Revert the pass-good area introduced in ffd1f609ab ("writeback:
introduce max-pause and pass-good dirty limits") and make the max-pause
area smaller and safe.
This fixes ~30% performance regression in the ext3 data=writeback
fio_mmap_randwrite_64k/fio_mmap_randrw_64k test cases, where there are
12 JBOD disks, on each disk runs 8 concurrent tasks doing reads+writes.
Using deadline scheduler also has a regression, but not that big as CFQ,
so this suggests we have some write starvation.
The test logs show that
- the disks are sometimes under utilized
- global dirty pages sometimes rush high to the pass-good area for
several hundred seconds, while in the mean time some bdi dirty pages
drop to very low value (bdi_dirty << bdi_thresh). Then suddenly the
global dirty pages dropped under global dirty threshold and bdi_dirty
rush very high (for example, 2 times higher than bdi_thresh). During
which time balance_dirty_pages() is not called at all.
So the problems are
1) The random writes progress so slow that they break the assumption of
the max-pause logic that "8 pages per 200ms is typically more than
enough to curb heavy dirtiers".
2) The max-pause logic ignored task_bdi_thresh and thus opens the possibility
for some bdi's to over dirty pages, leading to (bdi_dirty >> bdi_thresh)
and then (bdi_thresh >> bdi_dirty) for others.
3) The higher max-pause/pass-good thresholds somehow leads to the bad
swing of dirty pages.
The fix is to allow the task to slightly dirty over task_bdi_thresh, but
no way to exceed bdi_dirty and/or global dirty_thresh.
Tests show that it fixed the JBOD regression completely (both behavior
and performance), while still being able to cut down large pause times
in balance_dirty_pages() for single-disk cases.
Reported-by: Li Shaohua <shaohua.li@intel.com>
Tested-by: Li Shaohua <shaohua.li@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
NR_WRITTEN is now accounted at block IO enqueue time, which is not very
accurate as to common understanding. This moves NR_WRITTEN accounting to
the IO completion time and makes it more consistent with BDI_WRITTEN,
which is used for bandwidth estimation.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
radix_tree_tagged() is lockless - it reads from a member of the raid-tree
root node. It does not require any protection.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We set bdi->dirty_exceeded (and thus ratelimiting code starts to
call balance_dirty_pages() every 8 pages) when a per-bdi limit is
exceeded or global limit is exceeded. But per-bdi limit also depends
on the task. Thus different tasks reach the limit on that bdi at
different levels of dirty pages. The result is that with current code
bdi->dirty_exceeded ping-ponged between 1 and 0 depending on which task
just got into balance_dirty_pages().
We fix the issue by clearing bdi->dirty_exceeded only when per-bdi amount
of dirty pages drops below the threshold (7/8 * bdi_dirty_limit) where task
limits already do not have any influence.
Impact: The end result is, the dirty pages are kept more tightly under
control, with the average number slightly lowered than before. This
reduces the risk to throttle light dirtiers and hence more responsive.
However it may add overheads by enforcing balance_dirty_pages() calls
on every 8 pages when there are 2+ heavy dirtiers.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Christoph Hellwig <hch@infradead.org>
CC: Dave Chinner <david@fromorbit.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Add trace event balance_dirty_state for showing the global dirty page
counts and thresholds at each global_dirty_limits() invocation. This
will cover the callers throttle_vm_writeout(), over_bground_thresh()
and each balance_dirty_pages() loop.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The max-pause limit helps to keep the sleep time inside
balance_dirty_pages() within MAX_PAUSE=200ms. The 200ms max sleep means
per task rate limit of 8pages/200ms=160KB/s when dirty exceeded, which
normally is enough to stop dirtiers from continue pushing the dirty
pages high, unless there are a sufficient large number of slow dirtiers
(eg. 500 tasks doing 160KB/s will still sum up to 80MB/s, exceeding the
write bandwidth of a slow disk and hence accumulating more and more dirty
pages).
The pass-good limit helps to let go of the good bdi's in the presence of
a blocked bdi (ie. NFS server not responding) or slow USB disk which for
some reason build up a large number of initial dirty pages that refuse
to go away anytime soon.
For example, given two bdi's A and B and the initial state
bdi_thresh_A = dirty_thresh / 2
bdi_thresh_B = dirty_thresh / 2
bdi_dirty_A = dirty_thresh / 2
bdi_dirty_B = dirty_thresh / 2
Then A get blocked, after a dozen seconds
bdi_thresh_A = 0
bdi_thresh_B = dirty_thresh
bdi_dirty_A = dirty_thresh / 2
bdi_dirty_B = dirty_thresh / 2
The (bdi_dirty_B < bdi_thresh_B) test is now useless and the dirty pages
will be effectively throttled by condition (nr_dirty < dirty_thresh).
This has two problems:
(1) we lose the protections for light dirtiers
(2) balance_dirty_pages() effectively becomes IO-less because the
(bdi_nr_reclaimable > bdi_thresh) test won't be true. This is good
for IO, but balance_dirty_pages() loses an important way to break
out of the loop which leads to more spread out throttle delays.
DIRTY_PASSGOOD_AREA can eliminate the above issues. The only problem is,
DIRTY_PASSGOOD_AREA needs to be defined as 2 to fully cover the above
example while this patch uses the more conservative value 8 so as not to
surprise people with too many dirty pages than expected.
The max-pause limit won't noticeably impact the speed dirty pages are
knocked down when there is a sudden drop of global/bdi dirty thresholds.
Because the heavy dirties will be throttled below 160KB/s which is slow
enough. It does help to avoid long dirty throttle delays and especially
will make light dirtiers more responsive.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The start of a heavy weight application (ie. KVM) may instantly knock
down determine_dirtyable_memory() if the swap is not enabled or full.
global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi
dirty thresholds that are _much_ lower than the global/bdi dirty pages.
balance_dirty_pages() will then heavily throttle all dirtiers including
the light ones, until the dirty pages drop below the new dirty thresholds.
During this _deep_ dirty-exceeded state, the system may appear rather
unresponsive to the users.
About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty
threshold to heavy dirtiers than light ones, and the dirty pages will
be throttled around the heavy dirtiers' dirty threshold and reasonably
below the light dirtiers' dirty threshold. In this state, only the heavy
dirtiers will be throttled and the dirty pages are carefully controlled
to not exceed the light dirtiers' dirty threshold. However if the
threshold itself suddenly drops below the number of dirty pages, the
light dirtiers will get heavily throttled.
So introduce global_dirty_limit for tracking the global dirty threshold
with policies
- follow downwards slowly
- follow up in one shot
global_dirty_limit can effectively mask out the impact of sudden drop of
dirtyable memory. It will be used in the next patch for two new type of
dirty limits. Note that the new dirty limits are not going to avoid
throttling the light dirtiers, but could limit their sleep time to 200ms.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce
nr_dirty = NR_FILE_DIRTY + NR_WRITEBACK + NR_UNSTABLE_NFS
in order to simplify many tests in the following patches.
balance_dirty_pages() will eventually care only about the dirty sums
besides nr_writeback.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The estimation value will start from 100MB/s and adapt to the real
bandwidth in seconds.
It tries to update the bandwidth only when disk is fully utilized.
Any inactive period of more than one second will be skipped.
The estimated bandwidth will be reflecting how fast the device can
writeout when _fully utilized_, and won't drop to 0 when it goes idle.
The value will remain constant at disk idle time. At busy write time, if
not considering fluctuations, it will also remain high unless be knocked
down by possible concurrent reads that compete for the disk time and
bandwidth with async writes.
The estimation is not done purely in the flusher because there is no
guarantee for write_cache_pages() to return timely to update bandwidth.
The bdi->avg_write_bandwidth smoothing is very effective for filtering
out sudden spikes, however may be a little biased in long term.
The overheads are low because the bdi bandwidth update only occurs at
200ms intervals.
The 200ms update interval is suitable, because it's not possible to get
the real bandwidth for the instance at all, due to large fluctuations.
The NFS commits can be as large as seconds worth of data. One XFS
completion may be as large as half second worth of data if we are going
to increase the write chunk to half second worth of data. In ext4,
fluctuations with time period of around 5 seconds is observed. And there
is another pattern of irregular periods of up to 20 seconds on SSD tests.
That's why we are not only doing the estimation at 200ms intervals, but
also averaging them over a period of 3 seconds and then go further to do
another level of smoothing in avg_write_bandwidth.
CC: Li Shaohua <shaohua.li@intel.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce the BDI_WRITTEN counter. It will be used for estimating the
bdi's write bandwidth.
Peter Zijlstra <a.p.zijlstra@chello.nl>:
Move BDI_WRITTEN accounting into __bdi_writeout_inc().
This will cover and fix fuse, which only calls bdi_writeout_inc().
CC: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This helps prevent tmpfs dirtiers from skewing the per-cpu bdp_ratelimits.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This avoids unnecessary checks and dirty throttling on tmpfs/ramfs.
Notes about the tmpfs/ramfs behavior changes:
As for 2.6.36 and older kernels, the tmpfs writes will sleep inside
balance_dirty_pages() as long as we are over the (dirty+background)/2
global throttle threshold. This is because both the dirty pages and
threshold will be 0 for tmpfs/ramfs. Hence this test will always
evaluate to TRUE:
dirty_exceeded =
(bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
|| (nr_reclaimable + nr_writeback >= dirty_thresh);
For 2.6.37, someone complained that the current logic does not allow the
users to set vm.dirty_ratio=0. So commit 4cbec4c8b9 changed the test to
dirty_exceeded =
(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
|| (nr_reclaimable + nr_writeback > dirty_thresh);
So 2.6.37 will behave differently for tmpfs/ramfs: it will never get
throttled unless the global dirty threshold is exceeded (which is very
unlikely to happen; once happen, will block many tasks).
I'd say that the 2.6.36 behavior is very bad for tmpfs/ramfs. It means
for a busy writing server, tmpfs write()s may get livelocked! The
"inadvertent" throttling can hardly bring help to any workload because
of its "either no throttling, or get throttled to death" property.
So based on 2.6.37, this patch won't bring more noticeable changes.
CC: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Clarify the bdi_dirty_limit() comment.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
sync(2) is performed in two stages: the WB_SYNC_NONE sync and the
WB_SYNC_ALL sync. Identify the first stage with .tagged_writepages and
do livelock prevention for it, too.
Jan's commit f446daaea9 ("mm: implement writeback livelock avoidance
using page tagging") is a partial fix in that it only fixed the
WB_SYNC_ALL phase livelock.
Although ext4 is tested to no longer livelock with commit f446daaea9,
it may due to some "redirty_tail() after pages_skipped" effect which
is by no means a guarantee for _all_ the file systems.
Note that writeback_inodes_sb() is called by not only sync(), they are
treated the same because the other callers also need livelock prevention.
Impact: It changes the order in which pages/inodes are synced to disk.
Now in the WB_SYNC_NONE stage, it won't proceed to write the next inode
until finished with the current inode.
Acked-by: Jan Kara <jack@suse.cz>
CC: Dave Chinner <david@fromorbit.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits)
Documentation/iostats.txt: bit-size reference etc.
cfq-iosched: removing unnecessary think time checking
cfq-iosched: Don't clear queue stats when preempt.
blk-throttle: Reset group slice when limits are changed
blk-cgroup: Only give unaccounted_time under debug
cfq-iosched: Don't set active queue in preempt
block: fix non-atomic access to genhd inflight structures
block: attempt to merge with existing requests on plug flush
block: NULL dereference on error path in __blkdev_get()
cfq-iosched: Don't update group weights when on service tree
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
block: Require subsystems to explicitly allocate bio_set integrity mempool
jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
fs: make fsync_buffers_list() plug
mm: make generic_writepages() use plugging
blk-cgroup: Add unaccounted time to timeslice_used.
block: fixup plugging stubs for !CONFIG_BLOCK
block: remove obsolete comments for blkdev_issue_zeroout.
blktrace: Use rq->cmd_flags directly in blk_add_trace_rq.
...
Fix up conflicts in fs/{aio.c,super.c}
For range-cyclic writeback (e.g. kupdate), the writeback code sets a
continuation point of the next writeback to mapping->writeback_index which
is set the page after the last written page. This happens so that we
evenly write the whole file even if pages in it get continuously
redirtied.
However, in some cases, sequential writer is writing in the middle of the
page and it just redirties the last written page by continuing from that.
For example with an application which uses a file as a big ring buffer we
see:
[1st writeback session]
...
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898514 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898522 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898530 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898538 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898546 + 8
kworker/0:1-11 4571: block_rq_issue: 8,0 W 0 () 94898514 + 40
>> flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4571: block_rq_issue: 8,0 W 0 () 94898554 + 8
[2nd writeback session after 35sec]
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898562 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898570 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898578 + 8
...
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94898562 + 640
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899202 + 72
...
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899962 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899970 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899978 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899986 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899994 + 8
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899962 + 40
>> flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4606: block_rq_issue: 8,0 W 0 () 94898554 + 8
So we seeked back to 94898554 after we wrote all the pages at the end of
the file.
This extra seek seems unnecessary. If we continue writeback from the last
written page, we can avoid it and do not cause harm to other cases. The
original intent of even writeout over the whole file is preserved and if
the page does not get redirtied pagevec_lookup_tag() just skips it.
As an exceptional case, when I/O error happens, set done_index to the next
page as the comment in the code suggests.
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
invalidate_mapping_pages is very big hint to reclaimer. It means user
doesn't want to use the page any more. So in order to prevent working set
page eviction, this patch move the page into tail of inactive list by
PG_reclaim.
Please, remember that pages in inactive list are working set as well as
active list. If we don't move pages into inactive list's tail, pages near
by tail of inactive list can be evicted although we have a big clue about
useless pages. It's totally bad.
Now PG_readahead/PG_reclaim is shared. fe3cba17 added ClearPageReclaim
into clear_page_dirty_for_io for preventing fast reclaiming readahead
marker page.
In this series, PG_reclaim is used by invalidated page, too. If VM find
the page is invalidated and it's dirty, it sets PG_reclaim to reclaim
asap. Then, when the dirty page will be writeback,
clear_page_dirty_for_io will clear PG_reclaim unconditionally. It
disturbs this serie's goal.
I think it's okay to clear PG_readahead when the page is dirty, not
writeback time. So this patch moves ClearPageReadahead. In v4,
ClearPageReadahead in set_page_dirty has a problem which is reported by
Steven Barrett. It's due to compound page. Some driver(ex, audio) calls
set_page_dirty with compound page which isn't on LRU. but my patch does
ClearPageRelcaim on compound page. In non-CONFIG_PAGEFLAGS_EXTENDED, it
breaks PageTail flag.
I think it doesn't affect THP and pass my test with THP enabling but Cced
Andrea for double check.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Steven Barrett <damentz@liquorix.net>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
I think determine_dirtyable_memory() is a rather costly function since it
need many atomic reads for gathering zone/global page state. But when we
use vm_dirty_bytes && dirty_background_bytes, we don't need that costly
calculation.
This patch eliminates such unnecessary overhead.
NOTE : newly added if condition might add overhead in normal path.
But it should be _really_ small because anyway we need the
access both vm_dirty_bytes and dirty_background_bytes so it is
likely to hit the cache.
[akpm@linux-foundation.org: fix used-uninitialised warning]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__set_page_dirty_no_writeback() should return true if it actually
transitioned the page from a clean to dirty state although it seems nobody
uses its return value at present.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using TASK_INTERRUPTIBLE in balance_dirty_pages() seems wrong. If it's
going to do that then it must break out if signal_pending(), otherwise
it's pretty much guaranteed to degenerate into a busywait loop. Plus we
*do* want these processes to appear in D state and to contribute to load
average.
So it should be TASK_UNINTERRUPTIBLE. -- Andrew Morton
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dirty_ratio was silently limited in global_dirty_limits() to >= 5%.
This is not a user expected behavior. And it's inconsistent with
calc_period_shift(), which uses the plain vm_dirty_ratio value.
Let's remove the internal bound.
At the same time, fix balance_dirty_pages() to work with the
dirty_thresh=0 case. This allows applications to proceed when
dirty+writeback pages are all cleaned.
And ">" fits with the name "exceeded" better than ">=" does. Neil thinks
it is an aesthetic improvement as well as a functional one :)
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Proposed-by: Con Kolivas <kernel@kolivas.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Neil Brown <neilb@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour adding two entries to vm_stat_items and /proc/vmstat. This will
allow us to track the "written" and "dirtied" counts.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour this patch adds two counters to /proc/vmstat.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
These entries allow user apps to understand writeback behaviour over time
and learn how it is impacting their performance. Currently there is no
way to inspect dirty and writeback speed over time. It's not possible for
nr_dirty/nr_writeback.
These entries are necessary to give visibility into writeback behaviour.
We have /proc/diskstats which lets us understand the io in the block
layer. We have blktrace for more in depth understanding. We have
e2fsprogs and debugsfs to give insight into the file systems behaviour,
but we don't offer our users the ability understand what writeback is
doing. There is no way to know how active it is over the whole system, if
it's falling behind or to quantify it's efforts. With these values
exported users can easily see how much data applications are sending
through writeback and also at what rates writeback is processing this
data. Comparing the rates of change between the two allow developers to
see when writeback is not able to keep up with incoming traffic and the
rate of dirty memory being sent to the IO back end. This allows folks to
understand their io workloads and track kernel issues. Non kernel
engineers at Google often use these counters to solve puzzling performance
problems.
Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written
Patch #5 add writeback thresholds to /proc/vmstat
Currently these values are in debugfs. But they should be promoted to
/proc since they are useful for developers who are writing databases
and file servers and are not debugging the kernel.
The output is as below:
# grep threshold /proc/vmstat
nr_pages_dirty_threshold 409111
nr_pages_dirty_background_threshold 818223
This patch:
This allows code outside of the mm core to safely manipulate page
writeback state and not worry about the other accounting. Not using these
routines means that some code will lose track of the accounting and we get
bugs.
Modify nilfs2 to use interface.
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Jiro SEKIBA <jir@unicus.jp>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client:
ceph: fix get_ticket_handler() error handling
ceph: don't BUG on ENOMEM during mds reconnect
ceph: ceph_mdsc_build_path() returns an ERR_PTR
ceph: Fix warnings
ceph: ceph_get_inode() returns an ERR_PTR
ceph: initialize fields on new dentry_infos
ceph: maintain i_head_snapc when any caps are dirty, not just for data
ceph: fix osd request lru adjustment when sending request
ceph: don't improperly set dir complete when holding EXCL cap
mm: exporting account_page_dirty
ceph: direct requests in snapped namespace based on nonsnap parent
ceph: queue cap snap writeback for realm children on snap update
ceph: include dirty xattrs state in snapped caps
ceph: fix xattr cap writeback
ceph: fix multiple mds session shutdown
I noticed XFS writeback in 2.6.36-rc1 was much slower than it should have
been. Enabling writeback tracing showed:
flush-253:16-8516 [007] 1342952.351608: wbc_writepage: bdi 253:16: towrt=1024 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [007] 1342952.351654: wbc_writepage: bdi 253:16: towrt=1023 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369520: wbc_writepage: bdi 253:16: towrt=0 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369542: wbc_writepage: bdi 253:16: towrt=-1 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369549: wbc_writepage: bdi 253:16: towrt=-2 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
Writeback is not terminating in background writeback if ->writepage is
returning with wbc->nr_to_write == 0, resulting in sub-optimal single page
writeback on XFS.
Fix the write_cache_pages loop to terminate correctly when this situation
occurs and so prevent this sub-optimal background writeback pattern. This
improves sustained sequential buffered write performance from around
250MB/s to 750MB/s for a 100GB file on an XFS filesystem on my 8p test VM.
Cc:<stable@kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This allows code outside of the mm core to safely manipulate page state
and not worry about the other accounting. Not using these routines means
that some code will lose track of the accounting and we get bugs. This
has happened once already.
Signed-off-by: Michael Rubin <mrubin@google.com>
Signed-off-by: Sage Weil <sage@newdream.net>
When radix_tree_maxindex() is ~0UL, it can happen that scanning overflows
index and tree traversal code goes astray reading memory until it hits
unreadable memory. Check for overflow and exit in that case.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove leading /** from non-kernel-doc function comments to prevent
kernel-doc warnings.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split get_dirty_limits() into global_dirty_limits()+bdi_dirty_limit(), so
that the latter can be avoided when under global dirty background
threshold (which is the normal state for most systems).
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reducing the number of times balance_dirty_pages calls global_page_state
reduces the cache references and so improves write performance on a
variety of workloads.
'perf stats' of simple fio write tests shows the reduction in cache
access. Where the test is fio 'write,mmap,600Mb,pre_read' on AMD AthlonX2
with 3Gb memory (dirty_threshold approx 600 Mb) running each test 10
times, dropping the fasted & slowest values then taking the average &
standard deviation
average (s.d.) in millions (10^6)
2.6.31-rc8 648.6 (14.6)
+patch 620.1 (16.5)
Achieving this reduction is by dropping clip_bdi_dirty_limit as it rereads
the counters to apply the dirty_threshold and moving this check up into
balance_dirty_pages where it has already read the counters.
Also by rearrange the for loop to only contain one copy of the limit tests
allows the pdflush test after the loop to use the local copies of the
counters rather than rereading them.
In the common case with no throttling it now calls global_page_state 5
fewer times and bdi_stat 2 fewer.
Fengguang:
This patch slightly changes behavior by replacing clip_bdi_dirty_limit()
with the explicit check (nr_reclaimable + nr_writeback >= dirty_thresh) to
avoid exceeding the dirty limit. Since the bdi dirty limit is mostly
accurate we don't need to do routinely clip. A simple dirty limit check
would be enough.
The check is necessary because, in principle we should throttle everything
calling balance_dirty_pages() when we're over the total limit, as said by
Peter.
We now set and clear dirty_exceeded not only based on bdi dirty limits,
but also on the global dirty limit. The global limit check is added in
place of clip_bdi_dirty_limit() for safety and not intended as a behavior
change. The bdi limits should be tight enough to keep all dirty pages
under the global limit at most time; occasional small exceeding should be
OK though. The change makes the logic more obvious: the global limit is
the ultimate goal and shall be always imposed.
We may now start background writeback work based on outdated conditions.
That's safe because the bdi flush thread will (and have to) double check
the states. It reduces overall overheads because the test based on old
states still have good chance to be right.
[akpm@linux-foundation.org] fix uninitialized dirty_exceeded
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a fatal kernel-doc error due to a #define coming between a function's
kernel-doc notation and the function signature. (kernel-doc cannot handle
this)
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.36' of git://git.kernel.dk/linux-2.6-block: (149 commits)
block: make sure that REQ_* types are seen even with CONFIG_BLOCK=n
xen-blkfront: fix missing out label
blkdev: fix blkdev_issue_zeroout return value
block: update request stacking methods to support discards
block: fix missing export of blk_types.h
writeback: fix bad _bh spinlock nesting
drbd: revert "delay probes", feature is being re-implemented differently
drbd: Initialize all members of sync_conf to their defaults [Bugz 315]
drbd: Disable delay probes for the upcomming release
writeback: cleanup bdi_register
writeback: add new tracepoints
writeback: remove unnecessary init_timer call
writeback: optimize periodic bdi thread wakeups
writeback: prevent unnecessary bdi threads wakeups
writeback: move bdi threads exiting logic to the forker thread
writeback: restructure bdi forker loop a little
writeback: move last_active to bdi
writeback: do not remove bdi from bdi_list
writeback: simplify bdi code a little
writeback: do not lose wake-ups in bdi threads
...
Fixed up pretty trivial conflicts in drivers/block/virtio_blk.c and
drivers/scsi/scsi_error.c as per Jens.
We try to avoid livelocks of writeback when some steadily creates dirty
pages in a mapping we are writing out. For memory-cleaning writeback,
using nr_to_write works reasonably well but we cannot really use it for
data integrity writeback. This patch tries to solve the problem.
The idea is simple: Tag all pages that should be written back with a
special tag (TOWRITE) in the radix tree. This can be done rather quickly
and thus livelocks should not happen in practice. Then we start doing the
hard work of locking pages and sending them to disk only for those pages
that have TOWRITE tag set.
Note: Adding new radix tree tag grows radix tree node from 288 to 296
bytes for 32-bit archs and from 552 to 560 bytes for 64-bit archs.
However, the number of slab/slub items per page remains the same (13 and 7
respectively).
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a trace event to the ->writepage loop in write_cache_pages to give
visibility into how the ->writepage call is changing variables within the
writeback control structure. Of most interest is how wbc->nr_to_write changes
from call to call, especially with filesystems that write multiple pages
in ->writepage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Tracing high level background writeback events is good, but it doesn't
give the entire picture. Add visibility into write throttling to catch IO
dispatched by foreground throttling of processing dirtying lots of pages.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This was just an odd wrapper around writeback_inodes_wb. Removing this
also allows to get rid of the bdi member of struct writeback_control
which was rather out of place there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
bdi_start_writeback now never gets a superblock passed, so we can just remove
that case. And to further untangle the code and flatten the call stack
split it into two trivial helpers for it's two callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
sync can currently take a really long time if a concurrent writer is
extending a file. The problem is that the dirty pages on the address
space grow in the same direction as write_cache_pages scans, so if
the writer keeps ahead of writeback, the writeback will not
terminate until the writer stops adding dirty pages.
For a data integrity sync, we only need to write the pages dirty at
the time we start the writeback, so we can stop scanning once we get
to the page that was at the end of the file at the time the scan
started.
This will prevent operations like copying a large file preventing
sync from completing as it will not write back pages that were
dirtied after the sync was started. This does not impact the
existing integrity guarantees, as any dirty page (old or new)
within the EOF range at the start of the scan will still be
captured.
This patch will not prevent sync from blocking on large writes into
holes. That requires more complex intervention while this patch only
addresses the common append-case of this sync holdoff.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a filesystem writes more than one page in ->writepage, write_cache_pages
fails to notice this and continues to attempt writeback when wbc->nr_to_write
has gone negative - this trace was captured from XFS:
wbc_writeback_start: towrt=1024
wbc_writepage: towrt=1024
wbc_writepage: towrt=0
wbc_writepage: towrt=-1
wbc_writepage: towrt=-5
wbc_writepage: towrt=-21
wbc_writepage: towrt=-85
This has adverse effects on filesystem writeback behaviour. write_cache_pages()
needs to terminate after a certain number of pages are written, not after a
certain number of calls to ->writepage are made. This is a regression
introduced by 17bc6c30cf ("vfs: Add
no_nrwrite_index_update writeback control flag"), but cannot be reverted
directly due to subsequent bug fixes that have gone in on top of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit e913fc825d.
We are investigating a hang associated with the WB_SYNC_NONE changes,
so revert them for now.
Conflicts:
fs/fs-writeback.c
mm/page-writeback.c
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
When CONFIG_BLOCK isn't enabled:
mm/page-writeback.c: In function 'laptop_mode_timer_fn':
mm/page-writeback.c:708: error: dereferencing pointer to incomplete type
mm/page-writeback.c:709: error: dereferencing pointer to incomplete type
Fix this by essentially eliminating the laptop sync handlers when
CONFIG_BLOCK isn't set, as most are only used from the block layer code.
The exception is laptop_sync_completion() which is used from sys_sync(),
make that an empty declaration in that case.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Commit 69b62d01 fixed up most of the places where we would enter
busy schedule() spins when disabling the periodic background
writeback. This fixes up the sb timer so that it doesn't get
hammered on with the delay disabled, and ensures that it gets
rearmed if needed when /proc/sys/vm/dirty_writeback_centisecs
gets modified.
bdi_forker_task() also needs to check for !dirty_writeback_centisecs
and use schedule() appropriately, fix that up too.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When umount calls sync_filesystem(), we first do a WB_SYNC_NONE
writeback to kick off writeback of pending dirty inodes, then follow
that up with a WB_SYNC_ALL to wait for it. Since umount already holds
the sb s_umount mutex, WB_SYNC_NONE ends up doing nothing and all
writeback happens as WB_SYNC_ALL. This can greatly slow down umount,
since WB_SYNC_ALL writeback is a data integrity operation and thus
a bigger hammer than simple WB_SYNC_NONE. For barrier aware file systems
it's a lot slower.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
One of the features of laptop-mode is that it forces a writeout of dirty
pages if something else triggers a physical read or write from a device.
The current implementation flushes pages on all devices, rather than only
the one that triggered the flush. This patch alters the behaviour so that
only the recently accessed block device is flushed, preventing other
disks being spun up for no terribly good reason.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
- no one is calling wb_writeback and write_cache_pages with
wbc.nonblocking=1 any more
- lumpy pageout will want to do nonblocking writeback without the
congestion wait
So remove the congestion checks as suggested by Chris.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Alex Elder <aelder@sgi.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It makes sense to do IOWAIT when someone is blocked
due to IO throttle, as suggested by Kame and Peter.
There is an old comment for not doing IOWAIT on throttle,
however it has been mismatching the code for a long time.
If we stop accounting IOWAIT for 2.6.32, it could be an
undesirable behavior change. So restore the io_schedule.
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Sometimes we only want to write pages from a specific super_block,
so allow that to be passed in.
This fixes a problem with commit 56a131dcf7
causing writeback on all super_blocks on a bdi, where we only really
want to sync a specific sb from writeback_inodes_sb().
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: writeback_inodes_sb() should use bdi_start_writeback()
writeback: don't delay inodes redirtied by a fast dirtier
writeback: make the super_block pinning more efficient
writeback: don't resort for a single super_block in move_expired_inodes()
writeback: move inodes from one super_block together
writeback: get rid to incorrect references to pdflush in comments
writeback: improve readability of the wb_writeback() continue/break logic
writeback: cleanup writeback_single_inode()
writeback: kupdate writeback shall not stop when more io is possible
writeback: stop background writeback when below background threshold
writeback: balance_dirty_pages() shall write more than dirtied pages
fs: Fix busyloop in wb_writeback()
Treat bdi_start_writeback(0) as a special request to do background write,
and stop such work when we are below the background dirty threshold.
Also simplify the (nr_pages <= 0) checks. Since we already pass in
nr_pages=LONG_MAX for WB_SYNC_ALL and background writes, we don't
need to worry about it being decreased to zero.
Reported-by: Richard Kennedy <richard@rsk.demon.co.uk>
CC: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Some filesystem may choose to write much more than ratelimit_pages
before calling balance_dirty_pages_ratelimited_nr(). So it is safer to
determine number to write based on real number of dirtied pages.
Otherwise it is possible that
loop {
btrfs_file_write(): dirty 1024 pages
balance_dirty_pages(): write up to 48 pages (= ratelimit_pages * 1.5)
}
in which the writeback rate cannot keep up with dirty rate, and the
dirty pages go all the way beyond dirty_thresh.
The increased write_chunk may make the dirtier more bumpy.
So filesystems shall be take care not to dirty too much at
a time (eg. > 4MB) without checking the ratelimit.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio
When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned. So the anon pages shall not be counted in both
usage scenarios. Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.
It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently it just sleeps for a very short time, just 1 jiffy. If
we keep looping in there, continually delay for a little longer
of up to 100msec in total. That was the old limit for congestion
wait.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
bdi_start_writeback() is currently split into two paths, one for
WB_SYNC_NONE and one for WB_SYNC_ALL. Add bdi_sync_writeback()
for WB_SYNC_ALL writeback and let bdi_start_writeback() handle
only WB_SYNC_NONE.
Push down the writeback_control allocation and only accept the
parameters that make sense for each function. This cleans up
the API considerably.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that bdi_writeback_all() no longer handles integrity writeback,
it doesn't have to block anymore. This means that we can switch
bdi_list reader side protection to RCU.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The dirtying of page and set_page_dirty() can be moved into the page lock.
- In shmem_write_end(), the page was dirtied while the page lock was held,
but it's being marked dirty just after dropping the page lock.
- In shmem_symlink(), both dirtying and marking can be moved into page lock.
It's valuable for the hwpoison code to know whether one bad page can be dropped
without losing data. It mainly judges by testing the PG_dirty bit after taking
the page lock. So it becomes important that the dirtying of page and the
marking of dirtiness are both done inside the page lock. Which is a common
practice, but sadly not a rule.
The noticeable exceptions are
- mapped pages
- pages with buffer_heads
The above pages could go dirty at any time. Fortunately the hwpoison will
unmap the page and release the buffer_heads beforehand anyway.
Many other types of pages (eg. metadata pages) can also be dirtied at will by
their owners, the hwpoison code cannot do meaningful things to them anyway.
Only the dirtiness of pagecache pages owned by regular files are interested.
v2: AK: Add comment about set_page_dirty rules (suggested by Peter Zijlstra)
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
powerpc64: convert to dynamic percpu allocator
sparc64: use embedding percpu first chunk allocator
percpu: kill lpage first chunk allocator
x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
percpu: update embedding first chunk allocator to handle sparse units
percpu: use group information to allocate vmap areas sparsely
vmalloc: implement pcpu_get_vm_areas()
vmalloc: separate out insert_vmalloc_vm()
percpu: add chunk->base_addr
percpu: add pcpu_unit_offsets[]
percpu: introduce pcpu_alloc_info and pcpu_group_info
percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
percpu: add @align to pcpu_fc_alloc_fn_t
percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
percpu: drop @static_size from first chunk allocators
percpu: generalize first chunk allocator selection
percpu: build first chunk allocators selectively
percpu: rename 4k first chunk allocator to page
percpu: improve boot messages
percpu: fix pcpu_reclaim() locking
...
Fix trivial conflict as by Tejun Heo in kernel/sched.c
This gets rid of pdflush for bdi writeout and kupdated style cleaning.
pdflush writeout suffers from lack of locality and also requires more
threads to handle the same workload, since it has to work in a
non-blocking fashion against each queue. This also introduces lumpy
behaviour and potential request starvation, since pdflush can be starved
for queue access if others are accessing it. A sample ffsb workload that
does random writes to files is about 8% faster here on a simple SATA drive
during the benchmark phase. File layout also seems a LOT more smooth in
vmstat:
r b swpd free buff cache si so bi bo in cs us sy id wa
0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42
0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44
1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37
0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58
0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34
0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37
0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44
0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38
0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41
0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45
where vanilla tends to fluctuate a lot in the creation phase:
r b swpd free buff cache si so bi bo in cs us sy id wa
1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36
1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51
0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40
0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37
1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41
0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49
0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36
1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43
0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39
1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45
1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34
0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54
A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A
SSD based writeback test on XFS performs over 20% better as well, with
the throughput being very stable around 1GB/sec, where pdflush only
manages 750MB/sec and fluctuates wildly while doing so. Random buffered
writes to many files behave a lot better as well, as does random mmap'ed
writes.
A separate thread is added to sync the super blocks. In the long term,
adding sync_supers_bdi() functionality could get rid of this thread again.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a first step at introducing per-bdi flusher threads. We should
have no change in behaviour, although sb_has_dirty_inodes() is now
ridiculously expensive, as there's no easy way to answer that question.
Not a huge problem, since it'll be deleted in subsequent patches.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Conflicts:
arch/sparc/kernel/smp_64.c
arch/x86/kernel/cpu/perf_counter.c
arch/x86/kernel/setup_percpu.c
drivers/cpufreq/cpufreq_ondemand.c
mm/percpu.c
Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Pull linus#master to merge PER_CPU_DEF_ATTRIBUTES and alpha build fix
changes. As alpha in percpu tree uses 'weak' attribute instead of
inline assembly, there's no need for __used attribute.
Conflicts:
arch/alpha/include/asm/percpu.h
arch/mn10300/kernel/vmlinux.lds.S
include/linux/percpu-defs.h
balance_dirty_pages can overreact and move all of the dirty pages to
writeback unnecessarily.
balance_dirty_pages makes its decision to throttle based on the number of
dirty plus writeback pages that are over the calculated limit,so it will
continue to move pages even when there are plenty of pages in writeback
and less than the threshold still dirty.
This allows it to overshoot its limits and move all the dirty pages to
writeback while waiting for the drives to catch up and empty the writeback
list.
A simple fio test easily demonstrates this problem.
fio --name=f1 --directory=/disk1 --size=2G -rw=write --name=f2 --directory=/disk2 --size=1G --rw=write --startdelay=10
This is the simplest fix I could find, but I'm not entirely sure that it
alone will be enough for all cases. But it certainly is an improvement on
my desktop machine writing to 2 disks.
Do we need something more for machines with large arrays where
bdi_threshold * number_of_drives is greater than the dirty_ratio ?
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Percpu variable definition is about to be updated such that all percpu
symbols including the static ones must be unique. Update percpu
variable definitions accordingly.
* as,cfq: rename ioc_count uniquely
* cpufreq: rename cpu_dbs_info uniquely
* xen: move nesting_count out of xen_evtchn_do_upcall() and rename it
* mm: move ratelimits out of balance_dirty_pages_ratelimited_nr() and
rename it
* ipv4,6: rename cookie_scratch uniquely
* x86 perf_counter: rename prev_left to pmc_prev_left, irq_entry to
pmc_irq_entry and nmi_entry to pmc_nmi_entry
* perf_counter: rename disable_count to perf_disable_count
* ftrace: rename test_event_disable to ftrace_test_event_disable
* kmemleak: rename test_pointer to kmemleak_test_pointer
* mce: rename next_interval to mce_next_interval
[ Impact: percpu usage cleanups, no duplicate static percpu var names ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
get_dirty_limits() calls clip_bdi_dirty_limit() and task_dirty_limit()
with variable pbdi_dirty as one of the arguments. This variable is an
unsigned long * but both functions expect it to be a long *. This causes
the following sparse warnings:
warning: incorrect type in argument 3 (different signedness)
expected long *pbdi_dirty
got unsigned long *pbdi_dirty
warning: incorrect type in argument 2 (different signedness)
expected long *pdirty
got unsigned long *pbdi_dirty
Fix the warnings by changing the long * to unsigned long * in both
functions.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
wb_kupdate() function has a bug on linux-2.6.30-rc5. This bug causes
generic_sync_sb_inodes() to start to write inodes back much earlier than
our expectations because it miscalculates oldest_jif in wb_kupdate().
This bug was introduced in 704503d836
('mm: fix proc_dointvec_userhz_jiffies "breakage"').
Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=9838
On i386, HZ=1000, jiffies_to_clock_t() converts time in a somewhat strange
way from the user's point of view:
# echo 500 >/proc/sys/vm/dirty_writeback_centisecs
# cat /proc/sys/vm/dirty_writeback_centisecs
499
So, we have 5000 jiffies converted to only 499 clock ticks and reported
back.
TICK_NSEC = 999848
ACTHZ = 256039
Keeping in-kernel variable in units passed from userspace will fix issue
of course, but this probably won't be right for every sysctl.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a helper function account_page_dirtied(). Use that from two
callsites. reiser4 adds a function which adds a third callsite.
Signed-off-by: Edward Shishkin<edward.shishkin@gmail.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enlarge default dirty ratios from 5/10 to 10/20. This fixes [Bug
#12809] iozone regression with 2.6.29-rc6.
The iozone benchmarks are performed on a 1200M file, with 8GB ram.
iozone -i 0 -i 1 -i 2 -i 3 -i 4 -r 4k -s 64k -s 512m -s 1200m -b tmp.xls
iozone -B -r 4k -s 64k -s 512m -s 1200m -b tmp.xls
The performance regression is triggered by commit 1cf6e7d83bf3(mm: task
dirty accounting fix), which makes more correct/thorough dirty
accounting.
The default 5/10 dirty ratios were picked (a) with the old dirty logic
and (b) largely at random and (c) designed to be aggressive. In
particular, that (a) means that having fixed some of the dirty
accounting, maybe the real bug is now that it was always too aggressive,
just hidden by an accounting issue.
The enlarged 10/20 dirty ratios are just about enough to fix the regression.
[ We will have to look at how this affects the old fsync() latency issue,
but that probably will need independent work. - Linus ]
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: "Lin, Ming M" <ming.m.lin@intel.com>
Tested-by: "Lin, Ming M" <ming.m.lin@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
YAMAMOTO-san noticed that task_dirty_inc doesn't seem to be called properly for
cases where set_page_dirty is not used to dirty a page (eg. mark_buffer_dirty).
Additionally, there is some inconsistency about when task_dirty_inc is
called. It is used for dirty balancing, however it even gets called for
__set_page_dirty_no_writeback.
So rather than increment it in a set_page_dirty wrapper, move it down to
exactly where the dirty page accounting stats are incremented.
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A bug was introduced into write_cache_pages cyclic writeout by commit
31a12666d8 ("mm: write_cache_pages cyclic
fix"). The intention (and comments) is that we should cycle back and
look for more dirty pages at the beginning of the file if there is no
more work to be done.
But the !done condition was dropped from the test. This means that any
time the page writeout loop breaks (eg. due to nr_to_write == 0), we
will set index to 0, then goto again. This will set done_index to
index, then find done is set, so will proceed to the end of the
function. When updating mapping->writeback_index for cyclic writeout,
we now use done_index == 0, so we're always cycling back to 0.
This seemed to be causing random mmap writes (slapadd and iozone) to
start writing more pages from the LRU and writeout would slowdown, and
caused bugzilla entry
http://bugzilla.kernel.org/show_bug.cgi?id=12604
about Berkeley DB slowing down dramatically.
With this patch, iozone random write performance is increased nearly
5x on my system (iozone -B -r 4k -s 64k -s 512m -s 1200m on ext2).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Reported-and-tested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit dcf6a79dda ("write-back: fix
nr_to_write counter") fixed nr_to_write counter, but didn't set the break
condition properly.
If nr_to_write == 0 after being decremented it will loop one more time
before setting done = 1 and breaking the loop.
[akpm@linux-foundation.org: coding-style fixes]
Cc: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to pass an unsigned long as the minimum, because it gets casted
to an unsigned long in the sysctl handler. If we pass an int, we'll
access four more bytes on 64bit arches, resulting in a random minimum
value.
[rientjes@google.com: fix type of `old_bytes']
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 05fe478dd0 introduced some
@wbc->nr_to_write breakage.
It made the following changes:
1. Decrement wbc->nr_to_write instead of nr_to_write
2. Decrement wbc->nr_to_write _only_ if wbc->sync_mode == WB_SYNC_NONE
3. If synced nr_to_write pages, stop only if if wbc->sync_mode ==
WB_SYNC_NONE, otherwise keep going.
However, according to the commit message, the intention was to only make
change 3. Change 1 is a bug. Change 2 does not seem to be necessary,
and it breaks UBIFS expectations, so if needed, it should be done
separately later. And change 2 does not seem to be documented in the
commit message.
This patch does the following:
1. Undo changes 1 and 2
2. Add a comment explaining change 3 (it very useful to have comments
in _code_, not only in the commit).
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change introduces two new sysctls to /proc/sys/vm:
dirty_background_bytes and dirty_bytes.
dirty_background_bytes is the counterpart to dirty_background_ratio and
dirty_bytes is the counterpart to dirty_ratio.
With growing memory capacities of individual machines, it's no longer
sufficient to specify dirty thresholds as a percentage of the amount of
dirtyable memory over the entire system.
dirty_background_bytes and dirty_bytes specify quantities of memory, in
bytes, that represent the dirty limits for the entire system. If either
of these values is set, its value represents the amount of dirty memory
that is needed to commence either background or direct writeback.
When a `bytes' or `ratio' file is written, its counterpart becomes a
function of the written value. For example, if dirty_bytes is written to
be 8096, 8K of memory is required to commence direct writeback.
dirty_ratio is then functionally equivalent to 8K / the amount of
dirtyable memory:
dirtyable_memory = free pages + mapped pages + file cache
dirty_background_bytes = dirty_background_ratio * dirtyable_memory
-or-
dirty_background_ratio = dirty_background_bytes / dirtyable_memory
AND
dirty_bytes = dirty_ratio * dirtyable_memory
-or-
dirty_ratio = dirty_bytes / dirtyable_memory
Only one of dirty_background_bytes and dirty_background_ratio may be
specified at a time, and only one of dirty_bytes and dirty_ratio may be
specified. When one sysctl is written, the other appears as 0 when read.
The `bytes' files operate on a page size granularity since dirty limits
are compared with ZVC values, which are in page units.
Prior to this change, the minimum dirty_ratio was 5 as implemented by
get_dirty_limits() although /proc/sys/vm/dirty_ratio would show any user
written value between 0 and 100. This restriction is maintained, but
dirty_bytes has a lower limit of only one page.
Also prior to this change, the dirty_background_ratio could not equal or
exceed dirty_ratio. This restriction is maintained in addition to
restricting dirty_background_bytes. If either background threshold equals
or exceeds that of the dirty threshold, it is implicitly set to half the
dirty threshold.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The background dirty and dirty limits are better defined with type
specifiers of unsigned long since negative writeback thresholds are not
possible.
These values, as returned by get_dirty_limits(), are normally compared
with ZVC values to determine whether writeback shall commence or be
throttled. Such page counts cannot be negative, so declaring the page
limits as signed is unnecessary.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we have the early-termination logic in place, it makes sense to
bail out early in all other cases where done is set to 1.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Terminate the write_cache_pages loop upon encountering the first page past
end, without locking the page. Pages cannot have their index change when
we have a reference on them (truncate, eg truncate_inode_pages_range
performs the same check without the page lock).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In write_cache_pages, if we get stuck behind another process that is
cleaning pages, we will be forced to wait for them to finish, then perform
our own writeout (if it was redirtied during the long wait), then wait for
that.
If a page under writeout is still clean, we can skip waiting for it (if
we're part of a data integrity sync, we'll be waiting for all writeout
pages afterwards, so we'll still be waiting for the other guy's write
that's cleaned the page).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of some complex expressions from flow control statements, add a
comment, remove some duplicate code.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In write_cache_pages, nr_to_write is heeded even for data-integrity syncs,
so the function will return success after writing out nr_to_write pages,
even if that was not sufficient to guarantee data integrity.
The callers tend to set it to values that could break data interity
semantics easily in practice. For example, nr_to_write can be set to
mapping->nr_pages * 2, however if a file has a single, dirty page, then
fsync is called, subsequent pages might be concurrently added and dirtied,
then write_cache_pages might writeout two of these newly dirty pages,
while not writing out the old page that should have been written out.
Fix this by ignoring nr_to_write if it is a data integrity sync.
This is a data integrity bug.
The reason this has been done in the past is to avoid stalling sync
operations behind page dirtiers.
"If a file has one dirty page at offset 1000000000000000 then someone
does an fsync() and someone else gets in first and starts madly writing
pages at offset 0, we want to write that page at 1000000000000000.
Somehow."
What we do today is return success after an arbitrary amount of pages are
written, whether or not we have provided the data-integrity semantics that
the caller has asked for. Even this doesn't actually fix all stall cases
completely: in the above situation, if the file has a huge number of pages
in pagecache (but not dirty), then mapping->nrpages is going to be huge,
even if pages are being dirtied.
This change does indeed make the possibility of long stalls lager, and
that's not a good thing, but lying about data integrity is even worse. We
have to either perform the sync, or return -ELINUXISLAME so at least the
caller knows what has happened.
There are subsequent competing approaches in the works to solve the stall
problems properly, without compromising data integrity.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In write_cache_pages, if ret signals a real error, but we still have some
pages left in the pagevec, done would be set to 1, but the remaining pages
would continue to be processed and ret will be overwritten in the process.
It could easily be overwritten with success, and thus success will be
returned even if there is an error. Thus the caller is told all writes
succeeded, wheras in reality some did not.
Fix this by bailing immediately if there is an error, and retaining the
first error code.
This is a data integrity bug.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We'd like to break out of the loop early in many situations, however the
existing code has been setting mapping->writeback_index past the final
page in the pagevec lookup for cyclic writeback. This is a problem if we
don't process all pages up to the final page.
Currently the code mostly keeps writeback_index reasonable and hacked
around this by not breaking out of the loop or writing pages outside the
range in these cases. Keep track of a real "done index" that enables us
to terminate the loop in a much more flexible manner.
Needed by the subsequent patch to preserve writepage errors, and then
further patches to break out of the loop early for other reasons. However
there are no functional changes with this patch alone.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In write_cache_pages, scanned == 1 is supposed to mean that cyclic
writeback has circled through zero, thus we should not circle again.
However it gets set to 1 after the first successful pagevec lookup. This
leads to cases where not enough data gets written.
Counterexample: file with first 10 pages dirty, writeback_index == 5,
nr_to_write == 10. Then the 5 last pages will be found, and scanned will
be set to 1, after writing those out, we will not cycle back to get the
first 5.
Rework this logic, now we'll always cycle unless we started off from index
0. When cycling, only write out as far as 1 page before the start page
from the first cycle (so we don't write parts of the file twice).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If no_nrwrite_index_update is set we don't update nr_to_write and
address space writeback_index in write_cache_pages. This change
enables a file system to skip these updates in write_cache_pages and do
them in the writepages() callback. This patch will be followed by an
ext4 patch that make use of these new flags.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
CC: linux-fsdevel@vger.kernel.org
Ext4 was the only user of range_cont writeback mode and ext4 switched
to a different method. So remove the range_cont mode which is not used
in the kernel.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
CC: linux-fsdevel@vger.kernel.org
People can use the real name an an index into MAINTAINERS to find the
current email address.
Signed-off-by: Francois Cami <francois.cami@free.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mapping->tree_lock has no read lockers. convert the lock from an rwlock
to a spinlock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (61 commits)
ext4: Documention update for new ordered mode and delayed allocation
ext4: do not set extents feature from the kernel
ext4: Don't allow nonextenst mount option for large filesystem
ext4: Enable delalloc by default.
ext4: delayed allocation i_blocks fix for stat
ext4: fix delalloc i_disksize early update issue
ext4: Handle page without buffers in ext4_*_writepage()
ext4: Add ordered mode support for delalloc
ext4: Invert lock ordering of page_lock and transaction start in delalloc
mm: Add range_cont mode for writeback
ext4: delayed allocation ENOSPC handling
percpu_counter: new function percpu_counter_sum_and_set
ext4: Add delayed allocation support in data=writeback mode
vfs: add hooks for ext4's delayed allocation support
jbd2: Remove data=ordered mode support using jbd buffer heads
ext4: Use new framework for data=ordered mode in JBD2
jbd2: Implement data=ordered mode handling via inodes
vfs: export filemap_fdatawrite_range()
ext4: Fix lock inversion in ext4_ext_truncate()
ext4: Invert the locking order of page_lock and transaction start
...
Filesystems like ext4 needs to start a new transaction in
the writepages for block allocation. This happens with delayed
allocation and there is limit to how many credits we can request
from the journal layer. So we call write_cache_pages multiple
times with wbc->nr_to_write set to the maximum possible value
limitted by the max journal credits available.
Add a new mode to writeback that enables us to handle this
behaviour. In the new mode we update the wbc->range_start
to point to the new offset to be written. Next call to
call to write_cache_pages will start writeout from specified
range_start offset. In the new mode we also limit writing
to the specified wbc->range_end.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Currently there is no protection from the root user to use up all of
memory for trace buffers. If the root user allocates too many entries,
the OOM killer might start kill off all tasks.
This patch adds an algorith to check the following condition:
pages_requested > (freeable_memory + current_trace_buffer_pages) / 4
If the above is met then the allocation fails. The above prevents more
than 1/4th of freeable memory from being used by trace buffers.
To determine the freeable_memory, I made determine_dirtyable_memory in
mm/page-writeback.c global.
Special thanks goes to Peter Zijlstra for suggesting the above calculation.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fuse will use temporary buffers to write back dirty data from memory mappings
(normal writes are done synchronously). This is needed, because there cannot
be any guarantee about the time in which a write will complete.
By using temporary buffers, from the MM's point if view the page is written
back immediately. If the writeout was due to memory pressure, this
effectively migrates data from a full zone to a less full zone.
This patch adds a new counter (NR_WRITEBACK_TEMP) for the number of pages used
as temporary buffers.
[Lee.Schermerhorn@hp.com: add vmstat_text for NR_WRITEBACK_TEMP]
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new BDI capability flag: BDI_CAP_NO_ACCT_WB. If this flag is
set, then don't update the per-bdi writeback stats from
test_set_page_writeback() and test_clear_page_writeback().
Misc cleanups:
- convert bdi_cap_writeback_dirty() and friends to static inline functions
- create a flag that includes all three dirty/writeback related flags,
since almst all users will want to have them toghether
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add "max_ratio" to /sys/class/bdi. This indicates the maximum percentage of
the global dirty threshold allocated to this bdi.
[mszeredi@suse.cz]
- fix parsing in max_ratio_store().
- export bdi_set_max_ratio() to modules
- limit bdi_dirty with bdi->max_ratio
- document new sysfs attribute
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under normal circumstances each device is given a part of the total write-back
cache that relates to its current avg writeout speed in relation to the other
devices.
min_ratio - allows one to assign a minimum portion of the write-back cache to
a particular device. This is useful in situations where you might want to
provide a minimum QoS. (One request for this feature came from flash based
storage people who wanted to avoid writing out at all costs - they of course
needed some pdflush hacks as well)
max_ratio - allows one to assign a maximum portion of the dirty limit to a
particular device. This is useful in situations where you want to avoid one
device taking all or most of the write-back cache. Eg. an NFS mount that is
prone to get stuck, or a FUSE mount which you don't trust to play fair.
Add "min_ratio" to /sys/class/bdi. This indicates the minimum percentage of
the global dirty threshold allocated to this bdi.
[mszeredi@suse.cz]
- fix parsing in min_ratio_store()
- document new sysfs attribute
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a place in sysfs (/sys/class/bdi) for the backing_dev_info object.
This allows us to see and set the various BDI specific variables.
In particular this properly exposes the read-ahead window for all relevant
users and /sys/block/<block>/queue/read_ahead_kb should be deprecated.
With patient help from Kay Sievers and Greg KH
[mszeredi@suse.cz]
- split off NFS and FUSE changes into separate patches
- document new sysfs attributes under Documentation/ABI
- do bdi_class_init as a core_initcall, otherwise the "default" BDI
won't be initialized
- remove bdi_init_fmt macro, it's not used very much
[akpm@linux-foundation.org: fix ia64 warning]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Acked-by: Greg KH <greg@kroah.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After making dirty a 100M file, the normal behavior is to start the
writeback for all data after 30s delays. But sometimes the following
happens instead:
- after 30s: ~4M
- after 5s: ~4M
- after 5s: all remaining 92M
Some analyze shows that the internal io dispatch queues goes like this:
s_io s_more_io
-------------------------
1) 100M,1K 0
2) 1K 96M
3) 0 96M
1) initial state with a 100M file and a 1K file
2) 4M written, nr_to_write <= 0, so write more
3) 1K written, nr_to_write > 0, no more writes(BUG)
nr_to_write > 0 in (3) fools the upper layer to think that data have all
been written out. The big dirty file is actually still sitting in
s_more_io. We cannot simply splice s_more_io back to s_io as soon as s_io
becomes empty, and let the loop in generic_sync_sb_inodes() continue: this
may starve newly expired inodes in s_dirty. It is also not an option to
draw inodes from both s_more_io and s_dirty, an let the loop go on: this
might lead to live locks, and might also starve other superblocks in sync
time(well kupdate may still starve some superblocks, that's another bug).
We have to return when a full scan of s_io completes. So nr_to_write > 0
does not necessarily mean that "all data are written". This patch
introduces a flag writeback_control.more_io to indicate that more io should
be done. With it the big dirty file no longer has to wait for the next
kupdate invokation 5s later.
In sync_sb_inodes() we only set more_io on super_blocks we actually
visited. This avoids the interaction between two pdflush deamons.
Also in __sync_single_inode() we don't blindly keep requeuing the io if the
filesystem cannot progress. Failing to do so may lead to 100% iowait.
Tested-by: Mike Snitzer <snitzer@gmail.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fastcall is always defined to be empty, remove it
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add vm.highmem_is_dirtyable toggle
A 32 bit machine with HIGHMEM64 enabled running DCC has an MMAPed file of
approximately 2Gb size which contains a hash format that is written
randomly by the dbclean process. On 2.6.16 this process took a few
minutes. With lowmem only accounting of dirty ratios, this takes about 12
hours of 100% disk IO, all random writes.
Include a toggle in /proc/sys/vm/highmem_is_dirtyable which can be set to 1 to
add the highmem back to the total available memory count.
[akpm@linux-foundation.org: Fix the CONFIG_DETECT_SOFTLOCKUP=y build]
Signed-off-by: Bron Gondwana <brong@fastmail.fm>
Cc: Ethan Solomita <solo@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_dirty_limit() can become static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 2e6883bdf4, as
requested by Fengguang Wu. It's not quite fully baked yet, and while
there are patches around to fix the problems it caused, they should get
more testing. Says Fengguang: "I'll resend them both for -mm later on,
in a more complete patchset".
See
http://bugzilla.kernel.org/show_bug.cgi?id=9738
for some of this discussion.
Requested-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code harks back to the days when we didn't count dirty mapped
pages, which led us to try to balance the number of dirty unmapped pages
by how much unmapped memory there was in the system.
That makes no sense any more, since now the dirty counts include the
mapped pages. Not to mention that the math doesn't work with HIGHMEM
machines anyway, and causes the unmapped_ratio to potentially turn
negative (which we do catch thanks to clamping it at a minimum value,
but I mention that as an indication of how broken the code is).
The code also was written at a time when the default dirty ratio was
much larger, and the unmapped_ratio logic effectively capped that large
dirty ratio a bit. Again, we've since lowered the dirty ratio rather
aggressively, further lessening the point of that code.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We allow violation of bdi limits if there is a lot of room on the system.
Once we hit half the total limit we start enforcing bdi limits and bdi
ramp-up should happen. Doing it this way avoids many small writeouts on an
otherwise idle system and should also speed up the ramp-up.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't want to introduce pointless delays in throttle_vm_writeout() when
the writeback limits are not yet exceeded, do we?
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Cc: Greg KH <greg@kroah.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I_LOCK was used for several unrelated purposes, which caused deadlock
situations in certain filesystems as a side effect. One of the purposes
now uses the new I_SYNC bit.
Also document the various bits and change their order from historical to
logical.
[bunk@stusta.de: make fs/inode.c:wake_up_inode() static]
Signed-off-by: Joern Engel <joern@wohnheim.fh-wedel.de>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: David Chinner <dgc@sgi.com>
Cc: Anton Altaparmakov <aia21@cam.ac.uk>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After making dirty a 100M file, the normal behavior is to start the writeback
for all data after 30s delays. But sometimes the following happens instead:
- after 30s: ~4M
- after 5s: ~4M
- after 5s: all remaining 92M
Some analyze shows that the internal io dispatch queues goes like this:
s_io s_more_io
-------------------------
1) 100M,1K 0
2) 1K 96M
3) 0 96M
1) initial state with a 100M file and a 1K file
2) 4M written, nr_to_write <= 0, so write more
3) 1K written, nr_to_write > 0, no more writes(BUG)
nr_to_write > 0 in (3) fools the upper layer to think that data have all been
written out. The big dirty file is actually still sitting in s_more_io. We
cannot simply splice s_more_io back to s_io as soon as s_io becomes empty, and
let the loop in generic_sync_sb_inodes() continue: this may starve newly
expired inodes in s_dirty. It is also not an option to draw inodes from both
s_more_io and s_dirty, an let the loop go on: this might lead to live locks,
and might also starve other superblocks in sync time(well kupdate may still
starve some superblocks, that's another bug).
We have to return when a full scan of s_io completes. So nr_to_write > 0 does
not necessarily mean that "all data are written". This patch introduces a
flag writeback_control.more_io to indicate this situation. With it the big
dirty file no longer has to wait for the next kupdate invocation 5s later.
Cc: David Chinner <dgc@sgi.com>
Cc: Ken Chen <kenchen@google.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a writeback-internal marker but we're propagating it all the way back
to userspace!.
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on ideas of Andrew:
http://marc.info/?l=linux-kernel&m=102912915020543&w=2
Scale the bdi dirty limit inversly with the tasks dirty rate.
This makes heavy writers have a lower dirty limit than the occasional writer.
Andrea proposed something similar:
http://lwn.net/Articles/152277/
The main disadvantage to his patch is that he uses an unrelated quantity to
measure time, which leaves him with a workload dependant tunable. Other than
that the two approaches appear quite similar.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Scale writeback cache per backing device, proportional to its writeout speed.
By decoupling the BDI dirty thresholds a number of problems we currently have
will go away, namely:
- mutual interference starvation (for any number of BDIs);
- deadlocks with stacked BDIs (loop, FUSE and local NFS mounts).
It might be that all dirty pages are for a single BDI while other BDIs are
idling. By giving each BDI a 'fair' share of the dirty limit, each one can have
dirty pages outstanding and make progress.
A global threshold also creates a deadlock for stacked BDIs; when A writes to
B, and A generates enough dirty pages to get throttled, B will never start
writeback until the dirty pages go away. Again, by giving each BDI its own
'independent' dirty limit, this problem is avoided.
So the problem is to determine how to distribute the total dirty limit across
the BDIs fairly and efficiently. A DBI that has a large dirty limit but does
not have any dirty pages outstanding is a waste.
What is done is to keep a floating proportion between the DBIs based on
writeback completions. This way faster/more active devices get a larger share
than slower/idle devices.
[akpm@linux-foundation.org: fix warnings]
[hugh@veritas.com: Fix occasional hang when a task couldn't get out of balance_dirty_pages]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's a cut at fixing up uses of the online node map in generic code.
mm/shmem.c:shmem_parse_mpol()
Ensure nodelist is subset of nodes with memory.
Use node_states[N_HIGH_MEMORY] as default for missing
nodelist for interleave policy.
mm/shmem.c:shmem_fill_super()
initialize policy_nodes to node_states[N_HIGH_MEMORY]
mm/page-writeback.c:highmem_dirtyable_memory()
sum over nodes with memory
mm/page_alloc.c:zlc_setup()
allowednodes - use nodes with memory.
mm/page_alloc.c:default_zonelist_order()
average over nodes with memory.
mm/page_alloc.c:find_next_best_node()
skip nodes w/o memory.
N_HIGH_MEMORY state mask may not be initialized at this time,
unless we want to depend on early_calculate_totalpages() [see
below]. Will ZONE_MOVABLE ever be configurable?
mm/page_alloc.c:find_zone_movable_pfns_for_nodes()
spread kernelcore over nodes with memory.
This required calling early_calculate_totalpages()
unconditionally, and populating N_HIGH_MEMORY node
state therein from nodes in the early_node_map[].
If we can depend on this, we can eliminate the
population of N_HIGH_MEMORY mask from __build_all_zonelists()
and use the N_HIGH_MEMORY mask in find_next_best_node().
mm/mempolicy.c:mpol_check_policy()
Ensure nodes specified for policy are subset of
nodes with memory.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Probing pages and radix_tree_tagged are lockless operations with the lockless
radix-tree. Convert these users to RCU locking rather than using tree_lock.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the current page_mkwrite() implementations also set the page dirty. Which
results in the set_page_dirty_balance() call to _not_ call balance, because the
page is already found dirty.
This allows us to dirty a _lot_ of pages without ever hitting
balance_dirty_pages(). Not good (tm).
Force a balance call if ->page_mkwrite() was successful.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page-writeback accounting is presently performed in the page-flags macros.
This is inconsistent and a bit ugly and makes it awkward to implement
per-backing_dev under-writeback page accounting.
So move this accounting down to the callsite(s).
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Share the same page flag bit for PG_readahead and PG_reclaim.
One is used only on file reads, another is only for emergency writes. One
is used mostly for fresh/young pages, another is for old pages.
Combinations of possible interactions are:
a) clear PG_reclaim => implicit clear of PG_readahead
it will delay an asynchronous readahead into a synchronous one
it actually does _good_ for readahead:
the pages will be reclaimed soon, it's readahead thrashing!
in this case, synchronous readahead makes more sense.
b) clear PG_readahead => implicit clear of PG_reclaim
one(and only one) page will not be reclaimed in time
it can be avoided by checking PageWriteback(page) in readahead first
c) set PG_reclaim => implicit set of PG_readahead
will confuse readahead and make it restart the size rampup process
it's a trivial problem, and can mostly be avoided by checking
PageWriteback(page) first in readahead
d) set PG_readahead => implicit set of PG_reclaim
PG_readahead will never be set on already cached pages.
PG_reclaim will always be cleared on dirtying a page.
so not a problem.
In summary,
a) we get better behavior
b,d) possible interactions can be avoided
c) racy condition exists that might affect readahead, but the chance
is _really_ low, and the hurt on readahead is trivial.
Compound pages also use PG_reclaim, but for now they do not interact with
reclaim/readahead code.
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix msync data loss and (less importantly) dirty page accounting
inaccuracies due to the race remaining in clear_page_dirty_for_io().
The deleted comment explains what the race was, and the added comments
explain how it is fixed.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is a bug to set a page dirty if it is not uptodate unless it has
buffers. If the page has buffers, then the page may be dirty (some buffers
dirty) but not uptodate (some buffers not uptodate). The exception to this
rule is if the set_page_dirty caller is racing with truncate or invalidate.
A buffer can not be set dirty if it is not uptodate.
If either of these situations occurs, it indicates there could be some data
loss problem. Some of these warnings could be a harmless one where the
page or buffer is set uptodate immediately after it is dirtied, however we
should fix those up, and enforce this ordering.
Bring the order of operations for truncate into line with those of
invalidate. This will prevent a page from being able to go !uptodate while
we're holding the tree_lock, which is probably a good thing anyway.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up massive code duplication between mpage_writepages() and
generic_writepages().
The new generic function, write_cache_pages() takes a function pointer
argument, which will be called for each page to be written.
Maybe cifs_writepages() too can use this infrastructure, but I'm not
touching that with a ten-foot pole.
The upcoming page writeback support in fuse will also want this.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup: setting an outstanding error on a mapping was open coded too many
times. Factor it out in mapping_set_error().
Signed-off-by: Guillaume Chazarain <guichaz@yahoo.fr>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use the global ZVC counters to establish the exact size of the LRU
and the free pages. This allows a more accurate determination of the dirty
ratio.
This patch will fix the broken ratio calculations if large amounts of
memory are allocated to huge pags or other consumers that do not put the
pages on to the LRU.
Notes:
- I did not add NR_SLAB_RECLAIMABLE to the calculation of the
dirtyable pages. Those may be reclaimable but they are at this
point not dirtyable. If NR_SLAB_RECLAIMABLE would be considered
then a huge number of reclaimable pages would stop writeback
from occurring.
- This patch used to be in mm as the last one in a series of patches.
It was removed when Linus updated the treatment of highmem because
there was a conflict. I updated the patch to follow Linus' approach.
This patch is neede to fulfill the claims made in the beginning of the
patchset that is now in Linus' tree.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do this really early in the 2.6.22-rc series, so that we'll get
feedback. And don't change by half measures. Just cut the default
dirty limit to a quarter of what it was, and see if anybody even
notices.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
throttle_vm_writeout() is designed to wait for the dirty levels to subside.
But if the caller holds IO or FS locks, we might be holding up that writeout.
So change it to take a single nap to give other devices a chance to clean some
memory, then return.
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change a hard-coded constant 0 to the symbolic equivalent NOTIFY_DONE in
the ratelimit_handler() CPU notifier handler function.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in
source files, including:
* make multi-line initial descriptions single line
* denote some function names, constants and structs as such
* change erroneous opening '/*' to '/**' in a few places
* reword some text for clarity
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem backed file does not have page writeback, nor it participates in
backing device's dirty or writeback accounting. So using generic
__set_page_dirty_nobuffers() for its .set_page_dirty aops method is a bit
overkill. It unnecessarily prolongs shm unmap latency.
For example, on a densely populated large shm segment (sevearl GBs), the
unmapping operation becomes painfully long. Because at unmap, kernel
transfers dirty bit in PTE into page struct and to the radix tree tag. The
operation of tagging the radix tree is particularly expensive because it
has to traverse the tree from the root to the leaf node on every dirty
page. What's bothering is that radix tree tag is used for page write back.
However, shmem is memory backed and there is no page write back for such
file system. And in the end, we spend all that time tagging radix tree and
none of that fancy tagging will be used. So let's simplify it by introduce
a new aops __set_page_dirty_no_writeback and this will speed up shm unmap.
Signed-off-by: Ken Chen <kenchen@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes balance_dirty_page() always base its calculations on the
amount of non-highmem memory in the machine, rather than try to base it
on total memory and then falling back on non-highmem memory if the
mapping it was writing wasn't highmem capable.
This not only fixes a situation where two different writers can have
wildly different notions about what is a "balanced" dirty state, but it
also means that people with highmem machines don't run into an OOM
situation when regular memory fills up with dirty pages.
We used to try to handle the latter case by scaling down the dirty_ratio
if the machine had a lot of highmem pages in page_writeback_init(), but
it wasn't aggressive enough for some situations, and since basing the
dirty ratio on highmem memory was broken in the first place, let's just
stop doing so.
(A variation of this theme fixed Justin Piszcz's OOM problem when
copying an 18GB file on a RAID setup).
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Justin Piszcz <jpiszcz@lucidpixels.com>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM layer (on the face of it, fairly reasonably) expected that when
it does a ->writepage() call to the filesystem, it would write out the
full page at that point in time. Especially since it had earlier marked
the whole page dirty with "set_page_dirty()".
But that isn't actually the case: ->writepage() does not actually write
a page, it writes the parts of the page that have been explicitly marked
dirty before, *and* that had not got written out for other reasons since
the last time we told it they were dirty.
That last caveat is the important one.
Which _most_ of the time ends up being the whole page (since we had
called "set_page_dirty()" on the page earlier), but if the filesystem
had done any dirty flushing of its own (for example, to honor some
internal write ordering guarantees), it might end up doing only a
partial page IO (or none at all) when ->writepage() is actually called.
That is the correct thing in general (since we actually often _want_
only the known-dirty parts of the page to be written out), but the
shared dirty page handling had implicitly forgotten about these details,
and had a number of cases where it was doing just the "->writepage()"
part, without telling the low-level filesystem that the whole page might
have been re-dirtied as part of being mapped writably into user space.
Since most of the time the FS did actually write out the full page, we
didn't notice this for a loong time, and this needed some really odd
patterns to trigger. But it caused occasional corruption with rtorrent
and with the Debian "apt" database, because both use shared mmaps to
update the end result.
This fixes it. Finally. After way too much hair-pulling.
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: Martin J. Bligh <mbligh@google.com>
Acked-by: Martin Michlmayr <tbm@cyrius.com>
Acked-by: Martin Johansson <martin@fatbob.nu>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Andrei Popa <andrei.popa@i-neo.ro>
Cc: High Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@osdl.org>,
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Gordon Farquharson <gordonfarquharson@gmail.com>
Cc: Guillaume Chazarain <guichaz@yahoo.fr>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Kenneth Cheng <kenneth.w.chen@intel.com>
Cc: Tobias Diedrich <ranma@tdiedrich.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
They were horribly easy to mis-use because of their tempting naming, and
they also did way more than any users of them generally wanted them to
do.
A dirty page can become clean under two circumstances:
(a) when we write it out. We have "clear_page_dirty_for_io()" for
this, and that function remains unchanged.
In the "for IO" case it is not sufficient to just clear the dirty
bit, you also have to mark the page as being under writeback etc.
(b) when we actually remove a page due to it becoming inaccessible to
users, notably because it was truncate()'d away or the file (or
metadata) no longer exists, and we thus want to cancel any
outstanding dirty state.
For the (b) case, we now introduce "cancel_dirty_page()", which only
touches the page state itself, and verifies that the page is not mapped
(since cancelling writes on a mapped page would be actively wrong as it
is still accessible to users).
Some filesystems need to be fixed up for this: CIFS, FUSE, JFS,
ReiserFS, XFS all use the old confusing functions, and will be fixed
separately in subsequent commits (with some of them just removing the
offending logic, and others using clear_page_dirty_for_io()).
This was confirmed by Martin Michlmayr to fix the apt database
corruption on ARM.
Cc: Martin Michlmayr <tbm@cyrius.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Andrei Popa <andrei.popa@i-neo.ro>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: Gordon Farquharson <gordonfarquharson@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Accounting writes is fairly simple: whenever a process flips a page from clean
to dirty, we accuse it of having caused a write to underlying storage of
PAGE_CACHE_SIZE bytes.
This may overestimate the amount of writing: the page-dirtying may cause only
one buffer_head's worth of writeout. Fixing that is possible, but probably a
bit messy and isn't obviously important.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Save a tabstop in __set_page_dirty_nobuffers() and __set_page_dirty_buffers()
and a few other places. No functional changes.
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Separate out the concept of "queue congestion" from "backing-dev congestion".
Congestion is a backing-dev concept, not a queue concept.
The blk_* congestion functions are retained, as wrappers around the core
backing-dev congestion functions.
This proper layering is needed so that NFS can cleanly use the congestion
functions, and so that CONFIG_BLOCK=n actually links.
Cc: "Thomas Maier" <balagi@justmail.de>
Cc: "Jens Axboe" <jens.axboe@oracle.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Howells <dhowells@redhat.com>
Cc: Peter Osterlund <petero2@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Many files include the filename at the beginning, serveral used a wrong one.
Signed-off-by: Uwe Zeisberger <Uwe_Zeisberger@digi.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dissociate the generic_writepages() function from the mpage stuff, moving its
declaration to linux/mm.h and actually emitting a full implementation into
mm/page-writeback.c.
The implementation is a partial duplicate of mpage_writepages() with all BIO
references removed.
It is used by NFS to do writeback.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Move some functions out of the buffering code that aren't strictly buffering
specific. This is a precursor to being able to disable the block layer.
(*) Moved some stuff out of fs/buffer.c:
(*) The file sync and general sync stuff moved to fs/sync.c.
(*) The superblock sync stuff moved to fs/super.c.
(*) do_invalidatepage() moved to mm/truncate.c.
(*) try_to_release_page() moved to mm/filemap.c.
(*) Moved some related declarations between header files:
(*) declarations for do_invalidatepage() and try_to_release_page() moved
to linux/mm.h.
(*) __set_page_dirty_buffers() moved to linux/buffer_head.h.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
ratelimit_pages in page-writeback.c is recalculated (in set_ratelimit())
every time a CPU is hot-added/removed. But this value is not recalculated
when new pages are hot-added.
This patch fixes that problem by calling set_ratelimit() when new pages
are hot-added.
[akpm@osdl.org: cleanups]
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
page-writeback.c has a static local variable "total_pages", which is the
total number of pages in the system.
There is a global variable "vm_total_pages", which is the total number of
pages the VM controls.
Both are assigned from the return value of nr_free_pagecache_pages().
This patch removes the local variable and uses the global variable in that
place.
One more issue with the local static variable "total_pages" is that it is
not updated when new pages are hot-added. Since vm_total_pages is updated
when new pages are hot-added, this patch fixes that problem too.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
lock_page needs the caller to have a reference on the page->mapping inode
due to sync_page, ergo set_page_dirty_lock is obviously buggy according to
its comments.
Solve it by introducing a new lock_page_nosync which does not do a sync_page.
akpm: unpleasant solution to an unpleasant problem. If it goes wrong it could
cause great slowdowns while the lock_page() caller waits for kblockd to
perform the unplug. And if a filesystem has special sync_page() requirements
(none presently do), permanent hangs are possible.
otoh, set_page_dirty_lock() is usually (always?) called against userspace
pages. They are always up-to-date, so there shouldn't be any pending read I/O
against these pages.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now that we can detect writers of shared mappings, throttle them. Avoids OOM
by surprise.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Tracking of dirty pages in shared writeable mmap()s.
The idea is simple: write protect clean shared writeable pages, catch the
write-fault, make writeable and set dirty. On page write-back clean all the
PTE dirty bits and write protect them once again.
The implementation is a tad harder, mainly because the default
backing_dev_info capabilities were too loosely maintained. Hence it is not
enough to test the backing_dev_info for cap_account_dirty.
The current heuristic is as follows, a VMA is eligible when:
- its shared writeable
(vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)
- it is not a 'special' mapping
(vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0
- the backing_dev_info is cap_account_dirty
mapping_cap_account_dirty(vma->vm_file->f_mapping)
- f_op->mmap() didn't change the default page protection
Page from remap_pfn_range() are explicitly excluded because their COW
semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and
because they don't have a backing store anyway.
mprotect() is taught about the new behaviour as well. However it overrides
the last condition.
Cleaning the pages on write-back is done with page_mkclean() a new rmap call.
It can be called on any page, but is currently only implemented for mapped
pages, if the page is found the be of a VMA that accounts dirty pages it will
also wrprotect the PTE.
Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from
under ->private_lock. This seems to be safe, since ->private_lock is used to
serialize access to the buffers, not the page itself. This is needed because
clear_page_dirty() will call into page_mkclean() and would thereby violate
locking order.
[dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove writeback state
We can remove some functions now that were needed to calculate the page state
for writeback control since these statistics are now directly available.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Conversion of nr_unstable to a per zone counter
We need to do some special modifications to the nfs code since there are
multiple cases of disposition and we need to have a page ref for proper
accounting.
This converts the last critical page state of the VM and therefore we need to
remove several functions that were depending on GET_PAGE_STATE_LAST in order
to make the kernel compile again. We are only left with event type counters
in page state.
[akpm@osdl.org: bugfixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Conversion of nr_writeback to per zone counter.
This removes the last page_state counter from arch/i386/mm/pgtable.c so we
drop the page_state from there.
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This makes nr_dirty a per zone counter. Looping over all processors is
avoided during writeback state determination.
The counter aggregation for nr_dirty had to be undone in the NFS layer since
we summed up the page counts from multiple zones. Someone more familiar with
NFS should probably review what I have done.
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The current NR_FILE_MAPPED is used by zone reclaim and the dirty load
calculation as the number of mapped pagecache pages. However, that is not
true. NR_FILE_MAPPED includes the mapped anonymous pages. This patch
separates those and therefore allows an accurate tracking of the anonymous
pages per zone.
It then becomes possible to determine the number of unmapped pages per zone
and we can avoid scanning for unmapped pages if there are none.
Also it may now be possible to determine the mapped/unmapped ratio in
get_dirty_limit. Isnt the number of anonymous pages irrelevant in that
calculation?
Note that this will change the meaning of the number of mapped pages reported
in /proc/vmstat /proc/meminfo and in the per node statistics. This may affect
user space tools that monitor these counters! NR_FILE_MAPPED works like
NR_FILE_DIRTY. It is only valid for pagecache pages.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
nr_mapped is important because it allows a determination of how many pages of
a zone are not mapped, which would allow a more efficient means of determining
when we need to reclaim memory in a zone.
We take the nr_mapped field out of the page state structure and define a new
per zone counter named NR_FILE_MAPPED (the anonymous pages will be split off
from NR_MAPPED in the next patch).
We replace the use of nr_mapped in various kernel locations. This avoids the
looping over all processors in try_to_free_pages(), writeback, reclaim (swap +
zone reclaim).
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make notifier_calls associated with cpu_notifier as __cpuinit.
__cpuinit makes sure that the function is init time only unless
CONFIG_HOTPLUG_CPU is defined.
[akpm@osdl.org: section fix]
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make notifier_blocks associated with cpu_notifier as __cpuinitdata.
__cpuinitdata makes sure that the data is init time only unless
CONFIG_HOTPLUG_CPU is defined.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When a writeback_control's `start' and `end' fields are used to
indicate a one-byte-range starting at file offset zero, the required
values of .start=0,.end=0 mean that the ->writepages() implementation
has no way of telling that it is being asked to perform a range
request. Because we're currently overloading (start == 0 && end == 0)
to mean "this is not a write-a-range request".
To make all this sane, the patch changes range of writeback_control.
So caller does: If it is calling ->writepages() to write pages, it
sets range (range_start/end or range_cyclic) always.
And if range_cyclic is true, ->writepages() thinks the range is
cyclic, otherwise it just uses range_start and range_end.
This patch does,
- Add LLONG_MAX, LLONG_MIN, ULLONG_MAX to include/linux/kernel.h
-1 is usually ok for range_end (type is long long). But, if someone did,
range_end += val; range_end is "val - 1"
u64val = range_end >> bits; u64val is "~(0ULL)"
or something, they are wrong. So, this adds LLONG_MAX to avoid nasty
things, and uses LLONG_MAX for range_end.
- All callers of ->writepages() sets range_start/end or range_cyclic.
- Fix updates of ->writeback_index. It seems already bit strange.
If it starts at 0 and ended by check of nr_to_write, this last
index may reduce chance to scan end of file. So, this updates
->writeback_index only if range_cyclic is true or whole-file is
scanned.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Steven French <sfrench@us.ibm.com>
Cc: "Vladimir V. Saveliev" <vs@namesys.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch updates the comments to match the actual code.
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
We need set_page_dirty() to return true if it actually transitioned the page
from a clean to dirty state. This wasn't right in a couple of places. Do a
kernel-wide audit, fix things up.
This leaves open the possibility of returning a negative errno from
set_page_dirty() sometime in the future. But we don't do that at present.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Modify balance_dirty_pages_ratelimited() so that it can take a
number-of-pages-which-I-just-dirtied argument. For msync().
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make that the internal value for /proc/sys/vm/laptop_mode is stored as
jiffies instead of seconds. Let the sysctl interface do the conversions,
instead of doing on-the-fly conversions every time the value is used.
Add a description of the fact that laptop_mode doubles as a flag and a
timeout to the comment above the laptop_mode variable.
Signed-off-by: Bart Samwel <bart@samwel.tk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make that the internal values for:
/proc/sys/vm/dirty_writeback_centisecs
/proc/sys/vm/dirty_expire_centisecs
are stored as jiffies instead of centiseconds. Let the sysctl interface do
the conversions with full precision using clock_t_to_jiffies, instead of
doing overflow-sensitive on-the-fly conversions every time the values are
used.
Cons: apparent precision loss if HZ is not a multiple of 100, because of
conversion back and forth. This is a common problem for all sysctl values
that use proc_dointvec_userhz_jiffies. (There is only one other in-tree
use, in net/core/neighbour.c.)
Signed-off-by: Bart Samwel <bart@samwel.tk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Ravikiran reports that this variable is bouncing all around nodes on NUMA
machines, causing measurable performance problems. Fix that up by only
writing to it when it actually changed.
And put it in a new cacheline to prevent it sharing with other things (this
happened).
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
NFS needs to be able to distinguish between single-page ->writepage() calls and
multipage ->writepages() calls.
For the single-page writepage calls NFS can kick off the I/O within the
context of ->writepage().
For multipage ->writepages calls, nfs_writepage() will leave the I/O pending
and nfs_writepages() will kick off the I/O when it all has been queued up
within NFS.
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2.6.14 has this exported, and reiser4 (at least) uses it. Put things back
the way they were.
Signed-off-by: Vladimir V. Saveliev <vs@namesys.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I didn't find any possible modular usage in the kernel.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up timer initialization by introducing DEFINE_TIMER a'la
DEFINE_SPINLOCK. Build and boot-tested on x86. A similar patch has been
been in the -RT tree for some time.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Some KernelDoc descriptions are updated to match the current code.
No code changes.
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!