While the implementation of the "slices" address space allows
a significant amount of high slices, it limits the number of
low slices to 16 due to the use of a single u64 low_slices_psize
element in struct mm_context_t
On the 8xx, the minimum slice size is the size of the area
covered by a single PMD entry, ie 4M in 4K pages mode and 64M in
16K pages mode. This means we could have at least 64 slices.
In order to override this limitation, this patch switches the
handling of low_slices_psize to char array as done already for
high_slices_psize.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The fallback RFI flush is used when firmware does not provide a way
to flush the cache. It's a "displacement flush" that evicts useful
data by displacing it with an uninteresting buffer.
The flush has to take care to work with implementation specific cache
replacment policies, so the recipe has been in flux. The initial
slow but conservative approach is to touch all lines of a congruence
class, with dependencies between each load. It has since been
determined that a linear pattern of loads without dependencies is
sufficient, and is significantly faster.
Measuring the speed of a null syscall with RFI fallback flush enabled
gives the relative improvement:
P8 - 1.83x
P9 - 1.75x
The flush also becomes simpler and more adaptable to different cache
geometries.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no
longer used as a flag for interrupt state, but a mask.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On some CPUs we can prevent the Meltdown vulnerability by flushing the
L1-D cache on exit from kernel to user mode, and from hypervisor to
guest.
This is known to be the case on at least Power7, Power8 and Power9. At
this time we do not know the status of the vulnerability on other CPUs
such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale
CPUs. As more information comes to light we can enable this, or other
mechanisms on those CPUs.
The vulnerability occurs when the load of an architecturally
inaccessible memory region (eg. userspace load of kernel memory) is
speculatively executed to the point where its result can influence the
address of a subsequent speculatively executed load.
In order for that to happen, the first load must hit in the L1,
because before the load is sent to the L2 the permission check is
performed. Therefore if no kernel addresses hit in the L1 the
vulnerability can not occur. We can ensure that is the case by
flushing the L1 whenever we return to userspace. Similarly for
hypervisor vs guest.
In order to flush the L1-D cache on exit, we add a section of nops at
each (h)rfi location that returns to a lower privileged context, and
patch that with some sequence. Newer firmwares are able to advertise
to us that there is a special nop instruction that flushes the L1-D.
If we do not see that advertised, we fall back to doing a displacement
flush in software.
For guest kernels we support migration between some CPU versions, and
different CPUs may use different flush instructions. So that we are
prepared to migrate to a machine with a different flush instruction
activated, we may have to patch more than one flush instruction at
boot if the hypervisor tells us to.
In the end this patch is mostly the work of Nicholas Piggin and
Michael Ellerman. However a cast of thousands contributed to analysis
of the issue, earlier versions of the patch, back ports testing etc.
Many thanks to all of them.
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Radix keeps no meaningful state in addr_limit, so remove it from radix
code and rename to slb_addr_limit to make it clear it applies to hash
only.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
CONFIG_PPC_STD_MMU_64 indicates support for the "standard" powerpc MMU
on 64-bit CPUs. The "standard" MMU refers to the hash page table MMU
found in "server" processors, from IBM mainly.
Currently CONFIG_PPC_STD_MMU_64 is == CONFIG_PPC_BOOK3S_64. While it's
annoying to have two symbols that always have the same value, it's not
quite annoying enough to bother removing one.
However with the arrival of Power9, we now have the situation where
CONFIG_PPC_STD_MMU_64 is enabled, but the kernel is running using the
Radix MMU - *not* the "standard" MMU. So it is now actively confusing
to use it, because it implies that code is disabled or inactive when
the Radix MMU is in use, however that is not necessarily true.
So s/CONFIG_PPC_STD_MMU_64/CONFIG_PPC_BOOK3S_64/, and do some minor
formatting updates of some of the affected lines.
This will be a pain for backports, but c'est la vie.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 DD2.1 and earlier has an issue where some cache inhibited
vector load will return bad data. The workaround is two part, one
firmware/microcode part triggers HMI interrupts when hitting such
loads, the other part is this patch which then emulates the
instructions in Linux.
The affected instructions are limited to lxvd2x, lxvw4x, lxvb16x and
lxvh8x.
When an instruction triggers the HMI, all threads in the core will be
sent to the HMI handler, not just the one running the vector load.
In general, these spurious HMIs are detected by the emulation code and
we just return back to the running process. Unfortunately, if a
spurious interrupt occurs on a vector load that's to normal memory we
have no way to detect that it's spurious (unless we walk the page
tables, which is very expensive). In this case we emulate the load but
we need do so using a vector load itself to ensure 128bit atomicity is
preserved.
Some additional debugfs emulated instruction counters are added also.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Switch CONFIG_PPC_BOOK3S_64 to CONFIG_VSX to unbreak the build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The stop4 idle state on POWER9 is a deep idle state which loses
hypervisor resources, but whose latency is low enough that it can be
exposed via cpuidle.
Until now, the deep idle states which lose hypervisor resources (eg:
winkle) were only exposed via CPU-Hotplug. Hence currently on wakeup
from such states, barring a few SPRs which need to be restored to
their older value, rest of the SPRS are reinitialized to their values
corresponding to that at boot time.
When stop4 is used in the context of cpuidle, we want these additional
SPRs to be restored to their older value, to ensure that the context
on the CPU coming back from idle is same as it was before going idle.
In this patch, we define a SPR save area in PACA (since we have used
up the volatile register space in the stack) and on POWER9, we restore
SPRN_PID, SPRN_LDBAR, SPRN_FSCR, SPRN_HFSCR, SPRN_MMCRA, SPRN_MMCR1,
SPRN_MMCR2 to the values they had before entering stop.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rather than open-coding it 4 times.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Move __ASSEMBLY__ guards into head-64.h where they're really needed]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On Power9 DD1 due to a hardware bug the Power-Saving Level Status
field (PLS) of the PSSCR for a thread waking up from a deep state can
under-report if some other thread in the core is in a shallow stop
state. The scenario in which this can manifest is as follows:
1) All the threads of the core are in deep stop.
2) One of the threads is woken up. The PLS for this thread will
correctly reflect that it is waking up from deep stop.
3) The thread that has woken up now executes a shallow stop.
4) When some other thread in the core is woken, its PLS will reflect
the shallow stop state.
Thus, the subsequent thread for which the PLS is under-reporting the
wakeup state will not restore the hypervisor resources.
Hence, on DD1 systems, use the Requested Level (RL) field as a
workaround to restore the contents of the hypervisor resources on the
wakeup from the stop state.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The system reset interrupt is used for crash/debug situations, so it is
desirable to have as little impact on the normal state of the system as
possible.
Currently it uses the current kernel stack to process the exception.
This stores into the stack which may be involved with the crash. The
stack pointer may be corrupted, or it may have overflowed.
Avoid or minimise these problems by creating a dedicated NMI stack for
the system reset interrupt to use.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In preparation for using a dedicated stack for system reset interrupts,
prevent a nested system reset from recovering, in order to simplify
code that is called in crash/debug path. This allows a system reset
interrupt to just use the base stack pointer.
Keep an in_nmi nesting counter similarly to the in_mce counter. Consider
the interrrupt non-recoverable if it is taken inside another system
reset.
Interrupt nesting could be allowed similarly to MCE, but system reset
is a special case that's not for normal operation, so simplicity wins
until there is requirement for nested system reset interrupts.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The system reset interrupt can occur when MSR_EE=0, and it currently
uses the PACA_EXGEN save area.
Some PACA_EXGEN interrupts have a window where MSR_RI=1 and MSR_EE=0
when the save area is still in use. A system reset interrupt in this
window can lead to undetected corruption when the save area gets
overwritten.
This patch introduces PACA_EXNMI save area for system reset exceptions,
which closes this corruption window. It's also helpful to retain the
EXGEN state for debugging situations, even if not considering the
recoverability aspect.
This patch also moves the PACA_EXMC area down to a less frequently used
part of the paca with the new save area.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 DD1.0 hardware has a bug where the SPRs of a thread waking up
from stop 0,1,2 with ESL=1 can endup being misplaced in the core. Thus
the HSPRG0 of a thread waking up from can contain the paca pointer of
its sibling.
This patch implements a context recovery framework within threads of a
core, by provisioning space in paca_struct for saving every sibling
threads's paca pointers. Basically, we should be able to arrive at the
right paca pointer from any of the thread's existing paca pointer.
At bootup, during powernv idle-init, we save the paca address of every
CPU in each one its siblings paca_struct in the slot corresponding to
this CPU's index in the core.
On wakeup from a stop, the thread will determine its index in the core
from the TIR register and recover its PACA pointer by indexing into
the correct slot in the provisioned space in the current PACA.
Furthermore, ensure that the NVGPRs are restored from the stack on the
way out by setting the NAPSTATELOST in paca.
[Changelog written with inputs from svaidy@linux.vnet.ibm.com]
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Call it a bug]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We optmize the slice page size array copy to paca by copying only the
range based on addr_limit. This will require us to not look at page size
array beyond addr_limit in PACA on slb fault. To enable that copy task
size to paca which will be used during slb fault.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Rename from task_size to addr_limit, consolidate #ifdefs]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We also update the function arg to struct mm_struct. Move this so that function
finds the definition of struct mm_struct. No functional change in this patch.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
That in order to gather all cputime accumulation to the same place.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1483636310-6557-7-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
hmi.c functions are unused unless sibling_subcore_state is nonzero, and
that in turn happens only if KVM is in use. So move the code to
arch/powerpc/kvm/, putting it under CONFIG_KVM_BOOK3S_HV_POSSIBLE
rather than CONFIG_PPC_BOOK3S_64. The sibling_subcore_state is also
included in struct paca_struct only if KVM is supported by the kernel.
Cc: Daniel Axtens <dja@axtens.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: kvm-ppc@vger.kernel.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
This patch provides VIRT_CPU_ACCOUTING to PPC32 architecture.
PPC32 doesn't have the PACA structure, so we use the task_info
structure to store the accounting data.
In order to reuse on PPC32 the PPC64 functions, all u64 data has
been replaced by 'unsigned long' so that it is u32 on PPC32 and
u64 on PPC64
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
When a guest is assigned to a core it converts the host Timebase (TB)
into guest TB by adding guest timebase offset before entering into
guest. During guest exit it restores the guest TB to host TB. This means
under certain conditions (Guest migration) host TB and guest TB can differ.
When we get an HMI for TB related issues the opal HMI handler would
try fixing errors and restore the correct host TB value. With no guest
running, we don't have any issues. But with guest running on the core
we run into TB corruption issues.
If we get an HMI while in the guest, the current HMI handler invokes opal
hmi handler before forcing guest to exit. The guest exit path subtracts
the guest TB offset from the current TB value which may have already
been restored with host value by opal hmi handler. This leads to incorrect
host and guest TB values.
With split-core, things become more complex. With split-core, TB also gets
split and each subcore gets its own TB register. When a hmi handler fixes
a TB error and restores the TB value, it affects all the TB values of
sibling subcores on the same core. On TB errors all the thread in the core
gets HMI. With existing code, the individual threads call opal hmi handle
independently which can easily throw TB out of sync if we have guest
running on subcores. Hence we will need to co-ordinate with all the
threads before making opal hmi handler call followed by TB resync.
This patch introduces a sibling subcore state structure (shared by all
threads in the core) in paca which holds information about whether sibling
subcores are in Guest mode or host mode. An array in_guest[] of size
MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore.
The subcore id is used as index into in_guest[] array. Only primary
thread entering/exiting the guest is responsible to set/unset its
designated array element.
On TB error, we get HMI interrupt on every thread on the core. Upon HMI,
this patch will now force guest to vacate the core/subcore. Primary
thread from each subcore will then turn off its respective bit
from the above bitmap during the guest exit path just after the
guest->host partition switch is complete.
All other threads that have just exited the guest OR were already in host
will wait until all other subcores clears their respective bit.
Once all the subcores turn off their respective bit, all threads will
will make call to opal hmi handler.
It is not necessary that opal hmi handler would resync the TB value for
every HMI interrupts. It would do so only for the HMI caused due to
TB errors. For rest, it would not touch TB value. Hence to make things
simpler, primary thread would call TB resync explicitly once for each
core immediately after opal hmi handler instead of subtracting guest
offset from TB. TB resync call will restore the TB with host value.
Thus we can be sure about the TB state.
One of the primary threads exiting the guest will take up the
responsibility of calling TB resync. It will use one of the top bits
(bit 63) from subcore state flags bitmap to make the decision. The first
primary thread (among the subcores) that is able to set the bit will
have to call the TB resync. Rest all other threads will wait until TB
resync is complete. Once TB resync is complete all threads will then
proceed.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 2fc251a8dd ("powerpc: Copy only required pieces of the
mm_context_t to the paca") broke the build for CONFIG_PPC_STD_MMU_64=y
and CONFIG_PPC_MM_SLICES=n.
That only happens for a kernel built with 4K pages and HUGETLB disabled,
which is why we missed it.
Fix it by adding a mm_ctx_user_psize member to the paca and populating
it in the appropriate places.
Fixes: 2fc251a8dd ("powerpc: Copy only required pieces of the mm_context_t to the paca")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently we copy the whole mm_context_t to the paca but only access a
few bits of it. This is wasteful of space paca and also takes quite
some time in the hot path of context switching.
This patch pulls in only the required bits from the mm_context_t to
the paca and on context switch, copies only those.
Benchmarking this (On top of Anton's recent MSR context switching
changes [1]) using processes and yield shows an improvement of almost
3% on POWER8:
http://ozlabs.org/~anton/junkcode/context_switch2.c
./context_switch2 --test=yield --process 0 0
1. https://lists.ozlabs.org/pipermail/linuxppc-dev/2015-October/135700.html
Signed-off-by: Michael Neuling <mikey@neuling.org>
[mpe: Rename paca fields to be mm_ctx_foo rather than context_foo]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a function to copy the mm->context to the paca. This is
only a basic conversion for now but will be used more extensively in
the next patch.
This also adds #ifdef CONFIG_PPC_BOOK3S around this code since it's
not used elsewhere.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
All the cache line size of the current book3e 64bit SoCs are 64 bytes.
So we should use this size to align the member of paca_struct.
This only change the paca_struct's members which are private to book3e
CPUs, and should not have any effect to book3s ones. With this, we save
192 bytes. Also change it to __aligned(size) since it is preferred over
__attribute__((aligned(size))).
Before:
/* size: 1920, cachelines: 30, members: 46 */
/* sum members: 1667, holes: 6, sum holes: 141 */
/* padding: 112 */
After:
/* size: 1728, cachelines: 27, members: 46 */
/* sum members: 1667, holes: 4, sum holes: 13 */
/* padding: 48 */
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Cleanup OpalMCE_* definitions/declarations and other related code which
is not used anymore.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Benjamin Herrrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When we hit the HMI in Linux, invoke opal call to handle/recover from HMI
errors in real mode and then in virtual mode during check_irq_replay()
invoke opal_poll_events()/opal_do_notifier() to retrieve HMI event from
OPAL and act accordingly.
Now that we are ready to handle HMI interrupt directly in linux, remove
the HMI interrupt registration with firmware.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Old cpus didn't have a Segment Lookaside Buffer (SLB), instead they had
a Segment Table (STAB). Now that we've dropped support for those cpus,
we can remove the STAB support entirely.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Since commit "efcac65 powerpc: Per process DSCR + some fixes (try#4)"
it is no longer possible to set the DSCR on a per-CPU basis.
The old behaviour was to minipulate the DSCR SPR directly but this is no
longer sufficient: the value is quickly overwritten by context switching.
This patch stores the per-CPU DSCR value in a kernel variable rather than
directly in the SPR and it is used whenever a process has not set the DSCR
itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged.
Writes to the old global default (/sys/devices/system/cpu/dscr_default)
now set all of the per-CPU values and reads return the last written value.
The new per-CPU default is added to the paca_struct and is used everywhere
outside of sysfs.c instead of the old global default.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add special state saving for critical and machine check exceptions.
Most of this code could be used to handle debug exceptions taken from
kernel space, but actually doing so is outside the scope of this patch.
The various critical and machine check exceptions now point to their
real handlers, rather than hanging the kernel.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Previously SPRG3 was marked for use by both VDSO and critical
interrupts (though critical interrupts were not fully implemented).
In commit 8b64a9dfb0 ("powerpc/booke64:
Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman
made an attempt to resolve this conflict by restoring the VDSO value
early in the critical interrupt, but this has some issues:
- It's incompatible with EXCEPTION_COMMON which restores r13 from the
by-then-overwritten scratch (this cost me some debugging time).
- It forces critical exceptions to be a special case handled
differently from even machine check and debug level exceptions.
- It didn't occur to me that it was possible to make this work at all
(by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after
I made (most of) this patch. :-)
It might be worth investigating using a load rather than SPRG on return
from all exceptions (except TLB misses where the scratch never leaves
the SPRG) -- it could save a few cycles. Until then, let's stick with
SPRG for all exceptions.
Since we cannot use SPRG4-7 for scratch without corrupting the state of
a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor
critical interrupts exist on book3s, SPRG3 is still used for VDSO
there.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: kvm-ppc@vger.kernel.org
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
The one instance where we add an include for init.h covers off
a case where that file was implicitly getting it from another
header which itself didn't need it.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There are a few things that make the existing hw tablewalk handlers
unsuitable for e6500:
- Indirect entries go in TLB1 (though the resulting direct entries go in
TLB0).
- It has threads, but no "tlbsrx." -- so we need a spinlock and
a normal "tlbsx". Because we need this lock, hardware tablewalk
is mandatory on e6500 unless we want to add spinlock+tlbsx to
the normal bolted TLB miss handler.
- TLB1 has no HES (nor next-victim hint) so we need software round robin
(TODO: integrate this round robin data with hugetlb/KVM)
- The existing tablewalk handlers map half of a page table at a time,
because IBM hardware has a fixed 1MiB indirect page size. e6500
has variable size indirect entries, with a minimum of 2MiB.
So we can't do the half-page indirect mapping, and even if we
could it would be less efficient than mapping the full page.
- Like on e5500, the linear mapping is bolted, so we don't need the
overhead of supporting nested tlb misses.
Note that hardware tablewalk does not work in rev1 of e6500.
We do not expect to support e6500 rev1 in mainline Linux.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
This patch introduces exclusive emergency stack for machine check exception.
We use emergency stack to handle machine check exception so that we can save
MCE information (srr1, srr0, dar and dsisr) before turning on ME bit and be
ready for re-entrancy. This helps us to prevent clobbering of MCE information
in case of nested machine checks.
The reason for using emergency stack over normal kernel stack is that the
machine check might occur in the middle of setting up a stack frame which may
result into improper use of kernel stack.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With later patches supporting PR kvm as a kernel module, the changes
that has to be built into the main kernel binary to enable PR KVM module
is now selected via KVM_BOOK3S_PR_POSSIBLE
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Our ppc64 spinlocks and rwlocks use a trick where a lock token and
the paca index are placed in the lock with a single store. Since we
are using two u16s they need adjusting for little endian.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When we have MMU on exceptions (POWER8) and a relocatable kernel, we
need to branch from the initial exception vectors at 0x0 to up high
where the kernel might be located. Currently we do this using the link
register.
Unfortunately this corrupts the link stack and instead we should use the
count register. We did this for the syscall entry path in:
6a40480 powerpc: Avoid link stack corruption in MMU on syscall entry path
but I stupidly forgot to do the same for other exceptions.
This patch changes the initial exception vectors to use the count
register instead of the link register when we need to branch up to the
relocated kernel.
I have a dodgy userspace test which loops calling a function that reads
the PVR (mfpvr in userspace will be emulated by the kernel via the
program check exception). On POWER8 and with CONFIG_RELOCATABLE=y, I
get a ~10% performance improvement with my userspace test with this
patch.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add transactional memory paca scratch register to show_regs. This is useful
for debugging.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The powerpc boot_paca symbol is now only used within the
early_setup() routine, so move it from its global definition
into early_setup().
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[PATCH 3/6] powerpc: Increase exceptions arrays in paca struct to save PPR
Using paca to save user defined PPR value in the first level exception vector.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With larger vsid we need to track more bits of ESID in slb cache
for slb invalidate.
Reviewed-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Critical exception on 64-bit booke uses user-visible SPRG3 as scratch.
Restore VDSO information in SPRG3 on exception prolog.
Use a common sprg3 field in PACA for all powerpc64 architectures.
Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
This fixes a problem where a CPU thread coming out of nap mode can
think it has valid values in the nonvolatile GPRs (r14 - r31) as saved
away in power7_idle, but in fact the values have been trashed because
the thread was used for KVM in the mean time. The result is that the
thread crashes because code that called power7_idle (e.g.,
pnv_smp_cpu_kill_self()) goes to use values in registers that have
been trashed.
The bit field in SRR1 that tells whether state was lost only reflects
the most recent nap, which may not have been the nap instruction in
power7_idle. So we need an extra PACA field to indicate that state
has been lost even if SRR1 indicates that the most recent nap didn't
lose state. We clear this field when saving the state in power7_idle,
we set it to a non-zero value when we use the thread for KVM, and we
test it in power7_wakeup_noloss.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
OPAL can handle various interrupt for us such as Machine Checks (it
performs all sorts of recovery tasks and passes back control to us with
informations about the error), Hardware Management Interrupts and Softpatch
interrupts.
This wires up the mechanisms and prints out specific informations returned
by HAL when a machine check occurs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (99 commits)
drivers/virt: add missing linux/interrupt.h to fsl_hypervisor.c
powerpc/85xx: fix mpic configuration in CAMP mode
powerpc: Copy back TIF flags on return from softirq stack
powerpc/64: Make server perfmon only built on ppc64 server devices
powerpc/pseries: Fix hvc_vio.c build due to recent changes
powerpc: Exporting boot_cpuid_phys
powerpc: Add CFAR to oops output
hvc_console: Add kdb support
powerpc/pseries: Fix hvterm_raw_get_chars to accept < 16 chars, fixing xmon
powerpc/irq: Quieten irq mapping printks
powerpc: Enable lockup and hung task detectors in pseries and ppc64 defeconfigs
powerpc: Add mpt2sas driver to pseries and ppc64 defconfig
powerpc: Disable IRQs off tracer in ppc64 defconfig
powerpc: Sync pseries and ppc64 defconfigs
powerpc/pseries/hvconsole: Fix dropped console output
hvc_console: Improve tty/console put_chars handling
powerpc/kdump: Fix timeout in crash_kexec_wait_realmode
powerpc/mm: Fix output of total_ram.
powerpc/cpufreq: Add cpufreq driver for Momentum Maple boards
powerpc: Correct annotations of pmu registration functions
...
Fix up trivial Kconfig/Makefile conflicts in arch/powerpc, drivers, and
drivers/cpufreq