Pull NOHZ update from Thomas Gleixner:
"Remove the call into the nohz idle code from the fake 'idle' thread in
the powerclamp driver along with the export of those functions which
was smuggeled in via the thermal tree. People have tried to hack
around it in the nohz core code, but it just violates all rightful
assumptions of that code about the only valid calling context (i.e.
the proper idle task).
The powerclamp trainwreck will still work, it just wont get the
benefit of long idle sleeps"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/powerclamp: Remove tick_nohz_idle abuse
commit 4dbd27711c "tick: export nohz tick idle symbols for module
use" was merged via the thermal tree without an explicit ack from the
relevant maintainers.
The exports are abused by the intel powerclamp driver which implements
a fake idle state from a sched FIFO task. This causes all kinds of
wreckage in the NOHZ core code which rightfully assumes that
tick_nohz_idle_enter/exit() are only called from the idle task itself.
Recent changes in the NOHZ core lead to a failure of the powerclamp
driver and now people try to hack completely broken and backwards
workarounds into the NOHZ core code. This is completely unacceptable
and just papers over the real problem. There are way more subtle
issues lurking around the corner.
The real solution is to fix the powerclamp driver by rewriting it with
a sane concept, but that's beyond the scope of this.
So the only solution for now is to remove the calls into the core NOHZ
code from the powerclamp trainwreck along with the exports.
Fixes: d6d71ee4a1 "PM: Introduce Intel PowerClamp Driver"
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Pan Jacob jun <jacob.jun.pan@intel.com>
Cc: LKP <lkp@01.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1412181110110.17382@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull percpu updates from Tejun Heo:
"Nothing interesting. A patch to convert the remaining __get_cpu_var()
users, another to fix non-critical off-by-one in an assertion and a
cosmetic conversion to lockless_dereference() in percpu-ref.
The back-merge from mainline is to receive lockless_dereference()"
* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: Replace smp_read_barrier_depends() with lockless_dereference()
percpu: Convert remaining __get_cpu_var uses in 3.18-rcX
percpu: off by one in BUG_ON()
The "cpu" argument to rcu_needs_cpu() is always the current CPU, so drop
it. This in turn allows the "cpu" argument to rcu_cpu_has_callbacks()
to be removed, which allows the uses of "cpu" in both functions to be
replaced with a this_cpu_ptr(). Again, the anticipated cross-CPU uses
of these functions has been replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
During the 3.18 merge period additional __get_cpu_var uses were
added. The patch converts these to this_cpu_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
Pull s390 updates from Martin Schwidefsky:
"This patch set contains the main portion of the changes for 3.18 in
regard to the s390 architecture. It is a bit bigger than usual,
mainly because of a new driver and the vector extension patches.
The interesting bits are:
- Quite a bit of work on the tracing front. Uprobes is enabled and
the ftrace code is reworked to get some of the lost performance
back if CONFIG_FTRACE is enabled.
- To improve boot time with CONFIG_DEBIG_PAGEALLOC, support for the
IPTE range facility is added.
- The rwlock code is re-factored to improve writer fairness and to be
able to use the interlocked-access instructions.
- The kernel part for the support of the vector extension is added.
- The device driver to access the CD/DVD on the HMC is added, this
will hopefully come in handy to improve the installation process.
- Add support for control-unit initiated reconfiguration.
- The crypto device driver is enhanced to enable the additional AP
domains and to allow the new crypto hardware to be used.
- Bug fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (39 commits)
s390/ftrace: simplify enabling/disabling of ftrace_graph_caller
s390/ftrace: remove 31 bit ftrace support
s390/kdump: add support for vector extension
s390/disassembler: add vector instructions
s390: add support for vector extension
s390/zcrypt: Toleration of new crypto hardware
s390/idle: consolidate idle functions and definitions
s390/nohz: use a per-cpu flag for arch_needs_cpu
s390/vtime: do not reset idle data on CPU hotplug
s390/dasd: add support for control unit initiated reconfiguration
s390/dasd: fix infinite loop during format
s390/mm: make use of ipte range facility
s390/setup: correct 4-level kernel page table detection
s390/topology: call set_sched_topology early
s390/uprobes: architecture backend for uprobes
s390/uprobes: common library for kprobes and uprobes
s390/rwlock: use the interlocked-access facility 1 instructions
s390/rwlock: improve writer fairness
s390/rwlock: remove interrupt-enabling rwlock variant.
s390/mm: remove change bit override support
...
Pull timer updates from Thomas Gleixner:
"Nothing really exciting this time:
- a few fixlets in the NOHZ code
- a new ARM SoC timer abomination. One should expect that we have
enough of them already, but they insist on inventing new ones.
- the usual bunch of ARM SoC timer updates. That feels like herding
cats"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource: arm_arch_timer: Consolidate arch_timer_evtstrm_enable
clocksource: arm_arch_timer: Enable counter access for 32-bit ARM
clocksource: arm_arch_timer: Change clocksource name if CP15 unavailable
clocksource: sirf: Disable counter before re-setting it
clocksource: cadence_ttc: Add support for 32bit mode
clocksource: tcb_clksrc: Sanitize IRQ request
clocksource: arm_arch_timer: Discard unavailable timers correctly
clocksource: vf_pit_timer: Support shutdown mode
ARM: meson6: clocksource: Add Meson6 timer support
ARM: meson: documentation: Add timer documentation
clocksource: sh_tmu: Document r8a7779 binding
clocksource: sh_mtu2: Document r7s72100 binding
clocksource: sh_cmt: Document SoC specific bindings
timerfd: Remove an always true check
nohz: Avoid tick's double reprogramming in highres mode
nohz: Fix spurious periodic tick behaviour in low-res dynticks mode
Move the nohz_delay bit from the s390_idle data structure to the
per-cpu flags. Clear the nohz delay flag in __cpu_disable and
remove the cpu hotplug notifier that used to do this.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The nohz full functionality depends on IRQ work to trigger its own
interrupts. As it's used to restart the tick, we can't rely on the tick
fallback for irq work callbacks, ie: we can't use the tick to restart
the tick itself.
Lets reject the full dynticks initialization if that arch support isn't
available.
As a side effect, this makes sure that nohz kick is never called from
the tick. That otherwise would result in illegal hrtimer self-cancellation
and lockup.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The supports for CONFIG_NO_HZ_FULL_ALL=y and the nohz_full= kernel
parameter both have their own way to do the same thing: allocate
full dynticks cpumasks, fill them and initialize some state variables.
Lets consolidate that all in the same place.
While at it, convert some regular printk message to warnings when
fundamental allocations fail.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The local nohz kick is currently used by perf which needs it to be
NMI-safe. Recent commit though (7d1311b93e)
changed its implementation to fire the local kick using the remote kick
API. It was convenient to make the code more generic but the remote kick
isn't NMI-safe.
As a result:
WARNING: CPU: 3 PID: 18062 at kernel/irq_work.c:72 irq_work_queue_on+0x11e/0x140()
CPU: 3 PID: 18062 Comm: trinity-subchil Not tainted 3.16.0+ #34
0000000000000009 00000000903774d1 ffff880244e06c00 ffffffff9a7f1e37
0000000000000000 ffff880244e06c38 ffffffff9a0791dd ffff880244fce180
0000000000000003 ffff880244e06d58 ffff880244e06ef8 0000000000000000
Call Trace:
<NMI> [<ffffffff9a7f1e37>] dump_stack+0x4e/0x7a
[<ffffffff9a0791dd>] warn_slowpath_common+0x7d/0xa0
[<ffffffff9a07930a>] warn_slowpath_null+0x1a/0x20
[<ffffffff9a17ca1e>] irq_work_queue_on+0x11e/0x140
[<ffffffff9a10a2c7>] tick_nohz_full_kick_cpu+0x57/0x90
[<ffffffff9a186cd5>] __perf_event_overflow+0x275/0x350
[<ffffffff9a184f80>] ? perf_event_task_disable+0xa0/0xa0
[<ffffffff9a01a4cf>] ? x86_perf_event_set_period+0xbf/0x150
[<ffffffff9a187934>] perf_event_overflow+0x14/0x20
[<ffffffff9a020386>] intel_pmu_handle_irq+0x206/0x410
[<ffffffff9a0b54d3>] ? arch_vtime_task_switch+0x63/0x130
[<ffffffff9a01937b>] perf_event_nmi_handler+0x2b/0x50
[<ffffffff9a007b72>] nmi_handle+0xd2/0x390
[<ffffffff9a007aa5>] ? nmi_handle+0x5/0x390
[<ffffffff9a0d131b>] ? lock_release+0xab/0x330
[<ffffffff9a008062>] default_do_nmi+0x72/0x1c0
[<ffffffff9a0c925f>] ? cpuacct_account_field+0xcf/0x200
[<ffffffff9a008268>] do_nmi+0xb8/0x100
Lets fix this by restoring the use of local irq work for the nohz local
kick.
Reported-by: Catalin Iacob <iacobcatalin@gmail.com>
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.
[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In highres mode, the tick reschedules itself unconditionally to the
next jiffies.
However while this clock reprogramming is relevant when the tick is
in periodic mode, it's not that interesting when we run in dynticks mode
because irq exit is likely going to overwrite the next tick to some
randomly deferred future.
So lets just get rid of this tick self rescheduling in dynticks mode.
This way we can avoid some clockevents double write in favourable
scenarios like when we stop the tick completely in idle while no other
hrtimer is pending.
Suggested-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When we reach the end of the tick handler, we unconditionally reschedule
the next tick to the next jiffy. Then on irq exit, the nohz code
overrides that setting if needed and defers the next tick as far away in
the future as possible.
Now in the best dynticks case, when we actually don't need any tick in
the future (ie: expires == KTIME_MAX), low-res and high-res behave
differently. What we want in this case is to cancel the next tick
programmed by the previous one. That's what we do in high-res mode. OTOH
we lack a low-res mode equivalent of hrtimer_cancel() so we simply don't
do anything in this case and the next tick remains scheduled to jiffies + 1.
As a result, in low-res mode, when the dynticks code determines that no
tick is needed in the future, we can recursively get a spurious tick
every jiffy because then the next tick is always reprogrammed from the
tick handler and is never cancelled. And this can happen indefinetly
until some subsystem actually needs a precise tick in the future and only
then we eventually overwrite the previous tick handler setting to defer
the next tick.
We are fixing this by introducing the ONESHOT_STOPPED mode which will
let us pause a clockevent when no further interrupt is needed. Meanwhile
we can't expect all drivers to support this new mode.
So lets reduce much of the symptoms by skipping the nohz-blind tick
rescheduling from the tick-handler when the CPU is in dynticks mode.
That tick rescheduling wrongly assumed periodicity and the low-res
dynticks code can't cancel such decision. This breaks the recursive (and
thus the worst) part of the problem. In the worst case now, we'll get
only one extra tick due to uncancelled tick scheduled before we entered
dynticks mode.
This also removes a needless clockevent write on idle ticks. Since those
clock write are usually considered to be slow, it's a general win.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull scheduler updates from Ingo Molnar:
- Move the nohz kick code out of the scheduler tick to a dedicated IPI,
from Frederic Weisbecker.
This necessiated quite some background infrastructure rework,
including:
* Clean up some irq-work internals
* Implement remote irq-work
* Implement nohz kick on top of remote irq-work
* Move full dynticks timer enqueue notification to new kick
* Move multi-task notification to new kick
* Remove unecessary barriers on multi-task notification
- Remove proliferation of wait_on_bit() action functions and allow
wait_on_bit_action() functions to support a timeout. (Neil Brown)
- Another round of sched/numa improvements, cleanups and fixes. (Rik
van Riel)
- Implement fast idling of CPUs when the system is partially loaded,
for better scalability. (Tim Chen)
- Restructure and fix the CPU hotplug handling code that may leave
cfs_rq and rt_rq's throttled when tasks are migrated away from a dead
cpu. (Kirill Tkhai)
- Robustify the sched topology setup code. (Peterz Zijlstra)
- Improve sched_feat() handling wrt. static_keys (Jason Baron)
- Misc fixes.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
sched/fair: Fix 'make xmldocs' warning caused by missing description
sched: Use macro for magic number of -1 for setparam
sched: Robustify topology setup
sched: Fix sched_setparam() policy == -1 logic
sched: Allow wait_on_bit_action() functions to support a timeout
sched: Remove proliferation of wait_on_bit() action functions
sched/numa: Revert "Use effective_load() to balance NUMA loads"
sched: Fix static_key race with sched_feat()
sched: Remove extra static_key*() function indirection
sched/rt: Fix replenish_dl_entity() comments to match the current upstream code
sched: Transform resched_task() into resched_curr()
sched/deadline: Kill task_struct->pi_top_task
sched: Rework check_for_tasks()
sched/rt: Enqueue just unthrottled rt_rq back on the stack in __disable_runtime()
sched/fair: Disable runtime_enabled on dying rq
sched/numa: Change scan period code to match intent
sched/numa: Rework best node setting in task_numa_migrate()
sched/numa: Examine a task move when examining a task swap
sched/numa: Simplify task_numa_compare()
sched/numa: Use effective_load() to balance NUMA loads
...
Binding the grace-period kthreads to the timekeeping CPU resulted in
significant performance decreases for some workloads. For more detail,
see:
https://lkml.org/lkml/2014/6/3/395 for benchmark numbers
https://lkml.org/lkml/2014/6/4/218 for CPU statistics
It turns out that it is necessary to bind the grace-period kthreads
to the timekeeping CPU only when all but CPU 0 is a nohz_full CPU
on the one hand or if CONFIG_NO_HZ_FULL_SYSIDLE=y on the other.
In other cases, it suffices to bind the grace-period kthreads to the
set of non-nohz_full CPUs.
This commit therefore creates a tick_nohz_not_full_mask that is the
complement of tick_nohz_full_mask, and then binds the grace-period
kthread to the set of CPUs indicated by this new mask, which covers
the CONFIG_NO_HZ_FULL_SYSIDLE=n case. The CONFIG_NO_HZ_FULL_SYSIDLE=y
case still binds the grace-period kthreads to the timekeeping CPU.
This commit also includes the tick_nohz_full_enabled() check suggested
by Frederic Weisbecker.
Reported-by: Jet Chen <jet.chen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Created housekeeping_affine() and housekeeping_mask per
fweisbec feedback. ]
Remotely kicking a full nohz CPU in order to make it re-evaluate its
next tick is currently implemented using the scheduler IPI.
However this bloats a scheduler fast path with an off-topic feature.
The scheduler tick was abused here for its cool "callable
anywhere/anytime" properties.
But now that the irq work subsystem can queue remote callbacks, it's
a perfect fit to safely queue IPIs when interrupts are disabled
without worrying about concurrent callers.
So lets implement remote kick on top of irq work. This is going to
be used when a new event requires the next tick to be recalculated:
more than 1 task competing on the CPU, timer armed, ...
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
In tick_do_update_jiffies64() we are processing ticks only if delta is
greater than tick_period. This is what we are supposed to do here and
it broke a bit with this patch:
commit 47a1b796 (tick/timekeeping: Call update_wall_time outside the
jiffies lock)
With above patch, we might end up calling update_wall_time() even if
delta is found to be smaller that tick_period. Fix this by returning
when the delta is less than tick period.
[ tglx: Made it a 3 liner and massaged changelog ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: fweisbec@gmail.com
Cc: Arvind.Chauhan@arm.com
Cc: linaro-networking@linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Cc: <stable@vger.kernel.org> # v3.14+
Link: http://lkml.kernel.org/r/80afb18a494b0bd9710975bcc4de134ae323c74f.1397537987.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Code usually starts with 'tab' instead of 7 'space' in kernel
Signed-off-by: Alex Shi <alex.shi@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kevin Hilman <khilman@linaro.org>
Link: http://lkml.kernel.org/r/1386074112-30754-2-git-send-email-alex.shi@linaro.org
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
We don't need to fetch the timekeeping max deferment under the
jiffies_lock seqlock.
If the clocksource is updated concurrently while we stop the tick,
stop machine is called and the tick will be reevaluated again along with
uptodate jiffies and its related values.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kevin Hilman <khilman@linaro.org>
Link: http://lkml.kernel.org/r/1387320692-28460-9-git-send-email-fweisbec@gmail.com
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
This makes the code more symetric against the existing tick functions
called on irq exit: tick_irq_exit() and tick_nohz_irq_exit().
These function are also symetric as they mirror each other's action:
we start to account idle time on irq exit and we stop this accounting
on irq entry. Also the tick is stopped on irq exit and timekeeping
catches up with the tickless time elapsed until we reach irq entry.
This rename was suggested by Peter Zijlstra a long while ago but it
got forgotten in the mass.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kevin Hilman <khilman@linaro.org>
Link: http://lkml.kernel.org/r/1387320692-28460-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Since the xtime lock was split into the timekeeping lock and
the jiffies lock, we no longer need to call update_wall_time()
while holding the jiffies lock.
Thus, this patch splits update_wall_time() out from do_timer().
This allows us to get away from calling clock_was_set_delayed()
in update_wall_time() and instead use the standard clock_was_set()
call that previously would deadlock, as it causes the jiffies lock
to be acquired.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
A few functions use remote per CPU access APIs when they
deal with local values.
Just do the right conversion to improve performance, code
readability and debug checks.
While at it, lets extend some of these function names with *_this_cpu()
suffix in order to display their purpose more clearly.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
If CONFIG_NO_HZ=n tick_nohz_get_sleep_length() returns NSEC_PER_SEC/HZ.
If CONFIG_NO_HZ=y and the nohz functionality is disabled via the
command line option "nohz=off" or not enabled due to missing hardware
support, then tick_nohz_get_sleep_length() returns 0. That happens
because ts->sleep_length is never set in that case.
Set it to NSEC_PER_SEC/HZ when the NOHZ mode is inactive.
Reported-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
RCU and the fine grained idle time accounting functions check
tick_nohz_enabled. But that variable is merily telling that NOHZ has
been enabled in the config and not been disabled on the command line.
But it does not tell anything about nohz being active. That's what all
this should check for.
Matthew reported, that the idle accounting on his old P1 machine
showed bogus values, when he enabled NOHZ in the config and did not
disable it on the kernel command line. The reason is that his machine
uses (refined) jiffies as a clocksource which explains why the "fine"
grained accounting went into lala land, because it depends on when the
system goes and leaves idle relative to the jiffies increment.
Provide a tick_nohz_active indicator and let RCU and the accounting
code use this instead of tick_nohz_enable.
Reported-and-tested-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: john.stultz@linaro.org
Cc: mwhitehe@redhat.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311132052240.30673@ionos.tec.linutronix.de
tick_nohz_full_kick_all() is useful to notify all full dynticks
CPUs that there is a system state change to checkout before
re-evaluating the need for the tick.
Unfortunately this is implemented using smp_call_function_many()
that ignores the local CPU. This CPU also needs to re-evaluate
the tick.
on_each_cpu_mask() is not useful either because we don't want to
re-evaluate the tick state in place but asynchronously from an IPI
to avoid messing up with any random locking scenario.
So lets call tick_nohz_full_kick() from tick_nohz_full_kick_all()
so that the usual irq work takes care of it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1375460996-16329-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull nohz improvements from Frederic Weisbecker:
" It mostly contains fixes and full dynticks off-case optimizations. I believe that
distros want to enable this feature so it seems important to optimize the case
where the "nohz_full=" parameter is empty. ie: I'm trying to remove any performance
regression that comes with NO_HZ_FULL=y when the feature is not used.
This patchset improves the current situation a lot (off-case appears to be around 11% faster
with hackbench, although I guess it may vary depending on the configuration but it should be
significantly faster in any case) now there is still some work to do: I can still observe a
remaining loss of 1.6% throughput seen with hackbench compared to CONFIG_NO_HZ_FULL=n. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scheduler IPIs and task context switches are serious fast path.
Let's try to hide as much as we can the impact of full
dynticks APIs' off case that are called on these sites
through the use of static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
These APIs are frequenctly accessed and priority is given
to optimize the full dynticks off-case in order to let
distros enable this feature without suffering from
significant performance regressions.
Let's inline these APIs and optimize them with static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Rename the full dynticks's cpumask and cpumask state variables
to some more exportable names.
These will be used later from global headers to optimize
the main full dynticks APIs in conjunction with static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
The context tracking subsystem has the ability to selectively
enable the tracking on any defined subset of CPU. This means that
we can define a CPU range that doesn't run the context tracking
and another range that does.
Now what we want in practice is to enable the tracking on full
dynticks CPUs only. In order to perform this, we just need to pass
our full dynticks CPU range selection from the full dynticks
subsystem to the context tracking.
This way we can spare the overhead of RCU user extended quiescent
state and vtime maintainance on the CPUs that are outside the
full dynticks range. Just keep in mind the raw context tracking
itself is still necessary everywhere.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
cpu is not used after commit 5b8621a68f
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
If the user enables CONFIG_NO_HZ_FULL and runs the kernel on a machine
with an unstable TSC, it will produce a WARN_ON dump as well as taint
the kernel. This is a bit extreme for a kernel that just enables a
feature but doesn't use it.
The warning should only happen if the user tries to use the feature by
either adding nohz_full to the kernel command line, or by enabling
CONFIG_NO_HZ_FULL_ALL that makes nohz used on all CPUs at boot up. Note,
this second feature should not (yet) be used by distros or anyone that
doesn't care if NO_HZ is used or not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull nohz updates/fixes from Frederic Weisbecker:
' Note that "watchdog: Boot-disable by default on full dynticks" is a temporary
solution to solve the issue with the watchdog that prevents the tick from
stopping. This is to make sure that 3.11 doesn't have that problem as several
people complained about it.
A proper and longer term solution has been proposed by Peterz:
http://lkml.kernel.org/r/20130618103632.GO3204@twins.programming.kicks-ass.net
'
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Building full dynticks now implies that all CPUs are forced
into RCU nocb mode through CONFIG_RCU_NOCB_CPU_ALL.
The dynamic check has become useless.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
If the user configures NO_HZ_FULL and defines nohz_full=XXX on the
kernel command line, or enables NO_HZ_FULL_ALL, but nohz fails
due to the machine having a unstable clock, warn about it.
We do not want users thinking that they are getting the benefit
of nohz when their machine can not support it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
In tick_nohz_cpu_down_callback() if the cpu is the one handling
timekeeping, we must return something that stops the CPU_DOWN_PREPARE
notifiers and then start notify CPU_DOWN_FAILED on the already called
notifier call backs.
However traditional errno values are not handled by the notifier unless
these are encapsulated using errno_to_notifier().
Hence the current -EINVAL is misinterpreted and converted to junk after
notifier_to_errno(), leaving the notifier subsystem to random behaviour
such as eventually allowing the cpu to go down.
Fix this by using the standard NOTIFY_BAD instead.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer fixes from Thomas Gleixner:
- Cure for not using zalloc in the first place, which leads to random
crashes with CPUMASK_OFF_STACK.
- Revert a user space visible change which broke udev
- Add a missing cpu_online early return introduced by the new full
dyntick conversions
- Plug a long standing race in the timer wheel cpu hotplug code.
Sigh...
- Cleanup NOHZ per cpu data on cpu down to prevent stale data on cpu
up.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Revert ALWAYS_USE_PERSISTENT_CLOCK compile time optimizaitons
timer: Don't reinitialize the cpu base lock during CPU_UP_PREPARE
tick: Don't invoke tick_nohz_stop_sched_tick() if the cpu is offline
tick: Cleanup NOHZ per cpu data on cpu down
tick: Use zalloc_cpumask_var for allocating offstack cpumasks
commit 5b39939a4 (nohz: Move ts->idle_calls incrementation into strict
idle logic) moved code out of tick_nohz_stop_sched_tick() and missed
to bail out when the cpu is offline. That's causing subsequent
failures as an offline CPU is supposed to die and not to fiddle with
nohz magic.
Return false in can_stop_idle_tick() if the cpu is offline.
Reported-and-tested-by: Jiri Kosina <jkosina@suse.cz>
Reported-and-tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305132138160.2863@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prarit reported a crash on CPU offline/online. The reason is that on
CPU down the NOHZ related per cpu data of the dead cpu is not cleaned
up. If at cpu online an interrupt happens before the per cpu tick
device is registered the irq_enter() check potentially sees stale data
and dereferences a NULL pointer.
Cleanup the data after the cpu is dead.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Cc: Mike Galbraith <bitbucket@online.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305031451561.2886@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>