With git commit d1874a0c28
"s390/mm: make the pxd_offset functions more robust" and a 2-level page
table it can now happen that pgd_bad() gets asked to verify a large
segment table entry. If the entry is marked as dirty pgd_bad() will
incorrectly return true.
Change the pgd_bad(), p4d_bad(), pud_bad() and pmd_bad() functions to
first verify the table type, return false if the table level is lower
than what the function is suppossed to check, return true if the table
level is too high, and otherwise check the relevant region and segment
table bits. pmd_bad() has to check against ~SEGMENT_ENTRY_BITS for
normal page table pointers or ~SEGMENT_ENTRY_BITS_LARGE for large
segment table entries. Same for pud_bad() which has to check against
~_REGION_ENTRY_BITS or ~_REGION_ENTRY_BITS_LARGE.
Fixes: d1874a0c28 ("s390/mm: make the pxd_offset functions more robust")
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
arch/s390/lib/uaccess.c is built without kasan instrumentation. Kasan
checks are performed explicitly in copy_from_user/copy_to_user
functions. But since those functions could be inlined, calls from
files like uaccess.c with instrumentation disabled won't generate
kasan reports. This is currently the case with strncpy_from_user
function which was revealed by newly added kasan test. Avoid inlining of
copy_from_user/copy_to_user when the kernel is built with kasan support
to make sure kasan checks are fully functional.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
A few architectures use <asm/segment.h> internally, but nothing in
common code does. Remove all the empty or almost empty versions of it,
including the asm-generic one.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Define the gup_fast_permitted to check against the asce_limit of the
mm attached to the current task, then replace the s390 specific gup
code with the generic implementation in mm/gup.c.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Change the way how pgd_offset, p4d_offset, pud_offset and pmd_offset
walk the page tables. pgd_offset now always calculates the index for
the top-level page table and adds it to the pgd, this is either a
segment table offset for a 2-level setup, a region-3 offset for 3-levels,
region-2 offset for 4-levels, or a region-1 offset for a 5-level setup.
The other three functions p4d_offset, pud_offset and pmd_offset will
only add the respective offset if they dereference the passed pointer.
With the new way of walking the page tables a sequence like this from
mm/gup.c now works:
pgdp = pgd_offset(current->mm, addr);
pgd = READ_ONCE(*pgdp);
p4dp = p4d_offset(&pgd, addr);
p4d = READ_ONCE(*p4dp);
pudp = pud_offset(&p4d, addr);
pud = READ_ONCE(*pudp);
pmdp = pmd_offset(&pud, addr);
pmd = READ_ONCE(*pmdp);
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This enables stfle.150 and adds the subfunctions for SORTL. Bit 150 is
added to the list of facilities that will be enabled when there is no
cpu model involved as sortl requires no additional handling from
userspace, e.g. for migration.
Please note that a cpu model enabled user space can and will have the
final decision on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
This enables stfle.155 and adds the subfunctions for KDSA. Bit 155 is
added to the list of facilities that will be enabled when there is no
cpu model involved as MSA9 requires no additional handling from
userspace, e.g. for migration.
Please note that a cpu model enabled user space can and will have the
final decision on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
llvm on s390 has problems with __builtin_return_address(n), with n>0,
this results in a somewhat cryptic error message:
fatal error: error in backend: Unsupported stack frame traversal count
To work around it, use the direct return address directly. This
is probably not ideal here, but gets things to compile and should
only lead to inferior reporting, not to misbehavior of the generated
code.
Link: https://bugs.llvm.org/show_bug.cgi?id=41424
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
clang fails to use the %O and %R inline assembly modifiers
the same way as gcc, leading to build failures with every use
of __load_psw_mask():
/tmp/nmi-4a9f80.s: Assembler messages:
/tmp/nmi-4a9f80.s:571: Error: junk at end of line: `+8(160(%r11))'
/tmp/nmi-4a9f80.s:626: Error: junk at end of line: `+8(160(%r11))'
Replace these with a more conventional way of passing the addresses
that should work with both clang and gcc.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Building system calls with clang results in a warning
about an alias from a global function to a static one:
../fs/namei.c:3847:1: warning: unused function '__se_sys_mkdirat' [-Wunused-function]
SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
^
../include/linux/syscalls.h:219:36: note: expanded from macro 'SYSCALL_DEFINE3'
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
^
../include/linux/syscalls.h:228:2: note: expanded from macro 'SYSCALL_DEFINEx'
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
^
../arch/s390/include/asm/syscall_wrapper.h:126:18: note: expanded from macro '__SYSCALL_DEFINEx'
asmlinkage long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
^
<scratch space>:31:1: note: expanded from here
__se_sys_mkdirat
^
The only reference to the static __se_sys_mkdirat() here is the alias, but
this only gets evaluated later. Making this function global as well avoids
the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The CALL_ON_STACK helper currently does not work with clang and for
calls without arguments. It does not initialize r2 although the constraint
is "+&d". Rework the CALL_FMT_x and the CALL_ON_STACK macros to work
with clang and produce optimal code in all cases.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The Ultravisor Call Facility (stfle bit 158) defines an API to the
Ultravisor (UV calls), a mini hypervisor located at machine
level. With help of the Ultravisor, KVM will be able to run
"protected" VMs, special VMs whose memory and management data are
unavailable to KVM.
The protected VMs can also request services from the Ultravisor.
The guest api consists of UV calls to share and unshare memory with the
kvm hypervisor.
To enable this feature support PROTECTED_VIRTUALIZATION_GUEST kconfig
option has been introduced.
Co-developed-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
.boot.preserved.data is a better fit for ipl block than .boot.data
which is discarded after init. Reusing .boot.preserved.data allows to
simplify code a little bit and avoid copying data from .boot.data to
persistent variables.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce .boot.preserve.data section which is similar to .boot.data and
"shared" between the decompressor code and the decompressed kernel. The
decompressor will store values in it, and copy over to the decompressed
image before starting it. This method allows to avoid using pre-defined
addresses and other hacks to pass values between those boot phases.
Unlike .boot.data section .boot.preserved.data is NOT a part of init data,
and hence will be preserved for the kernel life time.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Hook up asm-generic/mmiowb.h to Kbuild for all architectures so that we
can subsequently include asm/mmiowb.h from core code.
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As the generic rwsem-xadd code is using the appropriate acquire and
release versions of the atomic operations, the arch specific rwsem.h
files will not be that much faster than the generic code as long as the
atomic functions are properly implemented. So we can remove those arch
specific rwsem.h and stop building asm/rwsem.h to reduce maintenance
effort.
Currently, only x86, alpha and ia64 have implemented architecture
specific fast paths. I don't have access to alpha and ia64 systems for
testing, but they are legacy systems that are not likely to be updated
to the latest kernel anyway.
By using a rwsem microbenchmark, the total locking rates on a 4-socket
56-core 112-thread x86-64 system before and after the patch were as
follows (mixed means equal # of read and write locks):
Before Patch After Patch
# of Threads wlock rlock mixed wlock rlock mixed
------------ ----- ----- ----- ----- ----- -----
1 29,201 30,143 29,458 28,615 30,172 29,201
2 6,807 13,299 1,171 7,725 15,025 1,804
4 6,504 12,755 1,520 7,127 14,286 1,345
8 6,762 13,412 764 6,826 13,652 726
16 6,693 15,408 662 6,599 15,938 626
32 6,145 15,286 496 5,549 15,487 511
64 5,812 15,495 60 5,858 15,572 60
There were some run-to-run variations for the multi-thread tests. For
x86-64, using the generic C code fast path seems to be a little bit
faster than the assembly version with low lock contention. Looking at
the assembly version of the fast paths, there are assembly to/from C
code wrappers that save and restore all the callee-clobbered registers
(7 registers on x86-64). The assembly generated from the generic C
code doesn't need to do that. That may explain the slight performance
gain here.
The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h
with no code change as no other code other than those under
kernel/locking needs to access the internal rwsem macros and functions.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Fix early free of the channel program in vfio
- On AP device removal make sure that all messages are flushed
with the driver still attached that queued the message
- Limit brk randomization to 32MB to reduce the chance that the
heap of ld.so is placed after the main stack
- Add a rolling average for the steal time of a CPU, this will be
needed for KVM to decide when to do busy waiting
- Fix a warning in the CPU-MF code
- Add a notification handler for AP configuration change to react
faster to new AP devices
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcnIq7AAoJEDjwexyKj9rgddUH/3VQP6BMvq2fwAsLqx8JeYgT
082xzP2nHli3tO6m8fFHmtqrSg5KTEDfuQVafqp92LeEMKUNWQI6kRu7rXeAVBct
M6hx21mqkm9VNjAlAjSq8IAUXP2K6/K0BMD5mYInYYYVRvJm3on4sHnkEj0kvXbm
OGxwnNBd9UnH5g6ti2vW4cyDvs0aqj1eDbSudy5KedumQz5J2XdFPn4f4Ej6p2+t
nuvlZFDnZ2Z4rliE3RFCuKExZR+YFZgS1urm6pcklncfvbJRsqFJ+nvhurskDUI3
4gOp1Yv1tvGNv/cNVEtnz8g/Kg8/sI7evjQBtxhtEsV/W0sbZPnjCt+28Cf1DN4=
=4nL7
-----END PGP SIGNATURE-----
Merge tag 's390-5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Martin Schwidefsky:
"Improvements and bug fixes for 5.1-rc2:
- Fix early free of the channel program in vfio
- On AP device removal make sure that all messages are flushed with
the driver still attached that queued the message
- Limit brk randomization to 32MB to reduce the chance that the heap
of ld.so is placed after the main stack
- Add a rolling average for the steal time of a CPU, this will be
needed for KVM to decide when to do busy waiting
- Fix a warning in the CPU-MF code
- Add a notification handler for AP configuration change to react
faster to new AP devices"
* tag 's390-5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/cpumf: Fix warning from check_processor_id
zcrypt: handle AP Info notification from CHSC SEI command
vfio: ccw: only free cp on final interrupt
s390/vtime: steal time exponential moving average
s390/zcrypt: revisit ap device remove procedure
s390: limit brk randomization to 32MB
Currently, every arch/*/include/uapi/asm/Kbuild explicitly includes
the common Kbuild.asm file. Factor out the duplicated include directives
to scripts/Makefile.asm-generic so that no architecture would opt out
of the mandatory-y mechanism.
um is not forced to include mandatory-y since it is a very exceptional
case which does not support UAPI.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
The generic-y is redundant under the following condition:
- arch has its own implementation
- the same header is added to generated-y
- the same header is added to mandatory-y
If a redundant generic-y is found, the warning like follows is displayed:
scripts/Makefile.asm-generic:20: redundant generic-y found in arch/arm/include/asm/Kbuild: timex.h
I fixed up arch Kbuild files found by this.
Suggested-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
The current AP bus implementation periodically polls the AP configuration
to detect changes. When the AP configuration is dynamically changed via the
SE or an SCLP instruction, the changes will not be reflected to sysfs until
the next time the AP configuration is polled. The CHSC architecture
provides a Store Event Information (SEI) command to make notification of an
AP configuration change. This patch introduces a handler to process
notification from the CHSC SEI command by immediately kicking off an AP bus
scan-after-event.
Signed-off-by: Tony Krowiak <akrowiak@linux.ibm.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Sebastian Ott <sebott@linux.ibm.com>
Reviewed-by: Harald Freudenberger <FREUDE@de.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Sebastian Ott <sebott@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
To be able to judge the current overcommitment ratio for a CPU add
a lowcore field with the exponential moving average of the steal time.
The average is updated every tick.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
For a 64-bit process the randomization of the program break is quite
large with 1GB. That is as big as the randomization of the anonymous
mapping base, for a test case started with '/lib/ld64.so.1 <exec>'
it can happen that the heap is placed after the stack. To avoid
this limit the program break randomization to 32MB for 64-bit and
keep 8MB for 31-bit.
Reported-by: Stefan Liebler <stli@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Enable that by passing old pte value as
the arg.
Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates. This patch series does that.
This patch (of 5):
Some architectures may want to call flush_tlb_range from these helpers.
Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull year 2038 updates from Thomas Gleixner:
"Another round of changes to make the kernel ready for 2038. After lots
of preparatory work this is the first set of syscalls which are 2038
safe:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
The syscall numbers are identical all over the architectures"
* 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
riscv: Use latest system call ABI
checksyscalls: fix up mq_timedreceive and stat exceptions
unicore32: Fix __ARCH_WANT_STAT64 definition
asm-generic: Make time32 syscall numbers optional
asm-generic: Drop getrlimit and setrlimit syscalls from default list
32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option
compat ABI: use non-compat openat and open_by_handle_at variants
y2038: add 64-bit time_t syscalls to all 32-bit architectures
y2038: rename old time and utime syscalls
y2038: remove struct definition redirects
y2038: use time32 syscall names on 32-bit
syscalls: remove obsolete __IGNORE_ macros
y2038: syscalls: rename y2038 compat syscalls
x86/x32: use time64 versions of sigtimedwait and recvmmsg
timex: change syscalls to use struct __kernel_timex
timex: use __kernel_timex internally
sparc64: add custom adjtimex/clock_adjtime functions
time: fix sys_timer_settime prototype
time: Add struct __kernel_timex
time: make adjtime compat handling available for 32 bit
...
- A copy of Arnds compat wrapper generation series
- Pass information about the KVM guest to the host in form the control
program code and the control program version code
- Map IOV resources to support PCI physical functions on s390
- Add vector load and store alignment hints to improve performance
- Use the "jdd" constraint with gcc 9 to make jump labels working again
- Remove amode workaround for old z/VM releases from the DCSS code
- Add support for in-kernel performance measurements using the
CPU measurement counter facility
- Introduce a new PMU device cpum_cf_diag to capture counters and
store thenn as event raw data.
- Bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcfh4QAAoJEDjwexyKj9rgXVAH/RzVbi3vznldujSNfCFTZKPu
EmFFAZIfbhifW3szfylyOJL52pFhxjcWzY0hkFEkbs2t90sn8l1BNkDscYZtfNHC
XvN3N9LsHyxOeyxvQuWLSio58qm+Lr1L0UrIhbMvqyAVkOLmIHvybFwi83OkMptm
djoL8NbuNsAA2s26y2bZLNtU7FmOW5smJIlnt7H4dmK4SFylqZKS/EnUZxGDgn+7
UrrTTOQUir0QZ8vraANsP1M0/LqPcd2YusLmj4jOdZ5Muc2Ch2AA991FofqdKShO
/8cGlsIzwHWGgdnP/YDea5gbetvonayYduixKy3EnYpWQ9iogiBjH4G7QNxcncs=
=v26J
-----END PGP SIGNATURE-----
Merge tag 's390-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
- A copy of Arnds compat wrapper generation series
- Pass information about the KVM guest to the host in form the control
program code and the control program version code
- Map IOV resources to support PCI physical functions on s390
- Add vector load and store alignment hints to improve performance
- Use the "jdd" constraint with gcc 9 to make jump labels working again
- Remove amode workaround for old z/VM releases from the DCSS code
- Add support for in-kernel performance measurements using the CPU
measurement counter facility
- Introduce a new PMU device cpum_cf_diag to capture counters and store
thenn as event raw data.
- Bug fixes and cleanups
* tag 's390-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (54 commits)
Revert "s390/cpum_cf: Add kernel message exaplanations"
s390/dasd: fix read device characteristic with CONFIG_VMAP_STACK=y
s390/suspend: fix prefix register reset in swsusp_arch_resume
s390: warn about clearing als implied facilities
s390: allow overriding facilities via command line
s390: clean up redundant facilities list setup
s390/als: remove duplicated in-place implementation of stfle
s390/cio: Use cpa range elsewhere within vfio-ccw
s390/cio: Fix vfio-ccw handling of recursive TICs
s390: vfio_ap: link the vfio_ap devices to the vfio_ap bus subsystem
s390/cpum_cf: Handle EBUSY return code from CPU counter facility reservation
s390/cpum_cf: Add kernel message exaplanations
s390/cpum_cf_diag: Add support for s390 counter facility diagnostic trace
s390/cpum_cf: add ctr_stcctm() function
s390/cpum_cf: move common functions into a separate file
s390/cpum_cf: introduce kernel_cpumcf_avail() function
s390/cpu_mf: replace stcctm5() with the stcctm() function
s390/cpu_mf: add store cpu counter multiple instruction support
s390/cpum_cf: Add minimal in-kernel interface for counter measurements
s390/cpum_cf: introduce kernel_cpumcf_alert() to obtain measurement alerts
...
Pull networking updates from David Miller:
"Here we go, another merge window full of networking and #ebpf changes:
1) Snoop DHCPACKS in batman-adv to learn MAC/IP pairs in the DHCP
range without dealing with floods of ARP traffic, from Linus
Lüssing.
2) Throttle buffered multicast packet transmission in mt76, from
Felix Fietkau.
3) Support adaptive interrupt moderation in ice, from Brett Creeley.
4) A lot of struct_size conversions, from Gustavo A. R. Silva.
5) Add peek/push/pop commands to bpftool, as well as bash completion,
from Stanislav Fomichev.
6) Optimize sk_msg_clone(), from Vakul Garg.
7) Add SO_BINDTOIFINDEX, from David Herrmann.
8) Be more conservative with local resends due to local congestion,
from Yuchung Cheng.
9) Allow vetoing of unsupported VXLAN FDBs, from Petr Machata.
10) Add health buffer support to devlink, from Eran Ben Elisha.
11) Add TXQ scheduling API to mac80211, from Toke Høiland-Jørgensen.
12) Add statistics to basic packet scheduler filter, from Cong Wang.
13) Add GRE tunnel support for mlxsw Spectrum-2, from Nir Dotan.
14) Lots of new IP tunneling forwarding tests, also from Nir Dotan.
15) Add 3ad stats to bonding, from Nikolay Aleksandrov.
16) Lots of probing improvements for bpftool, from Quentin Monnet.
17) Various nfp drive #ebpf JIT improvements from Jakub Kicinski.
18) Allow #ebpf programs to access gso_segs from skb shared info, from
Eric Dumazet.
19) Add sock_diag support for AF_XDP sockets, from Björn Töpel.
20) Support 22260 iwlwifi devices, from Luca Coelho.
21) Use rbtree for ipv6 defragmentation, from Peter Oskolkov.
22) Add JMP32 instruction class support to #ebpf, from Jiong Wang.
23) Add spinlock support to #ebpf, from Alexei Starovoitov.
24) Support 256-bit keys and TLS 1.3 in ktls, from Dave Watson.
25) Add device infomation API to devlink, from Jakub Kicinski.
26) Add new timestamping socket options which are y2038 safe, from
Deepa Dinamani.
27) Add RX checksum offloading for various sh_eth chips, from Sergei
Shtylyov.
28) Flow offload infrastructure, from Pablo Neira Ayuso.
29) Numerous cleanups, improvements, and bug fixes to the PHY layer
and many drivers from Heiner Kallweit.
30) Lots of changes to try and make packet scheduler classifiers run
lockless as much as possible, from Vlad Buslov.
31) Support BCM957504 chip in bnxt_en driver, from Erik Burrows.
32) Add concurrency tests to tc-tests infrastructure, from Vlad
Buslov.
33) Add hwmon support to aquantia, from Heiner Kallweit.
34) Allow 64-bit values for SO_MAX_PACING_RATE, from Eric Dumazet.
And I would be remiss if I didn't thank the various major networking
subsystem maintainers for integrating much of this work before I even
saw it. Alexei Starovoitov, Daniel Borkmann, Pablo Neira Ayuso,
Johannes Berg, Kalle Valo, and many others. Thank you!"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2207 commits)
net/sched: avoid unused-label warning
net: ignore sysctl_devconf_inherit_init_net without SYSCTL
phy: mdio-mux: fix Kconfig dependencies
net: phy: use phy_modify_mmd_changed in genphy_c45_an_config_aneg
net: dsa: mv88e6xxx: add call to mv88e6xxx_ports_cmode_init to probe for new DSA framework
selftest/net: Remove duplicate header
sky2: Disable MSI on Dell Inspiron 1545 and Gateway P-79
net/mlx5e: Update tx reporter status in case channels were successfully opened
devlink: Add support for direct reporter health state update
devlink: Update reporter state to error even if recover aborted
sctp: call iov_iter_revert() after sending ABORT
team: Free BPF filter when unregistering netdev
ip6mr: Do not call __IP6_INC_STATS() from preemptible context
isdn: mISDN: Fix potential NULL pointer dereference of kzalloc
net: dsa: mv88e6xxx: support in-band signalling on SGMII ports with external PHYs
cxgb4/chtls: Prefix adapter flags with CXGB4
net-sysfs: Switch to bitmap_zalloc()
mellanox: Switch to bitmap_zalloc()
bpf: add test cases for non-pointer sanitiation logic
mlxsw: i2c: Extend initialization by querying resources data
...
Every in-kernel use of this function defined it to KERNEL_DS (either as
an actual define, or as an inline function). It's an entirely
historical artifact, and long long long ago used to actually read the
segment selector valueof '%ds' on x86.
Which in the kernel is always KERNEL_DS.
Inspired by a patch from Jann Horn that just did this for a very small
subset of users (the ones in fs/), along with Al who suggested a script.
I then just took it to the logical extreme and removed all the remaining
gunk.
Roughly scripted with
git grep -l '(get_ds())' -- :^tools/ | xargs sed -i 's/(get_ds())/(KERNEL_DS)/'
git grep -lw 'get_ds' -- :^tools/ | xargs sed -i '/^#define get_ds()/d'
plus manual fixups to remove a few unusual usage patterns, the couple of
inline function cases and to fix up a comment that had become stale.
The 'get_ds()' function remains in an x86 kvm selftest, since in user
space it actually does something relevant.
Inspired-by: Jann Horn <jannh@google.com>
Inspired-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Clarify KVM related kernel messages
- Interrupt cleanup
- Introduction of the Guest Information Block (GIB)
- Preparation for processor subfunctions in cpu model
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJcb9iJAAoJEONU5rjiOLn4mI8P/1J3IyN3imnZUkTM5JOMWhNM
TSwh5obvn7dT6URZ6BgM1DWIz9E/FKrEb2kU4xr1hwf/a69Q1cYKVmHSnzzIpxHQ
ZNjr7QbcBCsVJ8LtasOoMmgGnVvtBYKKHr4J8UcqeW9raP3YfPJmqyETufiE2lFy
G50r8EBFr9rPh7nK7ImAabKC/7Q/qxZ0729m71cu729/uBb/Wf6frqaDmFlA8362
YZC7KY+xEHZbWqKQqAt/x1TWAOb7nA5dCzemeRckNrs5+FN7rSBrje6SbWApZPfn
weteCVbJMLCoRMUTFjRy3YNz1x0gAC9VQT6Qz5Kz7dColVfJjTPWdYuKpbRsj+n1
PEv1uuDBNbDqdS29KG3Dk9cfzUgAU12g+Xsb+3168HsQbU7XU1v6gCoRaR8ccaoq
3k8Em0xusHa+uGI6K4knKmWboRrCA6FWHIaink4B2K7qIaVdWqTebhHaDiDx8qB8
JRNjxQDho92FpRzxHyajHtamFKPjGT/Guc0yWMIrPHBn97GktUnDD6E5AdhTRVxs
aXTZv7XFq5j307lc3qWsdAf4zGEaPbi9f2nHgFK8hJf+z560CmNbye9Rw6L96Lil
gy0rvSQgN+3xBtSKvq3DNrgoouupOS6kFu5iyYLBS8UUOztXttKEzTCs+M87/3AP
fphwixKEEXsMRWR2SJvG
=YeIb
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
KVM: s390: Features for 5.1
- Clarify KVM related kernel messages
- Interrupt cleanup
- Introduction of the Guest Information Block (GIB)
- Preparation for processor subfunctions in cpu model
While we will not implement interception for query functions yet, we can
and should disable functions that have a control bit based on the given
CPU model.
Let us start with enabling the subfunction interface.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Introduce a PMU device named cpum_cf_diag. It extracts the
values of all counters in all authorized counter sets and stores
them as event raw data. This is done with the STORE CPU COUNTER
MULTIPLE instruction to speed up access. All counter sets
fit into one buffer. The values of each counter are taken
when the event is started on the performance sub-system and when
the event is stopped.
This results in counter values available at the start and
at the end of the measurement time frame. The difference is
calculated for each counter. The differences of all
counters are then saved as event raw data in the perf.data
file.
The counter values are accompanied by the time stamps
when the counter set was started and when the counter set
was stopped. This data is part of a trailer entry which
describes the time frame, counter set version numbers,
CPU speed, and machine type for later analysis.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Reviewed-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce the ctr_stcctm() function as wrapper function to extract counters
from a particular counter set. Note that the counter set is part of the
stcctm instruction opcode, few indirections are necessary to specify the
counter set as variable.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
A preparation to move out common CPU-MF counter facility support
functions, first introduce a function that indicates whether the
support is ready to use.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the stcctm5() function to extract counters from the MT-diagnostic
counter set with the stcctm() function. For readability, introduce an
enum to map the counter sets names to respective numbers for the stcctm
instruction.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add support for the STORE CPU COUNTER MULTIPLE instruction to extract
a range of counters from a counter set.
An assembler macro is used to create the instruction opcode because
the counter set identifier is part of the instruction and, thus,
cannot be easily specified as parameter.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce a minimal interface for doing counter measurements of small
units of work within the kernel. Use the kernel_cpumcf_begin() function
start a measurement session and, later, stop it with kernel_cpumcf_end().
During the measreument session, you can enable and start/stop counter sets
by using ctr_set_* functions. To make these changes effective use the
lcctl() function. You can then use the ecctr() function to extract counters
from the different counter sets.
Please note that you have to check whether the counter sets to be enabled
are authorized.
Note that when a measurement session is active, other users cannot perform
counter measurements. In such cases, kernel_cpumcf_begin() indicates this
with returning -EBUSY. If the counter facility is not available,
kernel_cpumcf_begin() returns -ENODEV.
Note that this interface is restricted to the current CPU and, thus,
preemption must be turned off.
Example:
u32 state, err;
u64 cycles, insn;
err = kernel_cpumcf_begin();
if (err)
goto out_busy;
state = 0;
ctr_set_enable(&state, CPUMF_CTR_SET_BASIC);
ctr_set_start(&state, CPUMF_CTR_SET_BASIC);
err = lcctl(state);
if (err)
goto ;
/* ... do your work ... */
ctr_set_stop(&state, CPUMF_CTR_SET_BASIC);
err = lcctl(state);
if (err)
goto out;
cycles = insn = 0;
ecctr(0, &cycles);
ecctr(1, &insn);
/* ... */
kernel_cpumcf_end();
out_busy:
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
During a __kernel_cpumcf_begin()/end() session, save measurement alerts
for the counter facility in the per-CPU cpu_cf_events variable.
Users can obtain and, optionally, clear the alerts by calling
kernel_cpumcf_alert() to specifically handle alerts.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make the struct cpu_cf_events and the respective per-CPU variable available
to in-kernel users. Access to this per-CPU variable shall be done between
the calls to __kernel_cpumcf_begin() and __kernel_cpumcf_end().
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Prepare the counter facility support to be used by other in-kernel
users. The first step introduces the __kernel_cpumcf_begin() and
__kernel_cpumcf_end() functions to reserve the counter facility
for doing measurements and to release after the measurements are
done.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move counter set specific controls and functions to the asm/cpu_mcf.h
header file containg all counter facility support definitions. Also
adapt few variable names and header file includes. No functional changes.
Signed-off-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound. x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.
Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots. Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.
Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[heiko.carstens@de.ibm.com]:
-----
Laura Abbott reported that the kernel doesn't build anymore with gcc 9,
due to the "X" constraint. Ilya provided the gcc 9 patch "S/390:
Introduce jdd constraint" which introduces the new "jdd" constraint
which fixes this.
-----
The support for section anchors on S/390 introduced in gcc9 has changed
the behavior of "X" constraint, which can now produce register
references. Since existing constraints, in particular, "i", do not fit
the intended use case on S/390, the new machine-specific "jdd"
constraint was introduced. This patch makes jump labels use "jdd"
constraint when building with gcc9.
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This series finally gets us to the point of having system calls with
64-bit time_t on all architectures, after a long time of incremental
preparation patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures
using the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call
that includes a 'struct timespec' argument, or a structure containing
a timespec or (in case of clock_adjtime) timeval. Not included here
are new versions of getitimer/setitimer and getrusage/waitid, which
are planned for the future but only needed to make a consistent API
rather than for correct operation beyond y2038. These four system
calls are based on 'timeval', and it has not been finally decided
what the replacement kernel interface will use instead.
So far, I have done a lot of build testing across most architectures,
which has found a number of bugs. Runtime testing so far included
testing LTP on 32-bit ARM with the existing system calls, to ensure
we do not regress for existing binaries, and a test with a 32-bit
x86 build of LTP against a modified version of the musl C library
that has been adapted to the new system call interface [3].
This library can be used for testing on all architectures supported
by musl-1.1.21, but it is not how the support is getting integrated
into the official musl release. Official musl support is planned
but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep
PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01
Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ
jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P
yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT
xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko
XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA
Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35
E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN
4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp
wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb
K4UWcKnhtEom0DgK08vY
=IZVb
-----END PGP SIGNATURE-----
Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull y2038 - time64 system calls from Arnd Bergmann:
This series finally gets us to the point of having system calls with 64-bit
time_t on all architectures, after a long time of incremental preparation
patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures using
the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call that
includes a 'struct timespec' argument, or a structure containing a timespec
or (in case of clock_adjtime) timeval. Not included here are new versions
of getitimer/setitimer and getrusage/waitid, which are planned for the
future but only needed to make a consistent API rather than for correct
operation beyond y2038. These four system calls are based on 'timeval', and
it has not been finally decided what the replacement kernel interface will
use instead.
So far, I have done a lot of build testing across most architectures, which
has found a number of bugs. Runtime testing so far included testing LTP on
32-bit ARM with the existing system calls, to ensure we do not regress for
existing binaries, and a test with a 32-bit x86 build of LTP against a
modified version of the musl C library that has been adapted to the new
system call interface [3]. This library can be used for testing on all
architectures supported by musl-1.1.21, but it is not how the support is
getting integrated into the official musl release. Official musl support is
planned but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
The system call tables have diverged a bit over the years, and a number
of the recent additions never made it into all architectures, for one
reason or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all
architectures but that we definitely want there. This includes
{,f}statfs64() and get{eg,eu,g,p,u,pp}id() on alpha, which have
been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like
what we do on other architectures, while keeping the 31-bit
pointer extension. This was merged as a shared branch by the
s390 maintainers and is included here in order to base the other
patches on top.
- Add the separate ipc syscalls on all architectures that
traditionally only had sys_ipc(). This version is done without
support for IPC_OLD that is we have in sys_ipc. The
new semtimedop_time64 syscall will only be added here, not
in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably
don't need everywhere, in particular pkey_* and rseq,
for the purpose of symmetry: if it's in asm-generic/unistd.h,
it makes sense to have it everywhere. I expect that any future
system calls will get assigned on all platforms together, even
when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future
calls. In combination with the generated tables, this hopefully
makes it easier to add new calls across all architectures
together.
All of the above are technically separate from the y2038 work,
but are done as preparation before we add the new 64-bit time_t
system calls everywhere, providing a common baseline set of system
calls.
I expect that glibc and other libraries that want to use 64-bit
time_t will require linux-5.1 kernel headers for building in
the future, and at a much later point may also require linux-5.1
or a later version as the minimum kernel at runtime. Having a
common baseline then allows the removal of many architecture or
kernel version specific workarounds.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf6XAAoJEGCrR//JCVInIm4P/AlkMmQRa/B2ziWMW6PifPoI
v18r44017rA1BPENyZvumJUdM5mDvNofOW8F2DYQ7Uiys2YtXenwe/Cf8LHn2n6c
TMXGQryQpvNmfDCyU+0UjF8m2+poFMrL4aRTXtjODh1YTsPNgeDC+KFMCAAtZmZd
cVbXFudtbdYKD/pgCX4SI1CWAMBiXe2e+ukPdJVr+iqusCMTApf+GOuyvDBZY9s/
vURb+tIS87HZ/jehWfZFSuZt+Gu7b3ijUXNC8v9qSIxNYekw62vBNl6F09HE79uB
Bv4OujAODqKvI9gGyydBzLJNzaMo0ryQdusyqcJHT7MY/8s+FwcYAXyTlQ3DbbB4
2u/c+58OwJ9Zk12p4LXZRA47U+vRhQt2rO4+zZWs2txNNJY89ZvCm/Z04KOiu5Xz
1Nnj607KGzthYRs2gs68AwzGGyf0uykIQ3RcaJLIBlX1Nd8BWO0ZgAguCvkXbQMX
XNXJTd92HmeuKKpiO0n/M4/mCeP0cafBRPCZbKlHyTl0Jeqd/HBQEO9Z8Ifwyju3
mXz9JCR9VlPCkX605keATbjtPGZf3XQtaXlQnezitDudXk8RJ33EpPcbhx76wX7M
Rux37ByqEOzk4wMGX9YQyNU7z7xuVg4sJAa2LlJqYeKXHtym+u3gG7SGP5AsYjmk
6mg2+9O2yZuLhQtOtrwm
=s4wf
-----END PGP SIGNATURE-----
Merge tag 'y2038-syscall-cleanup' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull preparatory work for y2038 changes from Arnd Bergmann:
System call unification and cleanup
The system call tables have diverged a bit over the years, and a number of
the recent additions never made it into all architectures, for one reason
or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all architectures
but that we definitely want there. This includes {,f}statfs64() and
get{eg,eu,g,p,u,pp}id() on alpha, which have been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like what we
do on other architectures, while keeping the 31-bit pointer
extension. This was merged as a shared branch by the s390 maintainers
and is included here in order to base the other patches on top.
- Add the separate ipc syscalls on all architectures that traditionally
only had sys_ipc(). This version is done without support for IPC_OLD
that is we have in sys_ipc. The new semtimedop_time64 syscall will only
be added here, not in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably don't need
everywhere, in particular pkey_* and rseq, for the purpose of symmetry:
if it's in asm-generic/unistd.h, it makes sense to have it everywhere. I
expect that any future system calls will get assigned on all platforms
together, even when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future calls. In
combination with the generated tables, this hopefully makes it easier to
add new calls across all architectures together.
All of the above are technically separate from the y2038 work, but are done
as preparation before we add the new 64-bit time_t system calls everywhere,
providing a common baseline set of system calls.
I expect that glibc and other libraries that want to use 64-bit time_t will
require linux-5.1 kernel headers for building in the future, and at a much
later point may also require linux-5.1 or a later version as the minimum
kernel at runtime. Having a common baseline then allows the removal of many
architecture or kernel version specific workarounds.
There is no need to define these PNETID related constants in
the pnet.h file, since they are just used locally within pnet.c.
Just code cleanup, no functional change.
Signed-off-by: Ursula Braun <ubraun@linux.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The z14 introduced alignment hints to increase the performance of
vector loads and stores. The kernel uses an implicit alignmenet
of 8 bytes for the vector registers, set the alignment hint to 3.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
There is no need to use void pointers, all drivers are in agreement
about the underlying data structure of the SBAL arrays.
Signed-off-by: Julian Wiedmann <jwi@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.
However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.
Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.
This is only a cleanup patch and it should not change any behavior.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
These are all for ignoring the lack of obsolete system calls,
which have been marked the same way in scripts/checksyscall.sh,
so these can be removed.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
The patch implements a handler for GIB alert interruptions
on the host. Its task is to alert guests that interrupts are
pending for them.
A GIB alert interrupt statistic counter is added as well:
$ cat /proc/interrupts
CPU0 CPU1
...
GAL: 23 37 [I/O] GIB Alert
...
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Message-Id: <20190131085247.13826-14-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add the Interruption Alert Mask (IAM) to the architecture specific
kvm struct. This mask in the GISA is used to define for which ISC
a GIB alert will be issued.
The functions kvm_s390_gisc_register() and kvm_s390_gisc_unregister()
are used to (un)register a GISC (guest ISC) with a virtual machine and
its GISA.
Upon successful completion, kvm_s390_gisc_register() returns the
ISC to be used for GIB alert interruptions. A negative return code
indicates an error during registration.
Theses functions will be used by other adapter types like AP and PCI to
request pass-through interruption support.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Acked-by: Pierre Morel <pmorel@linux.ibm.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Message-Id: <20190131085247.13826-12-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Adding the kvm reference to struct sie_page2 will allow to
determine the kvm a given gisa belongs to:
container_of(gisa, struct sie_page2, gisa)->kvm
This functionality will be required to process a gisa in
gib alert interruption context.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Message-Id: <20190131085247.13826-11-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The Guest Information Block (GIB) links the GISA of all guests
that have adapter interrupts pending. These interrupts cannot be
delivered because all vcpus of these guests are currently in WAIT
state or have masked the respective Interruption Sub Class (ISC).
If enabled, a GIB alert is issued on the host to schedule these
guests to run suitable vcpus to consume the pending interruptions.
This mechanism allows to process adapter interrupts for currently
not running guests.
The GIB is created during host initialization and associated with
the Adapter Interruption Facility in case an Adapter Interruption
Virtualization Facility is available.
The GIB initialization and thus the activation of the related code
will be done in an upcoming patch of this series.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Message-Id: <20190131085247.13826-10-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch implements the Set Guest Information Block operation
to request association or disassociation of a Guest Information
Block (GIB) with the Adapter Interruption Facility. The operation
is required to receive GIB alert interrupts for guest adapters
in conjunction with AIV and GISA.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Sebastian Ott <sebott@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Message-Id: <20190131085247.13826-9-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use this struct analog to the kvm interruption structs
for kvm emulated floating and local interruptions.
GIB handling will add further fields to this structure as
required.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Message-Id: <20190131085247.13826-8-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The vcpu idle_mask state is used by but not specific
to the emulated floating interruptions. The state is
relevant to gisa related interruptions as well.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Message-Id: <20190131085247.13826-4-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use a consistent bitmap declaration throughout the code.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Message-Id: <20190131085247.13826-3-mimu@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Sebastian Ott <sebott@linux.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sebastian Ott <sebott@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The s390x diagnose 318 instruction sets the control program name code (CPNC)
and control program version code (CPVC) to provide useful information
regarding the OS during debugging. The CPNC is explicitly set to 4 to
indicate a Linux/KVM environment.
The CPVC is a 7-byte value containing:
- 3-byte Linux version code, currently set to 0
- 3-byte unique value, currently set to 0
- 1-byte trailing null
Signed-off-by: Collin Walling <walling@linux.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Message-Id: <1544135405-22385-2-git-send-email-walling@linux.ibm.com>
[set version code to 0 until the structure is fully defined]
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Most architectures define system call numbers for the rseq and pkey system
calls, even when they don't support the features, and perhaps never will.
Only a few architectures are missing these, so just define them anyway
for consistency. If we decide to add them later to one of these, the
system call numbers won't get out of sync then.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
When converting to autogenerated compat syscall wrappers all system
call entry points got a different symbol name: they all got a __s390x_
prefix.
This caused breakage with system call tracing, since an appropriate
arch_syscall_match_sym_name() was not provided. Add this function, and
while at it also add code to avoid compat system call tracing. s390
has different system call tables for native 64 bit system calls and
compat system calls. This isn't really supported in the common
code. However there are hardly any compat binaries left, therefore
just ignore compat system calls, like x86 and arm64 also do for the
same reason.
Fixes: aa0d6e70d3 ("s390: autogenerate compat syscall wrappers")
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Avoid using arch specific implementations of string/memory functions
with KASAN since gcc cannot instrument asm code memory accesses and
many bugs could be missed.
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Any system call that takes a pointer argument on s390 requires
a wrapper function to do a 31-to-64 zero-extension, these are
currently generated in arch/s390/kernel/compat_wrapper.c.
On arm64 and x86, we already generate similar wrappers for all
system calls in the place of their definition, just for a different
purpose (they load the arguments from pt_regs).
We can do the same thing here, by adding an asm/syscall_wrapper.h
file with a copy of all the relevant macros to override the generic
version. Besides the addition of the compat entry point, these also
rename the entry points with a __s390_ or __s390x_ prefix, similar
to what we do on arm64 and x86. This in turn requires renaming
a few things, and adding a proper ni_syscall() entry point.
In order to still compile system call definitions that pass an
loff_t argument, the __SC_COMPAT_CAST() macro checks for that
and forces an -ENOSYS error, which was the best I could come up
with. Those functions must obviously not get called from user
space, but instead require hand-written compat_sys_*() handlers,
which fortunately already exist.
Link: https://lore.kernel.org/lkml/20190116131527.2071570-5-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
[heiko.carstens@de.ibm.com: compile fix for !CONFIG_COMPAT]
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
s390 has an almost identical copy of the code in kernel/uid16.c.
The problem here is that it requires calling the regular system calls,
which the generic implementation handles correctly, but the internal
interfaces are not declared in a global header for this.
The best way forward here seems to be to just use the generic code and
delete the s390 specific implementation.
I keep the changes to uapi/asm/posix_types.h inside of an #ifdef check
so user space does not observe any changes. As some of the system calls
pass pointers, we also need wrappers in compat_wrapper.c, which I add
for all calls with at least one argument. All those wrappers can be
removed in a later step.
Link: https://lore.kernel.org/lkml/20190116131527.2071570-4-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This introduces a new generic SOL_SOCKET-level socket option called
SO_BINDTOIFINDEX. It behaves similar to SO_BINDTODEVICE, but takes a
network interface index as argument, rather than the network interface
name.
User-space often refers to network-interfaces via their index, but has
to temporarily resolve it to a name for a call into SO_BINDTODEVICE.
This might pose problems when the network-device is renamed
asynchronously by other parts of the system. When this happens, the
SO_BINDTODEVICE might either fail, or worse, it might bind to the wrong
device.
In most cases user-space only ever operates on devices which they
either manage themselves, or otherwise have a guarantee that the device
name will not change (e.g., devices that are UP cannot be renamed).
However, particularly in libraries this guarantee is non-obvious and it
would be nice if that race-condition would simply not exist. It would
make it easier for those libraries to operate even in situations where
the device-name might change under the hood.
A real use-case that we recently hit is trying to start the network
stack early in the initrd but make it survive into the real system.
Existing distributions rename network-interfaces during the transition
from initrd into the real system. This, obviously, cannot affect
devices that are up and running (unless you also consider moving them
between network-namespaces). However, the network manager now has to
make sure its management engine for dormant devices will not run in
parallel to these renames. Particularly, when you offload operations
like DHCP into separate processes, these might setup their sockets
early, and thus have to resolve the device-name possibly running into
this race-condition.
By avoiding a call to resolve the device-name, we no longer depend on
the name and can run network setup of dormant devices in parallel to
the transition off the initrd. The SO_BINDTOIFINDEX ioctl plugs this
race.
Reviewed-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While "s390/vdso: avoid 64-bit vdso mapping for compat tasks" fixed
64-bit vdso mapping for compat tasks under gdb it introduced another
problem. "compat_mm" flag is not inherited during fork and when
31-bit process forks a child (but does not perform exec) it ends up
with 64-bit vdso. To address that, init_new_context (which is called
during fork and exec) now initialize compat_mm based on thread TIF_31BIT
flag. Later compat_mm is adjusted in arch_setup_additional_pages, which
is called during exec.
Fixes: d1befa6582 ("s390/vdso: avoid 64-bit vdso mapping for compat tasks")
Reported-by: Stefan Liebler <stli@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@vger.kernel.org> # v4.20+
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The ASCE of an mm_struct can be modified after a task has been created,
e.g. via crst_table_downgrade for a compat process. The active_mm logic
to avoid the switch_mm call if the next task is a kernel thread can
lead to a situation where switch_mm is called where 'prev == next' is
true but 'prev->context.asce == next->context.asce' is not.
This can lead to a situation where a CPU uses the outdated ASCE to run
a task. The result can be a crash, endless loops and really subtle
problem due to TLBs being created with an invalid ASCE.
Cc: stable@kernel.org # v3.15+
Fixes: 53e857f308 ("s390/mm,tlb: race of lazy TLB flush vs. recreation")
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Now that Kbuild automatically creates asm-generic wrappers for missing
mandatory headers, it is redundant to list the same headers in
generic-y and mandatory-y.
Suggested-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
These comments are leftovers of commit fcc8487d47 ("uapi: export all
headers under uapi directories").
Prior to that commit, exported headers must be explicitly added to
header-y. Now, all headers under the uapi/ directories are exported.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Merge more updates from Andrew Morton:
- procfs updates
- various misc bits
- lib/ updates
- epoll updates
- autofs
- fatfs
- a few more MM bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits)
mm/page_io.c: fix polled swap page in
checkpatch: add Co-developed-by to signature tags
docs: fix Co-Developed-by docs
drivers/base/platform.c: kmemleak ignore a known leak
fs: don't open code lru_to_page()
fs/: remove caller signal_pending branch predictions
mm/: remove caller signal_pending branch predictions
arch/arc/mm/fault.c: remove caller signal_pending_branch predictions
kernel/sched/: remove caller signal_pending branch predictions
kernel/locking/mutex.c: remove caller signal_pending branch predictions
mm: select HAVE_MOVE_PMD on x86 for faster mremap
mm: speed up mremap by 20x on large regions
mm: treewide: remove unused address argument from pte_alloc functions
initramfs: cleanup incomplete rootfs
scripts/gdb: fix lx-version string output
kernel/kcov.c: mark write_comp_data() as notrace
kernel/sysctl: add panic_print into sysctl
panic: add options to print system info when panic happens
bfs: extra sanity checking and static inode bitmap
exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
...
Patch series "Add support for fast mremap".
This series speeds up the mremap(2) syscall by copying page tables at
the PMD level even for non-THP systems. There is concern that the extra
'address' argument that mremap passes to pte_alloc may do something
subtle architecture related in the future that may make the scheme not
work. Also we find that there is no point in passing the 'address' to
pte_alloc since its unused. This patch therefore removes this argument
tree-wide resulting in a nice negative diff as well. Also ensuring
along the way that the enabled architectures do not do anything funky
with the 'address' argument that goes unnoticed by the optimization.
Build and boot tested on x86-64. Build tested on arm64. The config
enablement patch for arm64 will be posted in the future after more
testing.
The changes were obtained by applying the following Coccinelle script.
(thanks Julia for answering all Coccinelle questions!).
Following fix ups were done manually:
* Removal of address argument from pte_fragment_alloc
* Removal of pte_alloc_one_fast definitions from m68k and microblaze.
// Options: --include-headers --no-includes
// Note: I split the 'identifier fn' line, so if you are manually
// running it, please unsplit it so it runs for you.
virtual patch
@pte_alloc_func_def depends on patch exists@
identifier E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
type T2;
@@
fn(...
- , T2 E2
)
{ ... }
@pte_alloc_func_proto_noarg depends on patch exists@
type T1, T2, T3, T4;
identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1, T2);
+ T3 fn(T1);
|
- T3 fn(T1, T2, T4);
+ T3 fn(T1, T2);
)
@pte_alloc_func_proto depends on patch exists@
identifier E1, E2, E4;
type T1, T2, T3, T4;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1 E1, T2 E2);
+ T3 fn(T1 E1);
|
- T3 fn(T1 E1, T2 E2, T4 E4);
+ T3 fn(T1 E1, T2 E2);
)
@pte_alloc_func_call depends on patch exists@
expression E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
fn(...
-, E2
)
@pte_alloc_macro depends on patch exists@
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
identifier a, b, c;
expression e;
position p;
@@
(
- #define fn(a, b, c) e
+ #define fn(a, b) e
|
- #define fn(a, b) e
+ #define fn(a) e
)
Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When testing in userspace, UBSAN pointed out that shifting into the sign
bit is undefined behaviour. It doesn't really make sense to ask for the
highest set bit of a negative value, so just turn the argument type into
an unsigned int.
Some architectures (eg ppc) already had it declared as an unsigned int,
so I don't expect too many problems.
Link: http://lkml.kernel.org/r/20181105221117.31828-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- A larger update for the zcrypt / AP bus code
+ Update two inline assemblies in the zcrypt driver to make gcc happy
+ Add a missing reply code for invalid special commands for zcrypt
+ Allow AP device reset to be triggered from user space
+ Split the AP scan function into smaller, more readable functions
- Updates for vfio-ccw and vfio-ap
+ Add maintainers and reviewer for vfio-ccw
+ Include facility.h in vfio_ap_drv.c to avoid fragile include chain
+ Simplicy vfio-ccw state machine
- Use the common code version of bust_spinlocks
- Make use of the DEFINE_SHOW_ATTRIBUTE
- Fix three incorrect file permissions in the DASD driver
- Remove bit spin-lock from the PCI interrupt handler
- Fix GFP_ATOMIC vs GFP_KERNEL in the PCI code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJcLGoIAAoJEDjwexyKj9rgyN8IANaQvHbVBA3vz/Ssb6ZiR/K6
rTBoXjJQqyJ/cf6RZeFi1b4Douv4QWJw3s06KXbrdmK/ONm5rypXVfXlAhY71pg5
40BUb92MGXhJw6JFDQ50Udd6Z5r7r6RYR1puyg4tzHmBuNVL7FB5RqFm92UOkMOD
ZI03G1sfA6/1XUKhNfCfNBB6Jt6V+iAAex8bgrp09wAeoGnAO20oFuis9u7pLlNm
a5Cp9n7faXEN+qes1iBtVDr5o7opuhanwWKnhvsYTAbpOo7jGJ/47IPKT2Wfmurd
wkMZBEC+Ntk/IfkaBzp7azeISZD5EbucTcgo/I9nzq/aWeflfXXeYl7My0aQB48=
=Lqrh
-----END PGP SIGNATURE-----
Merge tag 's390-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
- A larger update for the zcrypt / AP bus code:
+ Update two inline assemblies in the zcrypt driver to make gcc happy
+ Add a missing reply code for invalid special commands for zcrypt
+ Allow AP device reset to be triggered from user space
+ Split the AP scan function into smaller, more readable functions
- Updates for vfio-ccw and vfio-ap
+ Add maintainers and reviewer for vfio-ccw
+ Include facility.h in vfio_ap_drv.c to avoid fragile include chain
+ Simplicy vfio-ccw state machine
- Use the common code version of bust_spinlocks
- Make use of the DEFINE_SHOW_ATTRIBUTE
- Fix three incorrect file permissions in the DASD driver
- Remove bit spin-lock from the PCI interrupt handler
- Fix GFP_ATOMIC vs GFP_KERNEL in the PCI code
* tag 's390-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/zcrypt: rework ap scan bus code
s390/zcrypt: make sysfs reset attribute trigger queue reset
s390/pci: fix sleeping in atomic during hotplug
s390/pci: remove bit_lock usage in interrupt handler
s390/drivers: fix proc/debugfs file permissions
s390: convert to DEFINE_SHOW_ATTRIBUTE
MAINTAINERS/vfio-ccw: add Farhan and Eric, make Halil Reviewer
vfio: ccw: Merge BUSY and BOXED states
s390: use common bust_spinlocks()
s390/zcrypt: improve special ap message cmd handling
s390/ap: rework assembler functions to use unions for in/out register variables
s390: vfio-ap: include <asm/facility> for test_facility()
PREEMPT_NEED_RESCHED is never used directly, so move it into the arch
code where it can potentially be implemented using either a different
bit in the preempt count or as an entirely separate entity.
Cc: Robert Love <rml@tech9.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There exist very few ap messages which need to have the 'special' flag
enabled. This flag tells the firmware layer to do some pre- and maybe
postprocessing. However, it may happen that this special flag is
enabled but the firmware is unable to deal with this kind of message
and thus returns with reply code 0x41. For example older firmware may
not know the newest messages triggered by the zcrypt device driver and
thus react with reject and the named reply code. Unfortunately this
reply code is not known to the zcrypt error routines and thus default
behavior is to switch the ap queue offline.
This patch now makes the ap error routine aware of the reply code and
so userspace is informed about the bad processing result but the queue
is not switched to offline state any more.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The inline assembler functions ap_aqic() and ap_qact() used two
variables declared on the very same register. One variable was for
input only, the other for output. Looks like newer versions of the gcc
don't like this. Anyway it is a better coding to use one variable
(which may have a union data type) on one register for input and
output. So this patch introduces unions and uses only one variable now
for input and output for GR1 for the PQAP(QACT) and PQAP(QIC)
invocation.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
- A fix for the pgtable_bytes misaccounting on s390. The patch changes
common code part in regard to page table folding and adds extra
checks to mm_[inc|dec]_nr_[pmds|puds].
- Add FORCE for all build targets using if_changed
- Use non-loadable phdr for the .vmlinux.info section to avoid
a segment overlap that confuses kexec
- Cleanup the attribute definition for the diagnostic sampling
- Increase stack size for CONFIG_KASAN=y builds
- Export __node_distance to fix a build error
- Correct return code of a PMU event init function
- An update for the default configs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJb5TIMAAoJEDjwexyKj9rgIH8H/0daZTyxcLwY9gbigaq1Qs4R
/ScmAJJc2U/Qj8b9UskhsmHAUuAufF2oljU16SquP7CBGhtkLRrjPtdh1AMiiZGM
reVF7X5LU8MH0QUoNnKPWAL4DD1q2E99IAEH5TeGIODUG6srqvIHBNtXDWNLPtBf
fpOhJ/NssgxyuYUXi/WnoEjIyP8KABeG6SlpcLzYbmY1hUOIXcixuv39UrL0G5OO
P8ciL+W5rTcPZCnpJ1Xk9hKploT8gWXhMT5QhNnakgMF/25v80+TZy5xRZMuLAmQ
T5SFP6B71o05nLK7fLi3VAIKPv/QibjiyJOEf9uUHdo1XZcD5uRu0EQ/LklLUBU=
=4H06
-----END PGP SIGNATURE-----
Merge tag 's390-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Martin Schwidefsky:
- A fix for the pgtable_bytes misaccounting on s390. The patch changes
common code part in regard to page table folding and adds extra
checks to mm_[inc|dec]_nr_[pmds|puds].
- Add FORCE for all build targets using if_changed
- Use non-loadable phdr for the .vmlinux.info section to avoid a
segment overlap that confuses kexec
- Cleanup the attribute definition for the diagnostic sampling
- Increase stack size for CONFIG_KASAN=y builds
- Export __node_distance to fix a build error
- Correct return code of a PMU event init function
- An update for the default configs
* tag 's390-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/perf: Change CPUM_CF return code in event init function
s390: update defconfigs
s390/mm: Fix ERROR: "__node_distance" undefined!
s390/kasan: increase instrumented stack size to 64k
s390/cpum_sf: Rework attribute definition for diagnostic sampling
s390/mm: fix mis-accounting of pgtable_bytes
mm: add mm_pxd_folded checks to pgtable_bytes accounting functions
mm: introduce mm_[p4d|pud|pmd]_folded
mm: make the __PAGETABLE_PxD_FOLDED defines non-empty
s390: avoid vmlinux segments overlap
s390/vdso: add missing FORCE to build targets
s390/decompressor: add missing FORCE to build targets
The __no_sanitize_address_or_inline and __no_kasan_or_inline defines
are almost identical. The only difference is that __no_kasan_or_inline
does not have the 'notrace' attribute.
To be able to replace __no_sanitize_address_or_inline with the older
definition, add 'notrace' to __no_kasan_or_inline and change to two
users of __no_sanitize_address_or_inline in the s390 code.
The 'notrace' option is necessary for e.g. the __load_psw_mask function
in arch/s390/include/asm/processor.h. Without the option it is possible
to trace __load_psw_mask which leads to kernel stack overflow.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pointed-out-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case a fork or a clone system fails in copy_process and the error
handling does the mmput() at the bad_fork_cleanup_mm label, the
following warning messages will appear on the console:
BUG: non-zero pgtables_bytes on freeing mm: 16384
The reason for that is the tricks we play with mm_inc_nr_puds() and
mm_inc_nr_pmds() in init_new_context().
A normal 64-bit process has 3 levels of page table, the p4d level and
the pud level are folded. On process termination the free_pud_range()
function in mm/memory.c will subtract 16KB from pgtable_bytes with a
mm_dec_nr_puds() call, but there actually is not really a pud table.
One issue with this is the fact that pgtable_bytes is usually off
by a few kilobytes, but the more severe problem is that for a failed
fork or clone the free_pgtables() function is not called. In this case
there is no mm_dec_nr_puds() or mm_dec_nr_pmds() that go together with
the mm_inc_nr_puds() and mm_inc_nr_pmds in init_new_context().
The pgtable_bytes will be off by 16384 or 32768 bytes and we get the
BUG message. The message itself is purely cosmetic, but annoying.
To fix this override the mm_pmd_folded, mm_pud_folded and mm_p4d_folded
function to check for the true size of the address space.
Reported-by: Li Wang <liwang@redhat.com>
Tested-by: Li Wang <liwang@redhat.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Prefer _THIS_IP_ defined in linux/kernel.h.
Most definitions of current_text_addr were the same as _THIS_IP_, but
a few archs had inline assembly instead.
This patch removes the final call site of current_text_addr, making all
of the definitions dead code.
[akpm@linux-foundation.org: fix arch/csky/include/asm/processor.h]
Link: http://lkml.kernel.org/r/20180911182413.180715-1-ndesaulniers@google.com
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance is
much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular hardware
bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
=yEPW
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
Pull timekeeping updates from Thomas Gleixner:
"The timers and timekeeping departement provides:
- Another large y2038 update with further preparations for providing
the y2038 safe timespecs closer to the syscalls.
- An overhaul of the SHCMT clocksource driver
- SPDX license identifier updates
- Small cleanups and fixes all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
tick/sched : Remove redundant cpu_online() check
clocksource/drivers/dw_apb: Add reset control
clocksource: Remove obsolete CLOCKSOURCE_OF_DECLARE
clocksource/drivers: Unify the names to timer-* format
clocksource/drivers/sh_cmt: Add R-Car gen3 support
dt-bindings: timer: renesas: cmt: document R-Car gen3 support
clocksource/drivers/sh_cmt: Properly line-wrap sh_cmt_of_table[] initializer
clocksource/drivers/sh_cmt: Fix clocksource width for 32-bit machines
clocksource/drivers/sh_cmt: Fixup for 64-bit machines
clocksource/drivers/sh_tmu: Convert to SPDX identifiers
clocksource/drivers/sh_mtu2: Convert to SPDX identifiers
clocksource/drivers/sh_cmt: Convert to SPDX identifiers
clocksource/drivers/renesas-ostm: Convert to SPDX identifiers
clocksource: Convert to using %pOFn instead of device_node.name
tick/broadcast: Remove redundant check
RISC-V: Request newstat syscalls
y2038: signal: Change rt_sigtimedwait to use __kernel_timespec
y2038: socket: Change recvmmsg to use __kernel_timespec
y2038: sched: Change sched_rr_get_interval to use __kernel_timespec
y2038: utimes: Rework #ifdef guards for compat syscalls
...
Pull siginfo updates from Eric Biederman:
"I have been slowly sorting out siginfo and this is the culmination of
that work.
The primary result is in several ways the signal infrastructure has
been made less error prone. The code has been updated so that manually
specifying SEND_SIG_FORCED is never necessary. The conversion to the
new siginfo sending functions is now complete, which makes it
difficult to send a signal without filling in the proper siginfo
fields.
At the tail end of the patchset comes the optimization of decreasing
the size of struct siginfo in the kernel from 128 bytes to about 48
bytes on 64bit. The fundamental observation that enables this is by
definition none of the known ways to use struct siginfo uses the extra
bytes.
This comes at the cost of a small user space observable difference.
For the rare case of siginfo being injected into the kernel only what
can be copied into kernel_siginfo is delivered to the destination, the
rest of the bytes are set to 0. For cases where the signal and the
si_code are known this is safe, because we know those bytes are not
used. For cases where the signal and si_code combination is unknown
the bits that won't fit into struct kernel_siginfo are tested to
verify they are zero, and the send fails if they are not.
I made an extensive search through userspace code and I could not find
anything that would break because of the above change. If it turns out
I did break something it will take just the revert of a single change
to restore kernel_siginfo to the same size as userspace siginfo.
Testing did reveal dependencies on preferring the signo passed to
sigqueueinfo over si->signo, so bit the bullet and added the
complexity necessary to handle that case.
Testing also revealed bad things can happen if a negative signal
number is passed into the system calls. Something no sane application
will do but something a malicious program or a fuzzer might do. So I
have fixed the code that performs the bounds checks to ensure negative
signal numbers are handled"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
signal: Guard against negative signal numbers in copy_siginfo_from_user32
signal: Guard against negative signal numbers in copy_siginfo_from_user
signal: In sigqueueinfo prefer sig not si_signo
signal: Use a smaller struct siginfo in the kernel
signal: Distinguish between kernel_siginfo and siginfo
signal: Introduce copy_siginfo_from_user and use it's return value
signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
signal: Fail sigqueueinfo if si_signo != sig
signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
signal/unicore32: Use force_sig_fault where appropriate
signal/unicore32: Generate siginfo in ucs32_notify_die
signal/unicore32: Use send_sig_fault where appropriate
signal/arc: Use force_sig_fault where appropriate
signal/arc: Push siginfo generation into unhandled_exception
signal/ia64: Use force_sig_fault where appropriate
signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
signal/ia64: Use the generic force_sigsegv in setup_frame
signal/arm/kvm: Use send_sig_mceerr
signal/arm: Use send_sig_fault where appropriate
signal/arm: Use force_sig_fault where appropriate
...
Pull locking and misc x86 updates from Ingo Molnar:
"Lots of changes in this cycle - in part because locking/core attracted
a number of related x86 low level work which was easier to handle in a
single tree:
- Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
McKenney, Andrea Parri)
- lockdep scalability improvements and micro-optimizations (Waiman
Long)
- rwsem improvements (Waiman Long)
- spinlock micro-optimization (Matthew Wilcox)
- qspinlocks: Provide a liveness guarantee (more fairness) on x86.
(Peter Zijlstra)
- Add support for relative references in jump tables on arm64, x86
and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)
- Be a lot less permissive on weird (kernel address) uaccess faults
on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
Horn)
- macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
Amit)
- ... and a handful of other smaller changes as well"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
locking/lockdep: Make global debug_locks* variables read-mostly
locking/lockdep: Fix debug_locks off performance problem
locking/pvqspinlock: Extend node size when pvqspinlock is configured
locking/qspinlock_stat: Count instances of nested lock slowpaths
locking/qspinlock, x86: Provide liveness guarantee
x86/asm: 'Simplify' GEN_*_RMWcc() macros
locking/qspinlock: Rework some comments
locking/qspinlock: Re-order code
locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
futex: Replace spin_is_locked() with lockdep
locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
x86/refcount: Work around GCC inlining bug
x86/objtool: Use asm macros to work around GCC inlining bugs
...
When the kernel is built with:
CONFIG_PREEMPT=y
CONFIG_PREEMPT_COUNT=y
"stfle" function used by kasan initialization code makes additional
call to preempt_count_add/preempt_count_sub. To avoid removing kasan
instrumentation from sched code where those functions leave split stfle
function and provide __stfle variant without preemption handling to be
used by Kasan.
Reported-by: Benjamin Block <bblock@linux.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce a new ioctl API and in-kernel API to transform
a variable length key blob of any supported type into a
protected key.
Transforming a secure key blob uses the already existing
function pkey_sec2protk().
Transforming a protected key blob also verifies if the
protected key is still valid. If not, -ENODEV is returned.
Both APIs are described in detail in the header files
arch/s390/include/asm/pkey.h and arch/s390/include/uapi/asm/pkey.h.
Signed-off-by: Ingo Franzki <ifranzki@linux.ibm.com>
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>