Add the parisc version of the "mark rodata section read only" patches.
Based on code from and Signed-off-by Arjan van de Ven
<arjan@infradead.org>, Ingo Molnar <mingo@elte.hu>, Andi Kleen <ak@muc.de>,
Andrew Morton <akpm@osdl.org>, Linus Torvalds <torvalds@osdl.org>.
Signed-off-by: Helge Deller <deller@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Drop the unused do_check_pgt_cache routine from mm/init.c and its
prototype in asm/pgalloc.h
Signed-off-by: Helge Deller <deller@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Make flush_tlb_all_local take a void * so it doesn't have to be cast
when using on_each_cpu(). This becomes a problem when on_each_cpu
is a macro.
Also remove the prototype of flush_tlb_all_local from .c files.
Signed-off-by: Matthew Wilcox <willy@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
max_low_pfn was not being set in arch/parisc/mm/init.c, causing severe
problems whenever anything tried to use BLK_BOUNCE_HIGH. Set it to
max_pfn like other similar architectures do.
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Fixup ioremap a bit. It seems to work on 32-bit kernels, but fails
miserably on the first ioremapped access on 64-bit kernels. Also, having
STI enabled causes it to fail. Probably because we're passing an ioremapped
region to a real-mode STI call...
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Make flush_data_cache_local, flush_instruction_cache_local and
flush_tlb_all_local take a void * so they don't have to be cast
when using on_each_cpu(). This becomes a problem when on_each_cpu
is a macro (as it is in current -mm).
Also move the prototype of flush_tlb_all_local into tlbflush.h and
remove its declaration from .c files.
Signed-off-by: Matthew Wilcox <willy@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Flag a whole bunch of things as __read_mostly on parisc. Also flag a few
branches as unlikely() and cleanup a bit of code.
Signed-off-by: Helge Deller <deller@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
pgdat->node_size_lock is basically only neeeded in one place in the normal
code: show_mem(), which is the arch-specific sysrq-m printing function.
Strictly speaking, the architectures not doing memory hotplug do no need this
locking in show_mem(). However, they are all included for completeness. This
should also make any future consolidation of all of the implementations a
little more straightforward.
This lock is also held in the sparsemem code during a memory removal, as
sections are invalidated. This is the place there pfn_valid() is made false
for a memory area that's being removed. The lock is only required when doing
pfn_valid() operations on memory which the user does not already have a
reference on the page, such as in show_mem().
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
First step in pushing down the page_table_lock. init_mm.page_table_lock has
been used throughout the architectures (usually for ioremap): not to serialize
kernel address space allocation (that's usually vmlist_lock), but because
pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it.
Reverse that: don't lock or unlock init_mm.page_table_lock in any of the
architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take
and drop it when allocating a new one, to check lest a racing task already
did. Similarly no page_table_lock in vmalloc's map_vm_area.
Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle
user mms, which are converted only by a later patch, for now they have to lock
differently according to whether or not it's init_mm.
If sources get muddled, there's a danger that an arch source taking
init_mm.page_table_lock will be mixed with common source also taking it (or
neither take it). So break the rules and make another change, which should
break the build for such a mismatch: remove the redundant mm arg from
pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13).
Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64
used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to
pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64
map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free
took page_table_lock for no good reason.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!