver for Microsemi PHYs.
vmxnet3: Wake queue from reset work
i40e: avoid NULL pointer dereference and recursive errors on early PCI error
qed: Add RoCE ll2 & GSI support
qed: Add support for memory registeration verbs
qed: Add support for QP verbs
qed: PD,PKEY and CQ verb support
qed: Add support for RoCE hw init
qede: Add qedr framework
...
An "exclusive" PMU is the one that can only have one event scheduled in
at any given time. There may be more than one of such PMUs in a system,
though, like Intel PT and BTS. It should be allowed to have one event
for either of those inside the same context (there may be other constraints
that may prevent this, but those would be hardware-specific). However,
the exclusivity code is written so that only one event from any of the
"exclusive" PMUs is allowed in a context.
Fix this by making the exclusive event filter explicitly match two events'
PMUs.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160920154811.3255-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the mmap_close() path we need to stop all the AUX events that are
writing data to the AUX area that we are unmapping, before we can
safely free the pages. To determine if an event needs to be stopped,
we're comparing its ->rb against the one that's getting unmapped.
However, a SET_OUTPUT ioctl may turn up inside an AUX transaction
and swizzle event::rb to some other ring buffer, but the transaction
will keep writing data to the old ring buffer until the event gets
scheduled out. At this point, mmap_close() will skip over such an
event and will proceed to free the AUX area, while it's still being
used by this event, which will set off a warning in the mmap_close()
path and cause a memory corruption.
To avoid this, always stop an AUX event before its ->rb is updated;
this will release the (potentially) last reference on the AUX area
of the buffer. If the event gets restarted, its new ring buffer will
be used. If another SET_OUTPUT comes and switches it back to the
old ring buffer that's getting unmapped, it's also fine: this
ring buffer's aux_mmap_count will be zero and AUX transactions won't
start any more.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The newly added bpf_overflow_handler function is only built of both
CONFIG_EVENT_TRACING and CONFIG_BPF_SYSCALL are enabled, but the caller
only checks the latter:
kernel/events/core.c: In function 'perf_event_alloc':
kernel/events/core.c:9106:27: error: 'bpf_overflow_handler' undeclared (first use in this function)
This changes the caller so we also skip this call if CONFIG_EVENT_TRACING
is disabled entirely.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: aa6a5f3cb2 ("perf, bpf: add perf events core support for BPF_PROG_TYPE_PERF_EVENT programs")
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
PERF_EF_START is a flag to indicate to the PMU ->add() callback that, as
well as claiming the PMU resources required by the event being added,
it should also start the PMU.
Passing this flag to the ->start() callback doesn't make sense, because
->start() always tries to start the PMU. Remove it.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: mark.rutland@arm.com
Link: http://lkml.kernel.org/r/1471257765-29662-1-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This effectively reverts commit:
71e7bc2bab ("perf/core: Check return value of the perf_event_read() IPI")
... and puts in a comment explaining why we ignore the return value.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Carrillo-Cisneros <davidcc@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 71e7bc2bab ("perf/core: Check return value of the perf_event_read() IPI")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow attaching BPF_PROG_TYPE_PERF_EVENT programs to sw and hw perf events
via overflow_handler mechanism.
When program is attached the overflow_handlers become stacked.
The program acts as a filter.
Returning zero from the program means that the normal perf_event_output handler
will not be called and sampling event won't be stored in the ring buffer.
The overflow_handler_context==NULL is an additional safety check
to make sure programs are not attached to hw breakpoints and watchdog
in case other checks (that prevent that now anyway) get accidentally
relaxed in the future.
The program refcnt is incremented in case perf_events are inhereted
when target task is forked.
Similar to kprobe and tracepoint programs there is no ioctl to
detach the program or swap already attached program. The user space
expected to close(perf_event_fd) like it does right now for kprobe+bpf.
That restriction simplifies the code quite a bit.
The invocation of overflow_handler in __perf_event_overflow() is now
done via READ_ONCE, since that pointer can be replaced when the program
is attached while perf_event itself could have been active already.
There is no need to do similar treatment for event->prog, since it's
assigned only once before it's accessed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When tearing down an AUX buf for an event via perf_mmap_close(),
__perf_event_output_stop() is called on the event's CPU to ensure that
trace generation is halted before the process of unmapping and
freeing the buffer pages begins.
The callback is performed via cpu_function_call(), which ensures that it
runs with interrupts disabled and is therefore not preemptible.
Unfortunately, the current code grabs the per-cpu context pointer using
get_cpu_ptr(), which unnecessarily disables preemption and doesn't pair
the call with put_cpu_ptr(), leading to a preempt_count() imbalance and
a BUG when freeing the AUX buffer later on:
WARNING: CPU: 1 PID: 2249 at kernel/events/ring_buffer.c:539 __rb_free_aux+0x10c/0x120
Modules linked in:
[...]
Call Trace:
[<ffffffff813379dd>] dump_stack+0x4f/0x72
[<ffffffff81059ff6>] __warn+0xc6/0xe0
[<ffffffff8105a0c8>] warn_slowpath_null+0x18/0x20
[<ffffffff8112761c>] __rb_free_aux+0x10c/0x120
[<ffffffff81128163>] rb_free_aux+0x13/0x20
[<ffffffff8112515e>] perf_mmap_close+0x29e/0x2f0
[<ffffffff8111da30>] ? perf_iterate_ctx+0xe0/0xe0
[<ffffffff8115f685>] remove_vma+0x25/0x60
[<ffffffff81161796>] exit_mmap+0x106/0x140
[<ffffffff8105725c>] mmput+0x1c/0xd0
[<ffffffff8105cac3>] do_exit+0x253/0xbf0
[<ffffffff8105e32e>] do_group_exit+0x3e/0xb0
[<ffffffff81068d49>] get_signal+0x249/0x640
[<ffffffff8101c273>] do_signal+0x23/0x640
[<ffffffff81905f42>] ? _raw_write_unlock_irq+0x12/0x30
[<ffffffff81905f69>] ? _raw_spin_unlock_irq+0x9/0x10
[<ffffffff81901896>] ? __schedule+0x2c6/0x710
[<ffffffff810022a4>] exit_to_usermode_loop+0x74/0x90
[<ffffffff81002a56>] prepare_exit_to_usermode+0x26/0x30
[<ffffffff81906d1b>] retint_user+0x8/0x10
This patch uses this_cpu_ptr() instead of get_cpu_ptr(), since preemption is
already disabled by the caller.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 95ff4ca26c ("perf/core: Free AUX pages in unmap path")
Link: http://lkml.kernel.org/r/20160824091905.GA16944@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce the flag PMU_EV_CAP_READ_ACTIVE_PKG, useful for uncore events,
that allows a PMU to signal the generic perf code that an event is readable
in the current CPU if the event is active in a CPU in the same package as
the current CPU.
This is an optimization that avoids a unnecessary IPI for the common case
where uncore events are run and read in the same package but in
different CPUs.
As an example, the IPI removal speeds up perf_read() in my Haswell system
as follows:
- For event UNC_C_LLC_LOOKUP: From 260 us to 31 us.
- For event RAPL's power/energy-cores/: From to 255 us to 27 us.
For the optimization to work, all events in the group must have it
(similarly to PERF_EV_CAP_SOFTWARE).
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Carrillo-Cisneros <davidcc@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1471467307-61171-4-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, PERF_GROUP_SOFTWARE is used in the group_flags field of a
group's leader to indicate that is_software_event(event) is true for all
events in a group. This is the only usage of event->group_flags.
This pattern of setting a group level flags when all events in the group
share a property is useful for the flag introduced in the next patch and
for future CQM/CMT flags. So this patches generalizes group_flags to work
as an aggregate of event level flags.
PERF_GROUP_SOFTWARE denotes an inmutable event's property. All other flags
that I intend to add are also determinable at event initialization.
To better convey the above, this patch renames event's group_flags to
group_caps and PERF_GROUP_SOFTWARE to PERF_EV_CAP_SOFTWARE.
Individual event flags are stored in the new event->event_caps. Since the
cap flags do not change after event initialization, there is no need to
serialize event_caps. This new field is used when events are added to a
context, similarly to how PERF_GROUP_SOFTWARE and is_software_event()
worked.
Lastly, for consistency, updates is_software_event() to rely in event_cap
instead of the context index.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1471467307-61171-3-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When decoding the perf_regs mask in perf_output_sample_regs(),
we loop through the mask using find_first_bit and find_next_bit functions.
While the exisiting code works fine in most of the case, the logic
is broken for big-endian 32-bit kernels.
When reading a u64 mask using (u32 *)(&val)[0], find_*_bit() assumes
that it gets the lower 32 bits of u64, but instead it gets the upper
32 bits - which is wrong.
The fix is to swap the words of the u64 to handle this case.
This is _not_ a regular endianness swap.
Suggested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yury Norov <ynorov@caviumnetworks.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/1471426568-31051-2-git-send-email-maddy@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The call to smp_call_function_single in perf_event_read() may fail if
an invalid or not online CPU index is passed. Warn user if such bug is
present and return error.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1471467307-61171-2-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At this time the perf_addr_filter_needs_mmap() function will _not_
return true on a user space 'stop' filter. But stop filters need
exactly the same kind of mapping that range and start filters get.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1468860187-318-4-git-send-email-mathieu.poirier@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Function perf_event_mmap() is called by the MM subsystem each time
part of a binary is loaded in memory. There can be several mapping
for a binary, many times unrelated to the code section.
Each time a section of a binary is mapped address filters are
updated, event when the map doesn't pertain to the code section.
The end result is that filters are configured based on the last map
event that was received rather than the last mapping of the code
segment.
For example if we have an executable 'main' that calls library
'libcstest.so.1.0', and that we want to collect traces on code
that is in that library. The perf cmd line for this scenario
would be:
perf record -e cs_etm// --filter 'filter 0x72c/0x40@/opt/lib/libcstest.so.1.0' --per-thread ./main
Resulting in binaries being mapped this way:
root@linaro-nano:~# cat /proc/1950/maps
00400000-00401000 r-xp 00000000 08:02 33169 /home/linaro/main
00410000-00411000 r--p 00000000 08:02 33169 /home/linaro/main
00411000-00412000 rw-p 00001000 08:02 33169 /home/linaro/main
7fa2464000-7fa2474000 rw-p 00000000 00:00 0
7fa2474000-7fa25a4000 r-xp 00000000 08:02 543 /lib/aarch64-linux-gnu/libc-2.21.so
7fa25a4000-7fa25b3000 ---p 00130000 08:02 543 /lib/aarch64-linux-gnu/libc-2.21.so
7fa25b3000-7fa25b7000 r--p 0012f000 08:02 543 /lib/aarch64-linux-gnu/libc-2.21.so
7fa25b7000-7fa25b9000 rw-p 00133000 08:02 543 /lib/aarch64-linux-gnu/libc-2.21.so
7fa25b9000-7fa25bd000 rw-p 00000000 00:00 0
7fa25bd000-7fa25be000 r-xp 00000000 08:02 38308 /opt/lib/libcstest.so.1.0
7fa25be000-7fa25cd000 ---p 00001000 08:02 38308 /opt/lib/libcstest.so.1.0
7fa25cd000-7fa25ce000 r--p 00000000 08:02 38308 /opt/lib/libcstest.so.1.0
7fa25ce000-7fa25cf000 rw-p 00001000 08:02 38308 /opt/lib/libcstest.so.1.0
7fa25cf000-7fa25eb000 r-xp 00000000 08:02 574 /lib/aarch64-linux-gnu/ld-2.21.so
7fa25ef000-7fa25f2000 rw-p 00000000 00:00 0
7fa25f7000-7fa25f9000 rw-p 00000000 00:00 0
7fa25f9000-7fa25fa000 r--p 00000000 00:00 0 [vvar]
7fa25fa000-7fa25fb000 r-xp 00000000 00:00 0 [vdso]
7fa25fb000-7fa25fc000 r--p 0001c000 08:02 574 /lib/aarch64-linux-gnu/ld-2.21.so
7fa25fc000-7fa25fe000 rw-p 0001d000 08:02 574 /lib/aarch64-linux-gnu/ld-2.21.so
7ff2ea8000-7ff2ec9000 rw-p 00000000 00:00 0 [stack]
root@linaro-nano:~#
Before 'main()' can execute 'libcstest.so.1.0' has to be loaded in
memory. Once that has been done perf_event_mmap() has been called
4 times, with the last map starting at address 0x7fa25ce000 and
the address filter configured to start filtering when the
IP has passed over address 0x0x7fa25ce72c (0x7fa25ce000 + 0x72c).
But that is wrong since the code segment for library 'libcstest.so.1.0'
as been mapped at 0x7fa25bd000, resulting in traces not being
collected.
This patch corrects the situation by requesting that address
filters be updated only if the mapped event is for a code
segment.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1468860187-318-3-git-send-email-mathieu.poirier@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Binary file names have to be supplied for both range and start/stop
filters but the current code only processes the filename if an
address range filter is specified. This code adds processing of
the filename for start/stop filters.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1468860187-318-2-git-send-email-mathieu.poirier@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent reported triggering the WARN_ON_ONCE() in event_function_local().
While thinking through cases I noticed that by using event_function()
directly, we miss the inactive case usually handled by
event_function_call().
Therefore construct a blend of event_function_call() and
event_function() that handles the cases relevant to
event_function_local().
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # 4.5+
Fixes: fae3fde651 ("perf: Collapse and fix event_function_call() users")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For perf record -b, which requires the pmu::sched_task callback the
current code is rather expensive:
7.68% sched-pipe [kernel.vmlinux] [k] perf_pmu_sched_task
5.95% sched-pipe [kernel.vmlinux] [k] __switch_to
5.20% sched-pipe [kernel.vmlinux] [k] __intel_pmu_disable_all
3.95% sched-pipe perf [.] worker_thread
The problem is that it will iterate all registered PMUs, most of which
will not have anything to do. Avoid this by keeping an explicit list
of PMUs that have requested the callback.
The perf_sched_cb_{inc,dec}() functions already takes the required pmu
argument, and now that these functions are no longer called from NMI
context we can use them to manage a list.
With this patch applied the function doesn't show up in the top 4
anymore (it dropped to 18th place).
6.67% sched-pipe [kernel.vmlinux] [k] __switch_to
6.18% sched-pipe [kernel.vmlinux] [k] __intel_pmu_disable_all
3.92% sched-pipe [kernel.vmlinux] [k] switch_mm_irqs_off
3.71% sched-pipe perf [.] worker_thread
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to allow optimizing perf_pmu_sched_task() we must ensure
perf_sched_cb_{inc,dec}() are no longer called from NMI context; this
means that pmu::{start,stop}() can no longer use them.
Prepare for this by reworking the whole large PEBS setup code.
The current code relied on the cpuc->pebs_enabled state, however since
that reflects the current active state as per pmu::{start,stop}() we
can no longer rely on this.
Introduce two counters: cpuc->n_pebs and cpuc->n_large_pebs which
count the total number of PEBS events and the number of PEBS events
that have FREERUNNING set, resp.. With this we can tell if the current
setup requires a single record interrupt threshold or can use a larger
buffer.
This also improves the code in that it re-enables the large threshold
once the PEBS event that required single record gets removed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Groups of events are supposed to be scheduled atomically, such that it
is possible to derive meaningful ratios between their values.
We take great pains to achieve this when scheduling event groups to a
PMU in group_sched_in(), calling {start,commit}_txn() (which fall back
to perf_pmu_{disable,enable}() if necessary) to provide this guarantee.
However we don't mirror this in group_sched_out(), and in some cases
events will not be scheduled out atomically.
For example, if we disable an event group with PERF_EVENT_IOC_DISABLE,
we'll cross-call __perf_event_disable() for the group leader, and will
call group_sched_out() without having first disabled the relevant PMU.
We will disable/enable the PMU around each pmu->del() call, but between
each call the PMU will be enabled and events may count.
Avoid this by explicitly disabling and enabling the PMU around event
removal in group_sched_out(), mirroring what we do in group_sched_in().
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1469553141-28314-1-git-send-email-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a perf stat bug easy to observer on a machine with only one cgroup:
$ perf stat -e cycles -I 1000 -C 0 -G /
# time counts unit events
1.000161699 <not counted> cycles /
2.000355591 <not counted> cycles /
3.000565154 <not counted> cycles /
4.000951350 <not counted> cycles /
We'd expect some output there.
The underlying problem is that there is an optimization in
perf_cgroup_sched_{in,out}() that skips the switch of cgroup events
if the old and new cgroups in a task switch are the same.
This optimization interacts with the current code in two ways
that cause a CPU context's cgroup (cpuctx->cgrp) to be NULL even if a
cgroup event matches the current task. These are:
1. On creation of the first cgroup event in a CPU: In current code,
cpuctx->cpu is only set in perf_cgroup_sched_in, but due to the
aforesaid optimization, perf_cgroup_sched_in will run until the next
cgroup switches in that CPU. This may happen late or never happen,
depending on system's number of cgroups, CPU load, etc.
2. On deletion of the last cgroup event in a cpuctx: In list_del_event,
cpuctx->cgrp is set NULL. Any new cgroup event will not be sched in
because cpuctx->cgrp == NULL until a cgroup switch occurs and
perf_cgroup_sched_in is executed (updating cpuctx->cgrp).
This patch fixes both problems by setting cpuctx->cgrp in list_add_event,
mirroring what list_del_event does when removing a cgroup event from CPU
context, as introduced in:
commit 68cacd2916 ("perf_events: Fix stale ->cgrp pointer in update_cgrp_time_from_cpuctx()")
With this patch, cpuctx->cgrp is always set/clear when installing/removing
the first/last cgroup event in/from the CPU context. With cpuctx->cgrp
correctly set, event_filter_match works as intended when events are
sched in/out.
After the fix, the output is as expected:
$ perf stat -e cycles -I 1000 -a -G /
# time counts unit events
1.004699159 627342882 cycles /
2.007397156 615272690 cycles /
3.010019057 616726074 cycles /
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1470124092-113192-1-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vegard Nossum reported that perf fuzzing generates a NULL
pointer dereference crash:
> Digging a bit deeper into this, it seems the event itself is getting
> created by perf_event_open() and it gets added to the pmu_event_list
> through:
>
> perf_event_open()
> - perf_event_alloc()
> - account_event()
> - account_pmu_sb_event()
> - attach_sb_event()
>
> so at this point the event is being attached but its ->ctx is still
> NULL. It seems like ->ctx is set just a bit later in
> perf_event_open(), though.
>
> But before that, __schedule() comes along and creates a stack trace
> similar to the one above:
>
> __schedule()
> - __perf_event_task_sched_out()
> - perf_iterate_sb()
> - perf_iterate_sb_cpu()
> - event_filter_match()
> - perf_cgroup_match()
> - __get_cpu_context()
> - (dereference ctx which is NULL)
>
> So I guess the question is... should the event be attached (= put on
> the list) before ->ctx gets set? Or should the cgroup code check for a
> NULL ->ctx?
The latter seems like the simplest solution. Moving the list-add later
creates a bit of a mess.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Tested-by: Vegard Nossum <vegard.nossum@gmail.com>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Carrillo-Cisneros <davidcc@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f2fb6bef92 ("perf/core: Optimize side-band event delivery")
Link: http://lkml.kernel.org/r/20160804123724.GN6862@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the perf interrupt handler exceeds a threshold warning messages
are displayed on console:
[12739.31793] perf interrupt took too long (2504 > 2500), lowering kernel.perf_event_max_sample_rate to 50000
[71340.165065] perf interrupt took too long (5005 > 5000), lowering kernel.perf_event_max_sample_rate to 25000
Many customers and users are confused by the message wondering if
something is wrong or they need to take action to fix a problem.
Since a user can not do anything to fix the issue, the message is really
more informational than a warning. Adjust the log level accordingly.
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470084569-438-1-git-send-email-dsa@cumulusnetworks.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull smp hotplug updates from Thomas Gleixner:
"This is the next part of the hotplug rework.
- Convert all notifiers with a priority assigned
- Convert all CPU_STARTING/DYING notifiers
The final removal of the STARTING/DYING infrastructure will happen
when the merge window closes.
Another 700 hundred line of unpenetrable maze gone :)"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
timers/core: Correct callback order during CPU hot plug
leds/trigger/cpu: Move from CPU_STARTING to ONLINE level
powerpc/numa: Convert to hotplug state machine
arm/perf: Fix hotplug state machine conversion
irqchip/armada: Avoid unused function warnings
ARC/time: Convert to hotplug state machine
clocksource/atlas7: Convert to hotplug state machine
clocksource/armada-370-xp: Convert to hotplug state machine
clocksource/exynos_mct: Convert to hotplug state machine
clocksource/arm_global_timer: Convert to hotplug state machine
rcu: Convert rcutree to hotplug state machine
KVM/arm/arm64/vgic-new: Convert to hotplug state machine
smp/cfd: Convert core to hotplug state machine
x86/x2apic: Convert to CPU hotplug state machine
profile: Convert to hotplug state machine
timers/core: Convert to hotplug state machine
hrtimer: Convert to hotplug state machine
x86/tboot: Convert to hotplug state machine
arm64/armv8 deprecated: Convert to hotplug state machine
hwtracing/coresight-etm4x: Convert to hotplug state machine
...
Pull networking updates from David Miller:
1) Unified UDP encapsulation offload methods for drivers, from
Alexander Duyck.
2) Make DSA binding more sane, from Andrew Lunn.
3) Support QCA9888 chips in ath10k, from Anilkumar Kolli.
4) Several workqueue usage cleanups, from Bhaktipriya Shridhar.
5) Add XDP (eXpress Data Path), essentially running BPF programs on RX
packets as soon as the device sees them, with the option to mirror
the packet on TX via the same interface. From Brenden Blanco and
others.
6) Allow qdisc/class stats dumps to run lockless, from Eric Dumazet.
7) Add VLAN support to b53 and bcm_sf2, from Florian Fainelli.
8) Simplify netlink conntrack entry layout, from Florian Westphal.
9) Add ipv4 forwarding support to mlxsw spectrum driver, from Ido
Schimmel, Yotam Gigi, and Jiri Pirko.
10) Add SKB array infrastructure and convert tun and macvtap over to it.
From Michael S Tsirkin and Jason Wang.
11) Support qdisc packet injection in pktgen, from John Fastabend.
12) Add neighbour monitoring framework to TIPC, from Jon Paul Maloy.
13) Add NV congestion control support to TCP, from Lawrence Brakmo.
14) Add GSO support to SCTP, from Marcelo Ricardo Leitner.
15) Allow GRO and RPS to function on macsec devices, from Paolo Abeni.
16) Support MPLS over IPV4, from Simon Horman.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
xgene: Fix build warning with ACPI disabled.
be2net: perform temperature query in adapter regardless of its interface state
l2tp: Correctly return -EBADF from pppol2tp_getname.
net/mlx5_core/health: Remove deprecated create_singlethread_workqueue
net: ipmr/ip6mr: update lastuse on entry change
macsec: ensure rx_sa is set when validation is disabled
tipc: dump monitor attributes
tipc: add a function to get the bearer name
tipc: get monitor threshold for the cluster
tipc: make cluster size threshold for monitoring configurable
tipc: introduce constants for tipc address validation
net: neigh: disallow transition to NUD_STALE if lladdr is unchanged in neigh_update()
MAINTAINERS: xgene: Add driver and documentation path
Documentation: dtb: xgene: Add MDIO node
dtb: xgene: Add MDIO node
drivers: net: xgene: ethtool: Use phy_ethtool_gset and sset
drivers: net: xgene: Use exported functions
drivers: net: xgene: Enable MDIO driver
drivers: net: xgene: Add backward compatibility
drivers: net: phy: xgene: Add MDIO driver
...
This patch adds support for non-linear data on raw records. It
extends raw records to have one or multiple fragments that will
be written linearly into the ring slot, where each fragment can
optionally have a custom callback handler to walk and extract
complex, possibly non-linear data.
If a callback handler is provided for a fragment, then the new
__output_custom() will be used instead of __output_copy() for
the perf_output_sample() part. perf_prepare_sample() does all
the size calculation only once, so perf_output_sample() doesn't
need to redo the same work anymore, meaning real_size and padding
will be cached in the raw record. The raw record becomes 32 bytes
in size without holes; to not increase it further and to avoid
doing unnecessary recalculations in fast-path, we can reuse
next pointer of the last fragment, idea here is borrowed from
ZERO_OR_NULL_PTR(), which should keep the perf_output_sample()
path for PERF_SAMPLE_RAW minimal.
This facility is needed for BPF's event output helper as a first
user that will, in a follow-up, add an additional perf_raw_frag
to its perf_raw_record in order to be able to more efficiently
dump skb context after a linear head meta data related to it.
skbs can be non-linear and thus need a custom output function to
dump buffers. Currently, the skb data needs to be copied twice;
with the help of __output_custom() this work only needs to be
done once. Future users could be things like XDP/BPF programs
that work on different context though and would thus also have
a different callback function.
The few users of raw records are adapted to initialize their frag
data from the raw record itself, no change in behavior for them.
The code is based upon a PoC diff provided by Peter Zijlstra [1].
[1] http://thread.gmane.org/gmane.linux.network/421294
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Actually a nice symmetric startup/teardown pair which fits properly into
the state machine concept. In the long run we should be able to invoke
the startup callback for the boot CPU via the state machine and get
rid of the init function which invokes it on the boot CPU.
Note: This comes actually before the perf hardware callbacks. In the notifier
model the hardware callbacks have a higher priority than the core
callback. But that's solely for CPU offline so that hardware migration of
events happens before the core is notified about the outgoing CPU.
With the symetric state array model we have the following ordering:
UP: core -> hardware
DOWN: hardware -> core
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153333.587514098@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
66eb579e66 ("perf: allow for PMU-specific event filtering")
added the pmu::filter_match() callback. This was intended to
avoid HW constraints on events from resulting in extremely
pessimistic scheduling.
However, pmu::filter_match() is only called for the leader of each event
group. When the leader is a SW event, we do not filter the groups, and
may fail at pmu::add() time, and when this happens we'll give up on
scheduling any event groups later in the list until they are rotated
ahead of the failing group.
This can result in extremely sub-optimal event scheduling behaviour,
e.g. if running the following on a big.LITTLE platform:
$ taskset -c 0 ./perf stat \
-e 'a57{context-switches,armv8_cortex_a57/config=0x11/}' \
-e 'a53{context-switches,armv8_cortex_a53/config=0x11/}' \
ls
<not counted> context-switches (0.00%)
<not counted> armv8_cortex_a57/config=0x11/ (0.00%)
24 context-switches (37.36%)
57589154 armv8_cortex_a53/config=0x11/ (37.36%)
Here the 'a53' event group was always eligible to be scheduled, but
the 'a57' group never eligible to be scheduled, as the task was always
affine to a Cortex-A53 CPU. The SW (group leader) event in the 'a57'
group was eligible, but the HW event failed at pmu::add() time,
resulting in ctx_flexible_sched_in giving up on scheduling further
groups with HW events.
One way of avoiding this is to check pmu::filter_match() on siblings
as well as the group leader. If any of these fail their
pmu::filter_match() call, we must skip the entire group before
attempting to add any events.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 66eb579e66 ("perf: allow for PMU-specific event filtering")
Link: http://lkml.kernel.org/r/1465917041-15339-1-git-send-email-mark.rutland@arm.com
[ Small readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jann Horn reported following analysis that could potentially result
in a very hard to trigger (if not impossible) UAF race, to quote his
event timeline:
- Set up a process with threads T1, T2 and T3
- Let T1 set up a socket filter F1 that invokes another filter F2
through a BPF map [tail call]
- Let T1 trigger the socket filter via a unix domain socket write,
don't wait for completion
- Let T2 call PERF_EVENT_IOC_SET_BPF with F2, don't wait for completion
- Now T2 should be behind bpf_prog_get(), but before bpf_prog_put()
- Let T3 close the file descriptor for F2, dropping the reference
count of F2 to 2
- At this point, T1 should have looked up F2 from the map, but not
finished executing it
- Let T3 remove F2 from the BPF map, dropping the reference count of
F2 to 1
- Now T2 should call bpf_prog_put() (wrong BPF program type), dropping
the reference count of F2 to 0 and scheduling bpf_prog_free_deferred()
via schedule_work()
- At this point, the BPF program could be freed
- BPF execution is still running in a freed BPF program
While at PERF_EVENT_IOC_SET_BPF time it's only guaranteed that the perf
event fd we're doing the syscall on doesn't disappear from underneath us
for whole syscall time, it may not be the case for the bpf fd used as
an argument only after we did the put. It needs to be a valid fd pointing
to a BPF program at the time of the call to make the bpf_prog_get() and
while T2 gets preempted, F2 must have dropped reference to 1 on the other
CPU. The fput() from the close() in T3 should also add additionally delay
to the reference drop via exit_task_work() when bpf_prog_release() gets
called as well as scheduling bpf_prog_free_deferred().
That said, it makes nevertheless sense to move the BPF prog destruction
generally after RCU grace period to guarantee that such scenario above,
but also others as recently fixed in ceb5607035 ("bpf, perf: delay release
of BPF prog after grace period") with regards to tail calls won't happen.
Integrating bpf_prog_free_deferred() directly into the RCU callback is
not allowed since the invocation might happen from either softirq or
process context, so we're not permitted to block. Reviewing all bpf_prog_put()
invocations from eBPF side (note, cBPF -> eBPF progs don't use this for
their destruction) with call_rcu() look good to me.
Since we don't know whether at the time of attaching the program, we're
already part of a tail call map, we need to use RCU variant. However, due
to this, there won't be severely more stress on the RCU callback queue:
situations with above bpf_prog_get() and bpf_prog_put() combo in practice
normally won't lead to releases, but even if they would, enough effort/
cycles have to be put into loading a BPF program into the kernel already.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller:
"I've been traveling so this accumulates more than week or so of bug
fixing. It perhaps looks a little worse than it really is.
1) Fix deadlock in ath10k driver, from Ben Greear.
2) Increase scan timeout in iwlwifi, from Luca Coelho.
3) Unbreak STP by properly reinjecting STP packets back into the
stack. Regression fix from Ido Schimmel.
4) Mediatek driver fixes (missing malloc failure checks, leaking of
scratch memory, wrong indexing when mapping TX buffers, etc.) from
John Crispin.
5) Fix endianness bug in icmpv6_err() handler, from Hannes Frederic
Sowa.
6) Fix hashing of flows in UDP in the ruseport case, from Xuemin Su.
7) Fix netlink notifications in ovs for tunnels, delete link messages
are never emitted because of how the device registry state is
handled. From Nicolas Dichtel.
8) Conntrack module leaks kmemcache on unload, from Florian Westphal.
9) Prevent endless jump loops in nft rules, from Liping Zhang and
Pablo Neira Ayuso.
10) Not early enough spinlock initialization in mlx4, from Eric
Dumazet.
11) Bind refcount leak in act_ipt, from Cong WANG.
12) Missing RCU locking in HTB scheduler, from Florian Westphal.
13) Several small MACSEC bug fixes from Sabrina Dubroca (missing RCU
barrier, using heap for SG and IV, and erroneous use of async flag
when allocating AEAD conext.)
14) RCU handling fix in TIPC, from Ying Xue.
15) Pass correct protocol down into ipv4_{update_pmtu,redirect}() in
SIT driver, from Simon Horman.
16) Socket timer deadlock fix in TIPC from Jon Paul Maloy.
17) Fix potential deadlock in team enslave, from Ido Schimmel.
18) Memory leak in KCM procfs handling, from Jiri Slaby.
19) ESN generation fix in ipv4 ESP, from Herbert Xu.
20) Fix GFP_KERNEL allocations with locks held in act_ife, from Cong
WANG.
21) Use after free in netem, from Eric Dumazet.
22) Uninitialized last assert time in multicast router code, from Tom
Goff.
23) Skip raw sockets in sock_diag destruction broadcast, from Willem
de Bruijn.
24) Fix link status reporting in thunderx, from Sunil Goutham.
25) Limit resegmentation of retransmit queue so that we do not
retransmit too large GSO frames. From Eric Dumazet.
26) Delay bpf program release after grace period, from Daniel
Borkmann"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (141 commits)
openvswitch: fix conntrack netlink event delivery
qed: Protect the doorbell BAR with the write barriers.
neigh: Explicitly declare RCU-bh read side critical section in neigh_xmit()
e1000e: keep VLAN interfaces functional after rxvlan off
cfg80211: fix proto in ieee80211_data_to_8023 for frames without LLC header
qlcnic: use the correct ring in qlcnic_83xx_process_rcv_ring_diag()
bpf, perf: delay release of BPF prog after grace period
net: bridge: fix vlan stats continue counter
tcp: do not send too big packets at retransmit time
ibmvnic: fix to use list_for_each_safe() when delete items
net: thunderx: Fix TL4 configuration for secondary Qsets
net: thunderx: Fix link status reporting
net/mlx5e: Reorganize ethtool statistics
net/mlx5e: Fix number of PFC counters reported to ethtool
net/mlx5e: Prevent adding the same vxlan port
net/mlx5e: Check for BlueFlame capability before allocating SQ uar
net/mlx5e: Change enum to better reflect usage
net/mlx5: Add ConnectX-5 PCIe 4.0 to list of supported devices
net/mlx5: Update command strings
net: marvell: Add separate config ANEG function for Marvell 88E1111
...
Commit dead9f29dd ("perf: Fix race in BPF program unregister") moved
destruction of BPF program from free_event_rcu() callback to __free_event(),
which is problematic if used with tail calls: if prog A is attached as
trace event directly, but at the same time present in a tail call map used
by another trace event program elsewhere, then we need to delay destruction
via RCU grace period since it can still be in use by the program doing the
tail call (the prog first needs to be dropped from the tail call map, then
trace event with prog A attached destroyed, so we get immediate destruction).
Fixes: dead9f29dd ("perf: Fix race in BPF program unregister")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Jann Horn <jann@thejh.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull perf fixes from Ingo Molnar:
"A handful of tooling fixes, two PMU driver fixes and a cleanup of
redundant code that addresses a security analyzer false positive"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Remove a redundant check
perf/x86/intel/uncore: Remove SBOX support for Broadwell server
perf ctf: Convert invalid chars in a string before set value
perf record: Fix crash when kptr is restricted
perf symbols: Check kptr_restrict for root
perf/x86/intel/rapl: Fix pmus free during cleanup
There is no way to end up in _free_event() with event::pmu being NULL.
The latter is initialized in event allocation path and remains set
forever. In case of allocation failure, the error path doesn't use
_free_event().
Having the check, however, suggests that it is possible to have a
event::pmu==NULL situation in _free_event() and confuses the robots.
This patch gets rid of the check.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1465303455-26032-1-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
unaccount_pmu_sb_event() did not check for attributes in event->attr
before calling detach_sb_event(), while account_pmu_event() did.
This caused NULL pointer reference in cgroup events that did not
have any of the attributes checked by account_pmu_event().
To trigger the bug just wait for a cgroup event to terminate, e.g.:
$ mkdir /dev/cgroup/devices/test
$ perf stat -e cycles -a -G test sleep 0
... see crash ...
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zheng <zheng.z.yan@intel.com>
Link: http://lkml.kernel.org/r/1464809585-66072-1-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the return code for sampling event not supported from -ENOTSUPP
to -EOPNOTSUPP.
This allows userspace to identify this case specifically, instead of
printing the catch-all error message it did previously.
Technically this is an ABI change, but we think we can get away
with it.
Old behavior:
-------
| # perf record ls
| Error:
| The sys_perf_event_open() syscall returned with 524 (Unknown error 524)
| for event (cycles:ppp).
| /bin/dmesg may provide additional information.
| No CONFIG_PERF_EVENTS=y kernel support configured?
New behavior:
-------
| # perf record ls
| Error:
| PMU Hardware doesn't support sampling/overflow-interrupts.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <acme@redhat.com>
Cc: <linux-snps-arc@lists.infradead.org>
Cc: <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Link: http://lkml.kernel.org/r/1462786660-2900-3-git-send-email-vgupta@synopsys.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch fixes an issue which was introduced by commit:
91a612eea9 ("perf/core: Fix dynamic interrupt throttle")
... which commit unconditionally sets the perf_sample_allowed_ns value
to !0. But that could trigger a bug in the following corner case:
The user can disable the dynamic interrupt throttle mechanism by setting
perf_cpu_time_max_percent to 0. Then they change perf_event_max_sample_rate.
For this case, the mechanism will be enabled implicitly, because
perf_sample_allowed_ns becomes !0 - which is not what we want.
This patch only updates perf_sample_allowed_ns when the dynamic
interrupt throttle mechanism is enabled.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1462260366-3160-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are now two different things called AUX in perf, the
infrastructure to deliver the mmap/comm/task records and the
AUX part in the mmap buffer (with associated AUX_RECORD).
Since the former is internal, rename it to side-band to reduce
the confusion factor.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The perf_event_aux() function iterates all PMUs and all events in
their respective per-CPU contexts to find the events to deliver
side-band records to.
For example, the brk test case in lkp triggers many mmap() operations,
which, if we're also running perf, results in many perf_event_aux()
invocations.
If we enable uncore PMU support (even when uncore events are not used),
dozens of uncore PMUs will be iterated, which can significantly
decrease brk_test's throughput.
For example, the brk throughput:
without uncore PMUs: 2647573 ops_per_sec
with uncore PMUs: 1768444 ops_per_sec
... a 33% reduction.
To get at the per-CPU events that need side-band records, this patch
puts these events on a per-CPU list, this avoids iterating the PMUs
and any events that do not need side-band records.
Per task events are unchanged to avoid extra overhead on the context
switch paths.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: Huang, Ying <ying.huang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1458757477-3781-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Additionally to being able to control the system wide maximum depth via
/proc/sys/kernel/perf_event_max_stack, now we are able to ask for
different depths per event, using perf_event_attr.sample_max_stack for
that.
This uses an u16 hole at the end of perf_event_attr, that, when
perf_event_attr.sample_type has the PERF_SAMPLE_CALLCHAIN, if
sample_max_stack is zero, means use perf_event_max_stack, otherwise
it'll be bounds checked under callchain_mutex.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull networking updates from David Miller:
"Highlights:
1) Support SPI based w5100 devices, from Akinobu Mita.
2) Partial Segmentation Offload, from Alexander Duyck.
3) Add GMAC4 support to stmmac driver, from Alexandre TORGUE.
4) Allow cls_flower stats offload, from Amir Vadai.
5) Implement bpf blinding, from Daniel Borkmann.
6) Optimize _ASYNC_ bit twiddling on sockets, unless the socket is
actually using FASYNC these atomics are superfluous. From Eric
Dumazet.
7) Run TCP more preemptibly, also from Eric Dumazet.
8) Support LED blinking, EEPROM dumps, and rxvlan offloading in mlx5e
driver, from Gal Pressman.
9) Allow creating ppp devices via rtnetlink, from Guillaume Nault.
10) Improve BPF usage documentation, from Jesper Dangaard Brouer.
11) Support tunneling offloads in qed, from Manish Chopra.
12) aRFS offloading in mlx5e, from Maor Gottlieb.
13) Add RFS and RPS support to SCTP protocol, from Marcelo Ricardo
Leitner.
14) Add MSG_EOR support to TCP, this allows controlling packet
coalescing on application record boundaries for more accurate
socket timestamp sampling. From Martin KaFai Lau.
15) Fix alignment of 64-bit netlink attributes across the board, from
Nicolas Dichtel.
16) Per-vlan stats in bridging, from Nikolay Aleksandrov.
17) Several conversions of drivers to ethtool ksettings, from Philippe
Reynes.
18) Checksum neutral ILA in ipv6, from Tom Herbert.
19) Factorize all of the various marvell dsa drivers into one, from
Vivien Didelot
20) Add VF support to qed driver, from Yuval Mintz"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1649 commits)
Revert "phy dp83867: Fix compilation with CONFIG_OF_MDIO=m"
Revert "phy dp83867: Make rgmii parameters optional"
r8169: default to 64-bit DMA on recent PCIe chips
phy dp83867: Make rgmii parameters optional
phy dp83867: Fix compilation with CONFIG_OF_MDIO=m
bpf: arm64: remove callee-save registers use for tmp registers
asix: Fix offset calculation in asix_rx_fixup() causing slow transmissions
switchdev: pass pointer to fib_info instead of copy
net_sched: close another race condition in tcf_mirred_release()
tipc: fix nametable publication field in nl compat
drivers: net: Don't print unpopulated net_device name
qed: add support for dcbx.
ravb: Add missing free_irq() calls to ravb_close()
qed: Remove a stray tab
net: ethernet: fec-mpc52xx: use phy_ethtool_{get|set}_link_ksettings
net: ethernet: fec-mpc52xx: use phydev from struct net_device
bpf, doc: fix typo on bpf_asm descriptions
stmmac: hardware TX COE doesn't work when force_thresh_dma_mode is set
net: ethernet: fs-enet: use phy_ethtool_{get|set}_link_ksettings
net: ethernet: fs-enet: use phydev from struct net_device
...
The nf_conntrack_core.c fix in 'net' is not relevant in 'net-next'
because we no longer have a per-netns conntrack hash.
The ip_gre.c conflict as well as the iwlwifi ones were cases of
overlapping changes.
Conflicts:
drivers/net/wireless/intel/iwlwifi/mvm/tx.c
net/ipv4/ip_gre.c
net/netfilter/nf_conntrack_core.c
Signed-off-by: David S. Miller <davem@davemloft.net>
Allowing unprivileged kernel profiling lets any user dump follow kernel
control flow and dump kernel registers. This most likely allows trivial
kASLR bypassing, and it may allow other mischief as well. (Off the top
of my head, the PERF_SAMPLE_REGS_INTR output during /dev/urandom reads
could be quite interesting.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit:
2665784850 ("perf/core: Verify we have a single perf_hw_context PMU")
forcefully prevents multiple PMUs from sharing perf_hw_context, as this
generally doesn't make sense. It is a common bug for uncore PMUs to
use perf_hw_context rather than perf_invalid_context, which this detects.
However, systems exist with heterogeneous CPUs (and hence heterogeneous
HW PMUs), for which sharing perf_hw_context is necessary, and possible
in some limited cases.
To make this work we have to perform some gymnastics, as we did in these
commits:
66eb579e66 ("perf: allow for PMU-specific event filtering")
c904e32a69 ("arm: perf: filter unschedulable events")
To allow those systems to work, we must allow PMUs for heterogeneous
CPUs to share perf_hw_context, though we must still disallow sharing
otherwise to detect the common misuse of perf_hw_context.
This patch adds a new PERF_PMU_CAP_HETEROGENEOUS_CPUS for this, updates
the core logic to account for this, and makes use of it in the arm_pmu
code that is used for systems with heterogeneous CPUs. Comments are
added to make the rationale clear and hopefully avoid accidental abuse.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20160426103346.GA20836@leverpostej
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export an additional common attribute for PMUs that support address range
filtering to let the perf userspace identify such PMUs in a uniform way.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1461771888-10409-8-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many instruction tracing PMUs out there support address range-based
filtering, which would, for example, generate trace data only for a
given range of instruction addresses, which is useful for tracing
individual functions, modules or libraries. Other PMUs may also
utilize this functionality to allow filtering to or filtering out
code at certain address ranges.
This patch introduces the interface for userspace to specify these
filters and for the PMU drivers to apply these filters to hardware
configuration.
The user interface is an ASCII string that is passed via an ioctl()
and specifies (in the form of an ASCII string) address ranges within
certain object files or within kernel. There is no special treatment
for kernel modules yet, but it might be a worthy pursuit.
The PMU driver interface basically adds two extra callbacks to the
PMU driver structure, one of which validates the filter configuration
proposed by the user against what the hardware is actually capable of
doing and the other one translates hardware-independent filter
configuration into something that can be programmed into the
hardware.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1461771888-10409-6-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Trace filtering code needs an iterator that can go through all events in
a context, including inactive and filtered, to be able to update their
filters' address ranges based on mmap or exec events.
This patch changes perf_event_aux_ctx() to optionally do this.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1461771888-10409-5-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For instruction trace filtering, namely, for communicating filter
definitions from userspace, I'd like to re-use the SET_FILTER code
that the tracepoints are using currently.
To that end, move the relevant code out from behind the
CONFIG_EVENT_TRACING dependency.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1461771888-10409-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
net/ipv4/ip_gre.c
Minor conflicts between tunnel bug fixes in net and
ipv6 tunnel cleanups in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
Jann reported that the ptrace_may_access() check in
find_lively_task_by_vpid() is racy against exec().
Specifically:
perf_event_open() execve()
ptrace_may_access()
commit_creds()
... if (get_dumpable() != SUID_DUMP_USER)
perf_event_exit_task();
perf_install_in_context()
would result in installing a counter across the creds boundary.
Fix this by wrapping lots of perf_event_open() in cred_guard_mutex.
This should be fine as perf_event_exit_task() is already called with
cred_guard_mutex held, so all perf locks already nest inside it.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch introduces 'write_backward' bit to perf_event_attr, which
controls the direction of a ring buffer. After set, the corresponding
ring buffer is written from end to beginning. This feature is design to
support reading from overwritable ring buffer.
Ring buffer can be created by mapping a perf event fd. Kernel puts event
records into ring buffer, user tooling like perf fetch them from
address returned by mmap(). To prevent racing between kernel and tooling,
they communicate to each other through 'head' and 'tail' pointers.
Kernel maintains 'head' pointer, points it to the next free area (tail
of the last record). Tooling maintains 'tail' pointer, points it to the
tail of last consumed record (record has already been fetched). Kernel
determines the available space in a ring buffer using these two
pointers to avoid overwrite unfetched records.
By mapping without 'PROT_WRITE', an overwritable ring buffer is created.
Different from normal ring buffer, tooling is unable to maintain 'tail'
pointer because writing is forbidden. Therefore, for this type of ring
buffers, kernel overwrite old records unconditionally, works like flight
recorder. This feature would be useful if reading from overwritable ring
buffer were as easy as reading from normal ring buffer. However,
there's an obscure problem.
The following figure demonstrates a full overwritable ring buffer. In
this figure, the 'head' pointer points to the end of last record, and a
long record 'E' is pending. For a normal ring buffer, a 'tail' pointer
would have pointed to position (X), so kernel knows there's no more
space in the ring buffer. However, for an overwritable ring buffer,
kernel ignore the 'tail' pointer.
(X) head
. |
. V
+------+-------+----------+------+---+
|A....A|B.....B|C........C|D....D| |
+------+-------+----------+------+---+
Record 'A' is overwritten by event 'E':
head
|
V
+--+---+-------+----------+------+---+
|.E|..A|B.....B|C........C|D....D|E..|
+--+---+-------+----------+------+---+
Now tooling decides to read from this ring buffer. However, none of these
two natural positions, 'head' and the start of this ring buffer, are
pointing to the head of a record. Even the full ring buffer can be
accessed by tooling, it is unable to find a position to start decoding.
The first attempt tries to solve this problem AFAIK can be found from
[1]. It makes kernel to maintain 'tail' pointer: updates it when ring
buffer is half full. However, this approach introduces overhead to
fast path. Test result shows a 1% overhead [2]. In addition, this method
utilizes no more tham 50% records.
Another attempt can be found from [3], which allows putting the size of
an event at the end of each record. This approach allows tooling to find
records in a backward manner from 'head' pointer by reading size of a
record from its tail. However, because of alignment requirement, it
needs 8 bytes to record the size of a record, which is a huge waste. Its
performance is also not good, because more data need to be written.
This approach also introduces some extra branch instructions to fast
path.
'write_backward' is a better solution to this problem.
Following figure demonstrates the state of the overwritable ring buffer
when 'write_backward' is set before overwriting:
head
|
V
+---+------+----------+-------+------+
| |D....D|C........C|B.....B|A....A|
+---+------+----------+-------+------+
and after overwriting:
head
|
V
+---+------+----------+-------+---+--+
|..E|D....D|C........C|B.....B|A..|E.|
+---+------+----------+-------+---+--+
In each situation, 'head' points to the beginning of the newest record.
From this record, tooling can iterate over the full ring buffer and fetch
records one by one.
The only limitation that needs to be considered is back-to-back reading.
Due to the non-deterministic of user programs, it is impossible to ensure
the ring buffer keeps stable during reading. Consider an extreme situation:
tooling is scheduled out after reading record 'D', then a burst of events
come, eat up the whole ring buffer (one or multiple rounds). When the
tooling process comes back, reading after 'D' is incorrect now.
To prevent this problem, we need to find a way to ensure the ring buffer
is stable during reading. ioctl(PERF_EVENT_IOC_PAUSE_OUTPUT) is
suggested because its overhead is lower than
ioctl(PERF_EVENT_IOC_ENABLE).
By carefully verifying 'header' pointer, reader can avoid pausing the
ring-buffer. For example:
/* A union of all possible events */
union perf_event event;
p = head = perf_mmap__read_head();
while (true) {
/* copy header of next event */
fetch(&event.header, p, sizeof(event.header));
/* read 'head' pointer */
head = perf_mmap__read_head();
/* check overwritten: is the header good? */
if (!verify(sizeof(event.header), p, head))
break;
/* copy the whole event */
fetch(&event, p, event.header.size);
/* read 'head' pointer again */
head = perf_mmap__read_head();
/* is the whole event good? */
if (!verify(event.header.size, p, head))
break;
p += event.header.size;
}
However, the overhead is high because:
a) In-place decoding is not safe.
Copying-verifying-decoding is required.
b) Fetching 'head' pointer requires additional synchronization.
(From Alexei Starovoitov:
Even when this trick works, pause is needed for more than stability of
reading. When we collect the events into overwrite buffer we're waiting
for some other trigger (like all cpu utilization spike or just one cpu
running and all others are idle) and when it happens the buffer has
valuable info from the past. At this point new events are no longer
interesting and buffer should be paused, events read and unpaused until
next trigger comes.)
This patch utilizes event's default overflow_handler introduced
previously. perf_event_output_backward() is created as the default
overflow handler for backward ring buffers. To avoid extra overhead to
fast path, original perf_event_output() becomes __perf_event_output()
and marked '__always_inline'. In theory, there's no extra overhead
introduced to fast path.
Performance testing:
Calling 3000000 times of 'close(-1)', use gettimeofday() to check
duration. Use 'perf record -o /dev/null -e raw_syscalls:*' to capture
system calls. In ns.
Testing environment:
CPU : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
Kernel : v4.5.0
MEAN STDVAR
BASE 800214.950 2853.083
PRE1 2253846.700 9997.014
PRE2 2257495.540 8516.293
POST 2250896.100 8933.921
Where 'BASE' is pure performance without capturing. 'PRE1' is test
result of pure 'v4.5.0' kernel. 'PRE2' is test result before this
patch. 'POST' is test result after this patch. See [4] for the detailed
experimental setup.
Considering the stdvar, this patch doesn't introduce performance
overhead to the fast path.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1304.1/04584.html
[2] http://lkml.iu.edu/hypermail/linux/kernel/1307.1/00535.html
[3] http://lkml.iu.edu/hypermail/linux/kernel/1512.0/01265.html
[4] http://lkml.kernel.org/g/56F89DCD.1040202@huawei.com
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: <acme@kernel.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459865478-53413-1-git-send-email-wangnan0@huawei.com
[ Fixed the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Markus reported that 0 should also disable the throttling we per
Documentation/sysctl/kernel.txt.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 91a612eea9 ("perf/core: Fix dynamic interrupt throttle")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
move trace_call_bpf() into helper function to minimize the size
of perf_trace_*() tracepoint handlers.
text data bss dec hex filename
10541679 5526646 2945024 19013349 1221ee5 vmlinux_before
10509422 5526646 2945024 18981092 121a0e4 vmlinux_after
It may seem that perf_fetch_caller_regs() can also be moved,
but that is incorrect, since ip/sp will be wrong.
bpf+tracepoint performance is not affected, since
perf_swevent_put_recursion_context() is now inlined.
export_symbol_gpl can also be dropped.
No measurable change in normal perf tracepoints.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
during bpf program loading remember the last byte of ctx access
and at the time of attaching the program to tracepoint check that
the program doesn't access bytes beyond defined in tracepoint fields
This also disallows access to __dynamic_array fields, but can be
relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_TYPE_TRACEPOINT program type and allow it to be attached
to the perf tracepoint handler, which will copy the arguments into
the per-cpu buffer and pass it to the bpf program as its first argument.
The layout of the fields can be discovered by doing
'cat /sys/kernel/debug/tracing/events/sched/sched_switch/format'
prior to the compilation of the program with exception that first 8 bytes
are reserved and not accessible to the program. This area is used to store
the pointer to 'struct pt_regs' which some of the bpf helpers will use:
+---------+
| 8 bytes | hidden 'struct pt_regs *' (inaccessible to bpf program)
+---------+
| N bytes | static tracepoint fields defined in tracepoint/format (bpf readonly)
+---------+
| dynamic | __dynamic_array bytes of tracepoint (inaccessible to bpf yet)
+---------+
Not that all of the fields are already dumped to user space via perf ring buffer
and broken application access it directly without consulting tracepoint/format.
Same rule applies here: static tracepoint fields should only be accessed
in a format defined in tracepoint/format. The order of fields and
field sizes are not an ABI.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
split allows to move expensive update of 'struct trace_entry' to later phase.
Repurpose unused 1st argument of perf_tp_event() to indicate event type.
While splitting use temp variable 'rctx' instead of '*rctx' to avoid
unnecessary loads done by the compiler due to -fno-strict-aliasing
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Set a default event->overflow_handler in perf_event_alloc() so don't
need to check event->overflow_handler in __perf_event_overflow().
Following commits can give a different default overflow_handler.
Initial idea comes from Peter:
http://lkml.kernel.org/r/20130708121557.GA17211@twins.programming.kicks-ass.net
Since the default value of event->overflow_handler is not NULL, existing
'if (!overflow_handler)' checks need to be changed.
is_default_overflow_handler() is introduced for this.
No extra performance overhead is introduced into the hot path because in the
original code we still need to read this handler from memory. A conditional
branch is avoided so actually we remove some instructions.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-3-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add new ioctl() to pause/resume ring-buffer output.
In some situations we want to read from the ring-buffer only when we
ensure nothing can write to the ring-buffer during reading. Without
this patch we have to turn off all events attached to this ring-buffer
to achieve this.
This patch is a prerequisite to enable overwrite support for the
perf ring-buffer support. Following commits will introduce new methods
support reading from overwrite ring buffer. Before reading, caller
must ensure the ring buffer is frozen, or the reading is unreliable.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-2-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we can ensure that when ring buffer's AUX area is on the way
to getting unmapped new transactions won't start, we only need to stop
all events that can potentially be writing aux data to our ring buffer.
Having done that, we can safely free the AUX pages and corresponding
PMU data, as this time it is guaranteed to be the last aux reference
holder.
This partially reverts:
57ffc5ca67 ("perf: Fix AUX buffer refcounting")
... which was made to defer deallocation that was otherwise possible
from an NMI context. Now it is no longer the case; the last call to
rb_free_aux() that drops the last AUX reference has to happen in
perf_mmap_close() on that AUX area.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/87d1qtz23d.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There should (and can) only be a single PMU for perf_hw_context
events.
This is because of how we schedule events: once a hardware event fails to
schedule (the PMU is 'full') we stop trying to add more. The trivial
'fix' would break the Round-Robin scheduling we do.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the error path, event_file not being NULL is used to determine
whether the event itself still needs to be free'd, so fix it up to
avoid leaking.
Reported-by: Leon Yu <chianglungyu@gmail.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 130056275a ("perf: Do not double free")
Link: http://lkml.kernel.org/r/87twk06yxp.fsf@ashishki-desk.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephane reported that commit:
3cbaa59069 ("perf: Fix ctx time tracking by introducing EVENT_TIME")
introduced a regression wrt. time tracking, as easily observed by:
> This patch introduce a bug in the time tracking of events when
> multiplexing is used.
>
> The issue is easily reproducible with the following perf run:
>
> $ perf stat -a -C 0 -e branches,branches,branches,branches,branches,branches -I 1000
> 1.000730239 652,394 branches (66.41%)
> 1.000730239 597,809 branches (66.41%)
> 1.000730239 593,870 branches (66.63%)
> 1.000730239 651,440 branches (67.03%)
> 1.000730239 656,725 branches (66.96%)
> 1.000730239 <not counted> branches
>
> One branches event is shown as not having run. Yet, with
> multiplexing, all events should run especially with a 1s (-I 1000)
> interval. The delta for time_running comes out to 0. Yet, the event
> has run because the kernel is actually multiplexing the events. The
> problem is that the time tracking is the kernel and especially in
> ctx_sched_out() is wrong now.
>
> The problem is that in case that the kernel enters ctx_sched_out() with the
> following state:
> ctx->is_active=0x7 event_type=0x1
> Call Trace:
> [<ffffffff813ddd41>] dump_stack+0x63/0x82
> [<ffffffff81182bdc>] ctx_sched_out+0x2bc/0x2d0
> [<ffffffff81183896>] perf_mux_hrtimer_handler+0xf6/0x2c0
> [<ffffffff811837a0>] ? __perf_install_in_context+0x130/0x130
> [<ffffffff810f5818>] __hrtimer_run_queues+0xf8/0x2f0
> [<ffffffff810f6097>] hrtimer_interrupt+0xb7/0x1d0
> [<ffffffff810509a8>] local_apic_timer_interrupt+0x38/0x60
> [<ffffffff8175ca9d>] smp_apic_timer_interrupt+0x3d/0x50
> [<ffffffff8175ac7c>] apic_timer_interrupt+0x8c/0xa0
>
> In that case, the test:
> if (is_active & EVENT_TIME)
>
> will be false and the time will not be updated. Time must always be updated on
> sched out.
Fix this by always updating time if EVENT_TIME was set, as opposed to
only updating time when EVENT_TIME changed.
Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Fixes: 3cbaa59069 ("perf: Fix ctx time tracking by introducing EVENT_TIME")
Link: http://lkml.kernel.org/r/20160329072644.GB3408@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were two problems with the dynamic interrupt throttle mechanism,
both triggered by the same action.
When you (or perf_fuzzer) write a huge value into
/proc/sys/kernel/perf_event_max_sample_rate the computed
perf_sample_allowed_ns becomes 0. This effectively disables the whole
dynamic throttle.
This is fixed by ensuring update_perf_cpu_limits() never sets the
value to 0. However, we allow disabling of the dynamic throttle by
writing 100 to /proc/sys/kernel/perf_cpu_time_max_percent. This will
generate a warning in dmesg.
The second problem is that by setting the max_sample_rate to a huge
number, the adaptive process can take a few tries, since it halfs the
limit each time. Change that to directly compute a new value based on
the observed duration.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its possible to IOC_PERIOD while the event is throttled, this would
re-start the event and the next tick would then try to unthrottle it,
and find the event wasn't actually stopped anymore.
This would tickle a WARN in the x86-pmu code which isn't expecting to
start a !stopped event.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dvyukov@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160310143924.GR6356@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull NOHZ updates from Ingo Molnar:
"NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors
the NOHZ 'can the tick be stopped?' infrastructure and related code to
be data driven, and harmonizes the naming and handling of all the
various properties"
[ This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it.
I'm pulling it, but I've asked Ingo and Frederic to get this
fixed up ]
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched-clock: Migrate to use new tick dependency mask model
posix-cpu-timers: Migrate to use new tick dependency mask model
sched: Migrate sched to use new tick dependency mask model
sched: Account rr tasks
perf: Migrate perf to use new tick dependency mask model
nohz: Use enum code for tick stop failure tracing message
nohz: New tick dependency mask
nohz: Implement wide kick on top of irq work
atomic: Export fetch_or()
Pull nohz enhancements from Frederic Weisbecker:
"Currently in nohz full configs, the tick dependency is checked
asynchronously by nohz code from interrupt and context switch for each
concerned subsystem with a set of function provided by these. Such
functions are made of many conditions and details that can be heavyweight
as they are called on fastpath: sched_can_stop_tick(),
posix_cpu_timer_can_stop_tick(), perf_event_can_stop_tick()...
Thomas suggested a few months ago to make that tick dependency check
synchronous. Instead of checking subsystems details from each interrupt
to guess if the tick can be stopped, every subsystem that may have a tick
dependency should set itself a flag specifying the state of that
dependency. This way we can verify if we can stop the tick with a single
lightweight mask check on fast path.
This conversion from a pull to a push model to implement tick dependency
is the core feature of this patchset that is split into:
* Nohz wide kick simplification
* Improve nohz tracing
* Introduce tick dependency mask
* Migrate scheduler, posix timers, perf events and sched clock tick
dependencies to the tick dependency mask."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The error path in perf_event_open() is such that asking for a sampling
event on a PMU that doesn't generate interrupts will end up in dropping
the perf_sched_count even though it hasn't been incremented for this
event yet.
Given a sufficient amount of these calls, we'll end up disabling
scheduler's jump label even though we'd still have active events in the
system, thereby facilitating the arrival of the infernal regions upon us.
I'm fixing this by moving account_event() inside perf_event_alloc().
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/1456917854-29427-1-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of providing asynchronous checks for the nohz subsystem to verify
perf event tick dependency, migrate perf to the new mask.
Perf needs the tick for two situations:
1) Freq events. We could set the tick dependency when those are
installed on a CPU context. But setting a global dependency on top of
the global freq events accounting is much easier. If people want that
to be optimized, we can still refine that on the per-CPU tick dependency
level. This patch dooesn't change the current behaviour anyway.
2) Throttled events: this is a per-cpu dependency.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Since there is no serialization between task_function_call() doing
task_curr() and the other CPU doing context switches, we could end
up not sending an IPI even if we had to.
And I'm not sure I still buy my own argument we're OK.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.340031200@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Completely reworks perf_install_in_context() (again!) in order to
ensure that there will be no ctx time hole between add_event_to_ctx()
and any potential ctx_sched_in().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.279399438@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The recent commit 3e349507d1 ("perf: Fix perf_enable_on_exec() event
scheduling") caused this by moving task_ctx_sched_out() from before
__perf_event_mask_enable() to after it.
The overlooked consequence of that change is that task_ctx_sched_out()
would update the ctx time fields, and now __perf_event_mask_enable()
uses stale time.
In order to fix this, explicitly stop our context's time before
enabling the event(s).
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Fixes: 3e349507d1 ("perf: Fix perf_enable_on_exec() event scheduling")
Link: http://lkml.kernel.org/r/20160224174948.159242158@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently any ctx_sched_in() call will re-start the ctx time tracking,
this means that calls like:
ctx_sched_in(.event_type = EVENT_PINNED);
ctx_sched_in(.event_type = EVENT_FLEXIBLE);
will have a hole in their ctx time tracking. This is likely harmless
but can confuse things a little. By adding EVENT_TIME, we can have the
first ctx_sched_in() (is_active: 0 -> !0) start the time and any
further ctx_sched_in() will leave the timestamps alone.
Secondly, this allows for an early disable like:
ctx_sched_out(.event_type = EVENT_TIME);
which would update the ctx time (if the ctx is active) and any further
calls to ctx_sched_out() would not further modify the ctx time.
For ctx_sched_in() any 0 -> !0 transition will automatically include
EVENT_TIME.
For ctx_sched_out(), any transition that clears EVENT_ALL will
automatically clear EVENT_TIME.
These two rules ensure that under normal circumstances we need not
bother with EVENT_TIME and get natural ctx time behaviour.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.100446561@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because event_sched_out() checks event->pending_disable _before_
actually disabling the event, it can happen that the event fires after
it checks but before it gets disabled.
This would leave event->pending_disable set and the queued irq_work
will try and process it.
However, if the event trigger was during schedule(), the event might
have been de-scheduled by the time the irq_work runs, and
perf_event_disable_local() will fail.
Fix this by checking event->pending_disable _after_ we call
event->pmu->del(). This depends on the latter being a compiler
barrier, such that the compiler does not lift the load and re-creates
the problem.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174948.040469884@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
perf_install_in_context() relies upon the context switch hooks to have
scheduled in events when the IPI misses its target -- after all, if
the task has moved from the CPU (or wasn't running at all), it will
have to context switch to run elsewhere.
This however doesn't appear to be happening.
It is possible for the IPI to not happen (task wasn't running) only to
later observe the task running with an inactive context.
The only possible explanation is that the context switch hooks are not
called. Therefore put in a sync_sched() after toggling the jump_label
to guarantee all CPUs will have them enabled before we install an
event.
A simple if (0->1) sync_sched() will not in fact work, because any
further increment can race and complete before the sync_sched().
Therefore we must jump through some hoops.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.980211985@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Alexander reported that when the 'original' context gets destroyed, no
new clones happen.
This can happen irrespective of the ctx switch optimization, any task
can die, even the parent, and we want to continue monitoring the task
hierarchy until we either close the event or no tasks are left in the
hierarchy.
perf_event_init_context() will attempt to pin the 'parent' context
during clone(). At that point current is the parent, and since current
cannot have exited while executing clone(), its context cannot have
passed through perf_event_exit_task_context(). Therefore
perf_pin_task_context() cannot observe ctx->task == TASK_TOMBSTONE.
However, since inherit_event() does:
if (parent_event->parent)
parent_event = parent_event->parent;
it looks at the 'original' event when it does: is_orphaned_event().
This can return true if the context that contains the this event has
passed through perf_event_exit_task_context(). And thus we'll fail to
clone the perf context.
Fix this by adding a new state: STATE_DEAD, which is set by
perf_release() to indicate that the filedesc (or kernel reference) is
dead and there are no observers for our data left.
Only for STATE_DEAD will is_orphaned_event() be true and inhibit
cloning.
STATE_EXIT is otherwise preserved such that is_event_hup() remains
functional and will report when the observed task hierarchy becomes
empty.
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Fixes: c6e5b73242 ("perf: Synchronously clean up child events")
Link: http://lkml.kernel.org/r/20160224174947.919845295@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the err_file: fput(event_file) case, the event will not yet have
been attached to a context. However perf_release() does assume it has
been. Cure this.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.793996260@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case of: err_file: fput(event_file), we'll end up calling
perf_release() which in turn will free the event.
Do not then free the event _again_.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.697350349@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Consider the following scenario:
CPU0 CPU1
ctx = find_get_ctx();
perf_event_exit_task_context()
mutex_lock(&ctx->mutex);
perf_install_in_context(ctx, ...);
/* NO-OP */
mutex_unlock(&ctx->mutex);
...
perf_release()
WARN_ON_ONCE(event->state != STATE_EXIT);
Since the event doesn't pass through perf_remove_from_context()
because perf_install_in_context() NO-OPs because the ctx is dead, and
perf_event_exit_task_context() will not observe the event because its
not attached yet, the event->state will not be set.
Solve this by revalidating ctx->task after we acquire ctx->mutex and
failing the event creation as a whole.
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160224174947.626853419@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If CPU_UP_PREPARE is called it is not guaranteed, that a previously allocated
and assigned hash has been freed already, but perf_event_init_cpu()
unconditionally allocates and assignes a new hash if the swhash is referenced.
By overwriting the pointer the existing hash is not longer accessible.
Verify that there is no hash assigned on this cpu before allocating and
assigning a new one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20160209201007.843269966@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If CPU_DOWN_PREPARE fails the perf hotplug notifier is called for
CPU_DOWN_FAILED and calls perf_event_init_cpu(), which checks whether the
swhash is referenced. If yes it allocates a new hash and stores the pointer in
the per cpu data structure.
But at this point the cpu is still online, so there must be a valid hash
already. By overwriting the pointer the existing hash is not longer
accessible.
Remove the CPU_DOWN_FAILED state, as there is nothing to (re)allocate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20160209201007.763417379@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If CPU_UP_PREPARE fails the perf hotplug code calls perf_event_exit_cpu(),
which is a pointless exercise. The cpu is not online, so the smp function
calls return -ENXIO. So the result is a list walk to call noops.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20160209201007.682184765@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Thomas Gleixner:
"This is much bigger than typical fixes, but Peter found a category of
races that spurred more fixes and more debugging enhancements. Work
started before the merge window, but got finished only now.
Aside of that this contains the usual small fixes to perf and tools.
Nothing particular exciting"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
perf: Remove/simplify lockdep annotation
perf: Synchronously clean up child events
perf: Untangle 'owner' confusion
perf: Add flags argument to perf_remove_from_context()
perf: Clean up sync_child_event()
perf: Robustify event->owner usage and SMP ordering
perf: Fix STATE_EXIT usage
perf: Update locking order
perf: Remove __free_event()
perf/bpf: Convert perf_event_array to use struct file
perf: Fix NULL deref
perf/x86: De-obfuscate code
perf/x86: Fix uninitialized value usage
perf: Fix race in perf_event_exit_task_context()
perf: Fix orphan hole
perf stat: Do not clean event's private stats
perf hists: Fix HISTC_MEM_DCACHELINE width setting
perf annotate browser: Fix behaviour of Shift-Tab with nothing focussed
perf tests: Remove wrong semicolon in while loop in CQM test
perf: Synchronously free aux pages in case of allocation failure
...
Now that the perf_event_ctx_lock_nested() call has moved from
put_event() into perf_event_release_kernel() the first reason is no
longer valid as that can no longer happen.
The second reason seems to have been invalidated when Al Viro made fput()
unconditionally async in the following commit:
4a9d4b024a ("switch fput to task_work_add")
such that munmap()->fput()->release()->perf_release() would no longer happen.
Therefore, remove the annotation. This should increase the efficiency
of lockdep coverage of perf locking.
Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The orphan cleanup workqueue doesn't always catch orphans, for example,
if they never schedule after they are orphaned. IOW, the event leak is
still very real. It also wouldn't work for kernel counters.
Doing it synchonously is a little hairy due to lock inversion issues,
but is made to work.
Patch based on work by Alexander Shishkin.
Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two concepts of owner wrt an event and they are conflated:
- event::owner / event::owner_list,
used by prctl(.option = PR_TASK_PERF_EVENTS_{EN,DIS}ABLE).
- the 'owner' of the event object, typically the file descriptor.
Currently these two concepts are conflated, which gives trouble with
scm_rights passing of file descriptors. Passing the event and then
closing the creating task would render the event 'orphan' and would
have it cleared out. Unlikely what is expectd.
This patch untangles these two concepts by using PERF_EVENT_STATE_EXIT
to denote the second type.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation to adding more options, convert the boolean argument
into a flags word.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sync_child_event() has outgrown its purpose, it does far too much.
Bring it back to its named purpose.
Rename __perf_event_exit_task() to perf_event_exit_event() to better
reflect what it does and move the event->state assignment under the
ctx->lock, like state changes ought to be.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use smp_store_release() to clear event->owner and
lockless_dereference() to observe it. Further use READ_ONCE() for all
lockless reads.
This changes perf_remove_from_owner() to leave event->owner cleared.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We should never attempt to enable a STATE_EXIT event.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is but a single caller, remove the function - we already have
_free_event(), the extra indirection is nonsensical..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a race between perf_event_exit_task_context() and
orphans_remove_work() which results in a use-after-free.
We mark ctx->task with TASK_TOMBSTONE to indicate a context is
'dead', under ctx->lock. After which point event_function_call()
on any event of that context will NOP
A concurrent orphans_remove_work() will only hold ctx->mutex for
the list iteration and not serialize against this. Therefore its
possible that orphans_remove_work()'s perf_remove_from_context()
call will fail, but we'll continue to free the event, with the
result of free'd memory still being on lists and everything.
Once perf_event_exit_task_context() gets around to acquiring
ctx->mutex it too will iterate the event list, encounter the
already free'd event and proceed to free it _again_. This fails
with the WARN in free_event().
Plug the race by having perf_event_exit_task_context() hold
ctx::mutex over the whole tear-down, thereby 'naturally'
serializing against all other sites, including the orphan work.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: alexander.shishkin@linux.intel.com
Cc: dsahern@gmail.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/20160125130954.GY6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We should set event->owner before we install the event,
otherwise there is a hole where the target task can fork() and
we'll not inherit the event because it thinks the event is
orphaned.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There is a race against perf_event_exit_task() vs
event_function_call(),find_get_context(),perf_install_in_context()
(iow, everyone).
Since there is no permanent marker on a context that its dead, it is
quite possible that we access (and even modify) a context after its
passed through perf_event_exit_task().
For instance, find_get_context() might find the context still
installed, but by the time we get to perf_install_in_context() it
might already have passed through perf_event_exit_task() and be
considered dead, we will however still add the event to it.
Solve this by marking a ctx dead by setting its ctx->task value to -1,
it must be !0 so we still know its a (former) task context.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is one common bug left in all the event_function_call() users,
between loading ctx->task and getting to the remote_function(),
ctx->task can already have been changed.
Therefore we need to double check and retry if ctx->task != current.
Insert another trampoline specific to event_function_call() that
checks for this and further validates state. This also allows getting
rid of the active/inactive functions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The perf_remove_from_context() usage in __perf_event_exit_task() is
different from the other usages in that this site has already
detached and scheduled out the task context.
This will stand in the way of stronger assertions checking the (task)
context scheduling invariants.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>