Commit Graph

10 Commits

Author SHA1 Message Date
Heiko Carstens e991c24d68 s390/ctl_reg: make __ctl_load a full memory barrier
We have quite a lot of code that depends on the order of the
__ctl_load inline assemby and subsequent memory accesses, like
e.g. disabling lowcore protection and the writing to lowcore.

Since the __ctl_load macro does not have memory barrier semantics, nor
any other dependencies the compiler is, theoretically, free to shuffle
code around. Or in other words: storing to lowcore could happen before
lowcore protection is disabled.

In order to avoid this class of potential bugs simply add a full
memory barrier to the __ctl_load macro.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-01-16 07:27:48 +01:00
Hendrik Brueckner b5510d9b68 s390/fpu: always enable the vector facility if it is available
If the kernel detects that the s390 hardware supports the vector
facility, it is enabled by default at an early stage.  To force
it off, use the novx kernel parameter.  Note that there is a small
time window, where the vector facility is enabled before it is
forced to be off.

With enabling the vector facility by default, the FPU save and
restore functions can be improved.  They do not longer require
to manage expensive control register updates to enable or disable
the vector enablement control for particular processes.

Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-10-14 14:32:08 +02:00
Hendrik Brueckner 9977e886cb s390/kernel: lazy restore fpu registers
Improve the save and restore behavior of FPU register contents to use the
vector extension within the kernel.

The kernel does not use floating-point or vector registers and, therefore,
saving and restoring the FPU register contents are performed for handling
signals or switching processes only.  To prepare for using vector
instructions and vector registers within the kernel, enhance the save
behavior and implement a lazy restore at return to user space from a
system call or interrupt.

To implement the lazy restore, the save_fpu_regs() sets a CPU information
flag, CIF_FPU, to indicate that the FPU registers must be restored.
Saving and setting CIF_FPU is performed in an atomic fashion to be
interrupt-safe.  When the kernel wants to use the vector extension or
wants to change the FPU register state for a task during signal handling,
the save_fpu_regs() must be called first.  The CIF_FPU flag is also set at
process switch.  At return to user space, the FPU state is restored.  In
particular, the FPU state includes the floating-point or vector register
contents, as well as, vector-enablement and floating-point control.  The
FPU state restore and clearing CIF_FPU is also performed in an atomic
fashion.

For KVM, the restore of the FPU register state is performed when restoring
the general-purpose guest registers before the SIE instructions is started.
Because the path towards the SIE instruction is interruptible, the CIF_FPU
flag must be checked again right before going into SIE.  If set, the guest
registers must be reloaded again by re-entering the outer SIE loop.  This
is the same behavior as if the SIE critical section is interrupted.

Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-07-22 09:58:01 +02:00
Heiko Carstens cad49cfc44 s390/nmi: fix vector register corruption
If a machine check happens, the machine has the vector facility installed
and the extended save area exists, the cpu will save vector register
contents into the extended save area. This is regardless of control
register 0 contents, which enables and disables the vector facility during
runtime.

On each machine check we should validate the vector registers. The current
code however tries to validate the registers only if the running task is
using vector registers in user space.

However even the current code is broken and causes vector register
corruption on machine checks, if user space uses them:
the prefix area contains a pointer (absolute address) to the machine check
extended save area. In order to save some space the save area was put into
an unused area of the second prefix page.
When validating vector register contents the code uses the absolute address
of the extended save area, which is wrong. Due to prefixing the vector
instructions will then access contents using absolute addresses instead
of real addresses, where the machine stored the contents.

If the above would work there is still the problem that register validition
would only happen if user space uses vector registers. If kernel space uses
them also, this may also lead to vector register content corruption:
if the kernel makes use of vector instructions, but the current running
user space context does not, the machine check handler will validate
floating point registers instead of vector registers.
Given the fact that writing to a floating point register may change the
upper halve of the corresponding vector register, we also experience vector
register corruption in this case.

Fix all of these issues, and always validate vector registers on each
machine check, if the machine has the vector facility installed and the
extended save area is defined.

Cc: <stable@vger.kernel.org> # 4.1+
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-07-13 11:02:21 +02:00
Heiko Carstens 5a79859ae0 s390: remove 31 bit support
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.

The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58 ("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.

Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-03-25 11:49:33 +01:00
Heiko Carstens 5f4e87a227 s390/ctl_reg: add union type for control register 0
Add 'union ctlreg0_bits' to easily allow setting and testing bits of
control register 0 bits.
This patch only adds the bits needed for the new guest access functions.
Other bits and control registers can be added when needed.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-04-22 13:24:36 +02:00
Michael Holzheu acf6a004e6 s390/sclp: Move early code from sclp_cmd.c to sclp_early.c
The early SCLP driver code in sclp_cmd.c belongs to sclp_early.c
because it is independent from the 'normal' SCLP driver. So move
it to sclp_early.c

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-11-15 14:08:41 +01:00
Heiko Carstens 12325f0978 s390: cleanup and add sanity checks to control register macros
- turn some macros into functions
- merge two almost identical versions for 32/64 bit
- add BUILD_BUG_ON() check to make sure the passed in array is large enough

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-10-24 17:16:59 +02:00
Heiko Carstens f4815ac6c9 s390/headers: replace __s390x__ with CONFIG_64BIT where possible
Replace __s390x__ with CONFIG_64BIT in all places that are not exported
to userspace or guarded with #ifdef __KERNEL__.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2012-05-24 10:10:10 +02:00
David Howells a0616cdebc Disintegrate asm/system.h for S390
Disintegrate asm/system.h for S390.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-s390@vger.kernel.org
2012-03-28 18:30:02 +01:00