Commit Graph

39 Commits

Author SHA1 Message Date
Eric Dumazet 218af599fa tcp: internal implementation for pacing
BBR congestion control depends on pacing, and pacing is
currently handled by sch_fq packet scheduler for performance reasons,
and also because implemening pacing with FQ was convenient to truly
avoid bursts.

However there are many cases where this packet scheduler constraint
is not practical.
- Many linux hosts are not focusing on handling thousands of TCP
  flows in the most efficient way.
- Some routers use fq_codel or other AQM, but still would like
  to use BBR for the few TCP flows they initiate/terminate.

This patch implements an automatic fallback to internal pacing.

Pacing is requested either by BBR or use of SO_MAX_PACING_RATE option.

If sch_fq happens to be in the egress path, pacing is delegated to
the qdisc, otherwise pacing is done by TCP itself.

One advantage of pacing from TCP stack is to get more precise rtt
estimations, and less work done from TX completion, since TCP Small
queue limits are not generally hit. Setups with single TX queue but
many cpus might even benefit from this.

Note that unlike sch_fq, we do not take into account header sizes.
Taking care of these headers would add additional complexity for
no practical differences in behavior.

Some performance numbers using 800 TCP_STREAM flows rate limited to
~48 Mbit per second on 40Gbit NIC.

If MQ+pfifo_fast is used on the NIC :

$ sar -n DEV 1 5 | grep eth
14:48:44         eth0 725743.00 2932134.00  46776.76 4335184.68      0.00      0.00      1.00
14:48:45         eth0 725349.00 2932112.00  46751.86 4335158.90      0.00      0.00      0.00
14:48:46         eth0 725101.00 2931153.00  46735.07 4333748.63      0.00      0.00      0.00
14:48:47         eth0 725099.00 2931161.00  46735.11 4333760.44      0.00      0.00      1.00
14:48:48         eth0 725160.00 2931731.00  46738.88 4334606.07      0.00      0.00      0.00
Average:         eth0 725290.40 2931658.20  46747.54 4334491.74      0.00      0.00      0.40
$ vmstat 1 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 4  0      0 259825920  45644 2708324    0    0    21     2  247   98  0  0 100  0  0
 4  0      0 259823744  45644 2708356    0    0     0     0 2400825 159843  0 19 81  0  0
 0  0      0 259824208  45644 2708072    0    0     0     0 2407351 159929  0 19 81  0  0
 1  0      0 259824592  45644 2708128    0    0     0     0 2405183 160386  0 19 80  0  0
 1  0      0 259824272  45644 2707868    0    0     0    32 2396361 158037  0 19 81  0  0

Now use MQ+FQ :

lpaa23:~# echo fq >/proc/sys/net/core/default_qdisc
lpaa23:~# tc qdisc replace dev eth0 root mq

$ sar -n DEV 1 5 | grep eth
14:49:57         eth0 678614.00 2727930.00  43739.13 4033279.14      0.00      0.00      0.00
14:49:58         eth0 677620.00 2723971.00  43674.69 4027429.62      0.00      0.00      1.00
14:49:59         eth0 676396.00 2719050.00  43596.83 4020125.02      0.00      0.00      0.00
14:50:00         eth0 675197.00 2714173.00  43518.62 4012938.90      0.00      0.00      1.00
14:50:01         eth0 676388.00 2719063.00  43595.47 4020171.64      0.00      0.00      0.00
Average:         eth0 676843.00 2720837.40  43624.95 4022788.86      0.00      0.00      0.40
$ vmstat 1 5
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 2  0      0 259832240  46008 2710912    0    0    21     2  223  192  0  1 99  0  0
 1  0      0 259832896  46008 2710744    0    0     0     0 1702206 198078  0 17 82  0  0
 0  0      0 259830272  46008 2710596    0    0     0     0 1696340 197756  1 17 83  0  0
 4  0      0 259829168  46024 2710584    0    0    16     0 1688472 197158  1 17 82  0  0
 3  0      0 259830224  46024 2710408    0    0     0     0 1692450 197212  0 18 82  0  0

As expected, number of interrupts per second is very different.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Van Jacobson <vanj@google.com>
Cc: Jerry Chu <hkchu@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-16 15:43:31 -04:00
Michal Hocko da6bc57a8f net: use kvmalloc with __GFP_REPEAT rather than open coded variant
fq_alloc_node, alloc_netdev_mqs and netif_alloc* open code kmalloc with
vmalloc fallback.  Use the kvmalloc variant instead.  Keep the
__GFP_REPEAT flag based on explanation from Eric:

 "At the time, tests on the hardware I had in my labs showed that
  vmalloc() could deliver pages spread all over the memory and that was
  a small penalty (once memory is fragmented enough, not at boot time)"

The way how the code is constructed means, however, that we prefer to go
and hit the OOM killer before we fall back to the vmalloc for requests
<=32kB (with 4kB pages) in the current code.  This is rather disruptive
for something that can be achived with the fallback.  On the other hand
__GFP_REPEAT doesn't have any useful semantic for these requests.  So
the effect of this patch is that requests which fit into 32kB will fall
back to vmalloc easier now.

Link: http://lkml.kernel.org/r/20170306103327.2766-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Eric Dumazet <edumazet@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Johannes Berg fceb6435e8 netlink: pass extended ACK struct to parsing functions
Pass the new extended ACK reporting struct to all of the generic
netlink parsing functions. For now, pass NULL in almost all callers
(except for some in the core.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00
Geliang Tang e124557d60 net_sched: sch_fq: use rb_entry()
To make the code clearer, use rb_entry() instead of container_of() to
deal with rbtree.

Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-20 14:22:48 -05:00
Eric Dumazet 29c58472ec net_sched: sch_fq: use hash_ptr()
When I wrote sch_fq.c, hash_ptr() on 64bit arches was awful,
and I chose hash_32().

Linus Torvalds and George Spelvin fixed this issue, so we can
use hash_ptr() to get more entropy on 64bit arches with Terabytes
of memory, and avoid the cast games.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-17 13:28:56 -05:00
Eric Dumazet fefa569a9d net_sched: sch_fq: account for schedule/timers drifts
It looks like the following patch can make FQ very precise, even in VM
or stressed hosts. It matters at high pacing rates.

We take into account the difference between the time that was programmed
when last packet was sent, and current time (a drift of tens of usecs is
often observed)

Add an EWMA of the unthrottle latency to help diagnostics.

This latency is the difference between current time and oldest packet in
delayed RB-tree. This accounts for the high resolution timer latency,
but can be different under stress, as fq_check_throttled() can be
opportunistically be called from a dequeue() called after an enqueue()
for a different flow.

Tested:
// Start a 10Gbit flow
$ netperf --google-pacing-rate 1250000000 -H lpaa24 -l 10000 -- -K bbr &

Before patch :
$ sar -n DEV 10 5 | grep eth0 | grep Average
Average:         eth0  17106.04 756876.84   1102.75 1119049.02      0.00      0.00      0.52

After patch :
$ sar -n DEV 10 5 | grep eth0 | grep Average
Average:         eth0  17867.00 800245.90   1151.77 1183172.12      0.00      0.00      0.52

A new iproute2 tc can output the 'unthrottle latency' :

$ tc -s qd sh dev eth0 | grep latency
  0 gc, 0 highprio, 32490767 throttled, 2382 ns latency

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-23 07:19:06 -04:00
Eric Dumazet 77879147a3 net_sched: sch_fq: add low_rate_threshold parameter
This commit adds to the fq module a low_rate_threshold parameter to
insert a delay after all packets if the socket requests a pacing rate
below the threshold.

This helps achieve more precise control of the sending rate with
low-rate paths, especially policers. The basic issue is that if a
congestion control module detects a policer at a certain rate, it may
want fq to be able to shape to that policed rate. That way the sender
can avoid policer drops by having the packets arrive at the policer at
or just under the policed rate.

The default threshold of 550Kbps was chosen analytically so that for
policers or links at 500Kbps or 512Kbps fq would very likely invoke
this mechanism, even if the pacing rate was briefly slightly above the
available bandwidth. This value was then empirically validated with
two years of production testing on YouTube video servers.

Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21 00:23:00 -04:00
Eric Dumazet 695b4ec0f0 pkt_sched: fq: use proper locking in fq_dump_stats()
When fq is used on 32bit kernels, we need to lock the qdisc before
copying 64bit fields.

Otherwise "tc -s qdisc ..." might report bogus values.

Fixes: afe4fd0624 ("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-18 22:15:08 -04:00
Eric Dumazet 520ac30f45 net_sched: drop packets after root qdisc lock is released
Qdisc performance suffers when packets are dropped at enqueue()
time because drops (kfree_skb()) are done while qdisc lock is held,
delaying a dequeue() draining the queue.

Nominal throughput can be reduced by 50 % when this happens,
at a time we would like the dequeue() to proceed as fast as possible.

Even FQ is vulnerable to this problem, while one of FQ goals was
to provide some flow isolation.

This patch adds a 'struct sk_buff **to_free' parameter to all
qdisc->enqueue(), and in qdisc_drop() helper.

I measured a performance increase of up to 12 %, but this patch
is a prereq so that future batches in enqueue() can fly.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-25 12:19:35 -04:00
Eric Dumazet e14ffdfdd6 net_sched: sch_fq: defer skb freeing
Both fq_change() and fq_reset() can use rtnl_kfree_skbs()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 14:08:35 -07:00
Eric Dumazet 45f50bed1d net_sched: remove generic throttled management
__QDISC_STATE_THROTTLED bit manipulation is rather expensive
for HTB and few others.

I already removed it for sch_fq in commit f2600cf02b
("net: sched: avoid costly atomic operation in fq_dequeue()")
and so far nobody complained.

When one ore more packets are stuck in one or more throttled
HTB class, a htb dequeue() performs two atomic operations
to clear/set __QDISC_STATE_THROTTLED bit, while root qdisc
lock is held.

Removing this pair of atomic operations bring me a 8 % performance
increase on 200 TCP_RR tests, in presence of throttled classes.

This patch has no side effect, since nothing actually uses
disc_is_throttled() anymore.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 23:58:21 -07:00
WANG Cong 2ccccf5fb4 net_sched: update hierarchical backlog too
When the bottom qdisc decides to, for example, drop some packet,
it calls qdisc_tree_decrease_qlen() to update the queue length
for all its ancestors, we need to update the backlog too to
keep the stats on root qdisc accurate.

Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-29 17:02:33 -05:00
Eric Dumazet e446f9dfe1 net: synack packets can be attached to request sockets
selinux needs few changes to accommodate fact that SYNACK messages
can be attached to a request socket, lacking sk_security pointer

(Only syncookies are still attached to a TCP_LISTEN socket)

Adds a new sk_listener() helper, and use it in selinux and sch_fq

Fixes: ca6fb06518 ("tcp: attach SYNACK messages to request sockets instead of listener")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported by: kernel test robot <ying.huang@linux.intel.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Eric Paris <eparis@parisplace.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-11 05:05:06 -07:00
Eric Dumazet ca6fb06518 tcp: attach SYNACK messages to request sockets instead of listener
If a listen backlog is very big (to avoid syncookies), then
the listener sk->sk_wmem_alloc is the main source of false
sharing, as we need to touch it twice per SYNACK re-transmit
and TX completion.

(One SYN packet takes listener lock once, but up to 6 SYNACK
are generated)

By attaching the skb to the request socket, we remove this
source of contention.

Tested:

 listen(fd, 10485760); // single listener (no SO_REUSEPORT)
 16 RX/TX queue NIC
 Sustain a SYNFLOOD attack of ~320,000 SYN per second,
 Sending ~1,400,000 SYNACK per second.
 Perf profiles now show listener spinlock being next bottleneck.

    20.29%  [kernel]  [k] queued_spin_lock_slowpath
    10.06%  [kernel]  [k] __inet_lookup_established
     5.12%  [kernel]  [k] reqsk_timer_handler
     3.22%  [kernel]  [k] get_next_timer_interrupt
     3.00%  [kernel]  [k] tcp_make_synack
     2.77%  [kernel]  [k] ipt_do_table
     2.70%  [kernel]  [k] run_timer_softirq
     2.50%  [kernel]  [k] ip_finish_output
     2.04%  [kernel]  [k] cascade

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-03 04:32:43 -07:00
Simon Horman 05e8bb860b pkt_sched: fq: correct spelling of locally
Correct spelling of locally.

Also remove extra space before tab character in struct fq_flow.

Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-01 22:52:29 -04:00
David S. Miller 6e03f896b5 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/vxlan.c
	drivers/vhost/net.c
	include/linux/if_vlan.h
	net/core/dev.c

The net/core/dev.c conflict was the overlap of one commit marking an
existing function static whilst another was adding a new function.

In the include/linux/if_vlan.h case, the type used for a local
variable was changed in 'net', whereas the function got rewritten
to fix a stacked vlan bug in 'net-next'.

In drivers/vhost/net.c, Al Viro's iov_iter conversions in 'net-next'
overlapped with an endainness fix for VHOST 1.0 in 'net'.

In drivers/net/vxlan.c, vxlan_find_vni() added a 'flags' parameter
in 'net-next' whereas in 'net' there was a bug fix to pass in the
correct network namespace pointer in calls to this function.

Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-05 14:33:28 -08:00
Eric Dumazet 06eb395fa9 pkt_sched: fq: better control of DDOS traffic
FQ has a fast path for skb attached to a socket, as it does not
have to compute a flow hash. But for other packets, FQ being non
stochastic means that hosts exposed to random Internet traffic
can allocate million of flows structure (104 bytes each) pretty
easily. Not only host can OOM, but lookup in RB trees can take
too much cpu and memory resources.

This patch adds a new attribute, orphan_mask, that is adding
possibility of having a stochastic hash for orphaned skb.

Its default value is 1024 slots, to mimic SFQ behavior.

Note: This does not apply to locally generated TCP traffic,
and no locally generated traffic will share a flow structure
with another perfect or stochastic flow.

This patch also handles the specific case of SYNACK messages:

They are attached to the listener socket, and therefore all map
to a single hash bucket. If listener have set SO_MAX_PACING_RATE,
hoping to have new accepted socket inherit this rate, SYNACK
might be paced and even dropped.

This is very similar to an internal patch Google have used more
than one year.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 22:15:45 -08:00
Eric Dumazet 9878196578 tcp: do not pace pure ack packets
When we added pacing to TCP, we decided to let sch_fq take care
of actual pacing.

All TCP had to do was to compute sk->pacing_rate using simple formula:

sk->pacing_rate = 2 * cwnd * mss / rtt

It works well for senders (bulk flows), but not very well for receivers
or even RPC :

cwnd on the receiver can be less than 10, rtt can be around 100ms, so we
can end up pacing ACK packets, slowing down the sender.

Really, only the sender should pace, according to its own logic.

Instead of adding a new bit in skb, or call yet another flow
dissection, we tweak skb->truesize to a small value (2), and
we instruct sch_fq to use new helper and not pace pure ack.

Note this also helps TCP small queue, as ack packets present
in qdisc/NIC do not prevent sending a data packet (RPC workload)

This helps to reduce tx completion overhead, ack packets can use regular
sock_wfree() instead of tcp_wfree() which is a bit more expensive.

This has no impact in the case packets are sent to loopback interface,
as we do not coalesce ack packets (were we would detect skb->truesize
lie)

In case netem (with a delay) is used, skb_orphan_partial() also sets
skb->truesize to 1.

This patch is a combination of two patches we used for about one year at
Google.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 20:36:31 -08:00
Kenneth Klette Jonassen 3725a26981 pkt_sched: fq: avoid hang when quantum 0
Configuring fq with quantum 0 hangs the system, presumably because of a
non-interruptible infinite loop. Either way quantum 0 does not make sense.

Reproduce with:
sudo tc qdisc add dev lo root fq quantum 0 initial_quantum 0
ping 127.0.0.1

Signed-off-by: Kenneth Klette Jonassen <kennetkl@ifi.uio.no>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 20:07:39 -08:00
Eric Dumazet 86b3bfe914 pkt_sched: fq: remove useless TIME_WAIT check
TIME_WAIT sockets are not owning any skb.

ip_send_unicast_reply() and tcp_v6_send_response() both use
regular sockets.

We can safely remove a test in sch_fq and save one cache line miss,
as sk_state is far away from sk_pacing_rate.

Tested at Google for about one year.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-28 23:23:57 -08:00
Eric Dumazet ced7a04e39 pkt_sched: fq: increase max delay from 125 ms to one second
FQ/pacing has a clamp of delay of 125 ms, to avoid some possible harm.

It turns out this delay is too small to allow pacing low rates :
Some ISP setup very aggressive policers as low as 16kbit.

Now TCP stack has spurious rtx prevention, it seems safe to increase
this fixed parameter, without adding a qdisc attribute.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-26 12:08:04 -05:00
Eric Dumazet f2600cf02b net: sched: avoid costly atomic operation in fq_dequeue()
Standard qdisc API to setup a timer implies an atomic operation on every
packet dequeue : qdisc_unthrottled()

It turns out this is not really needed for FQ, as FQ has no concept of
global qdisc throttling, being a qdisc handling many different flows,
some of them can be throttled, while others are not.

Fix is straightforward : add a 'bool throttle' to
qdisc_watchdog_schedule_ns(), and remove calls to qdisc_unthrottled()
in sch_fq.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-06 00:55:10 -04:00
John Fastabend 25331d6ce4 net: sched: implement qstat helper routines
This adds helpers to manipulate qstats logic and replaces locations
that touch the counters directly. This simplifies future patches
to push qstats onto per cpu counters.

Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-30 01:02:26 -04:00
Eric Dumazet d2de875c6d net: use ktime_get_ns() and ktime_get_real_ns() helpers
ktime_get_ns() replaces ktime_to_ns(ktime_get())

ktime_get_real_ns() replaces ktime_to_ns(ktime_get_real())

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-22 19:57:23 -07:00
WANG Cong 4cb28970a2 net: use the new API kvfree()
It is available since v3.15-rc5.

Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-05 00:49:51 -07:00
Yang Yingliang d59b7d8059 net_sched: return nla_nest_end() instead of skb->len
nla_nest_end() already has return skb->len, so replace
return skb->len with return nla_nest_end instead().

Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-13 15:39:20 -04:00
Eric Dumazet 2d8d40afd1 pkt_sched: fq: do not hold qdisc lock while allocating memory
Resizing fq hash table allocates memory while holding qdisc spinlock,
with BH disabled.

This is definitely not good, as allocation might sleep.

We can drop the lock and get it when needed, we hold RTNL so no other
changes can happen at the same time.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Fixes: afe4fd0624 ("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-08 19:09:10 -05:00
Tom Herbert 3958afa1b2 net: Change skb_get_rxhash to skb_get_hash
Changing name of function as part of making the hash in skbuff to be
generic property, not just for receive path.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-17 16:36:21 -05:00
Eric Dumazet c3bd85495a pkt_sched: fq: more robust memory allocation
This patch brings NUMA support and automatic fallback to vmalloc()
in case kmalloc() failed to allocate FQ hash table.

NUMA support depends on XPS being setup for the device before
qdisc allocation. After a XPS change, it might be worth creating
qdisc hierarchy again.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-17 15:25:20 -05:00
Eric Dumazet f52ed89971 pkt_sched: fq: fix pacing for small frames
For performance reasons, sch_fq tried hard to not setup timers for every
sent packet, using a quantum based heuristic : A delay is setup only if
the flow exhausted its credit.

Problem is that application limited flows can refill their credit
for every queued packet, and they can evade pacing.

This problem can also be triggered when TCP flows use small MSS values,
as TSO auto sizing builds packets that are smaller than the default fq
quantum (3028 bytes)

This patch adds a 40 ms delay to guard flow credit refill.

Fixes: afe4fd0624 ("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Maciej Żenczykowski <maze@google.com>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-15 21:01:52 -05:00
Eric Dumazet 65c5189a2b pkt_sched: fq: warn users using defrate
Commit 7eec4174ff ("pkt_sched: fq: fix non TCP flows pacing")
obsoleted TCA_FQ_FLOW_DEFAULT_RATE without notice for the users.

Suggested by David Miller

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-15 21:01:52 -05:00
Maciej Żenczykowski 2abc2f070e pkt_sched: fq: change classification of control packets
Initial sch_fq implementation copied code from pfifo_fast to classify
a packet as a high prio packet.

This clashes with setups using PRIO with say 7 bands, as one of the
band could be incorrectly (mis)classified by FQ.

Packets would be queued in the 'internal' queue, and no pacing ever
happen for this special queue.

Fixes: afe4fd0624 ("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-14 17:16:07 -05:00
Eric Dumazet fc59d5bdf1 pkt_sched: fq: clear time_next_packet for reused flows
When a socket is freed/reallocated, we need to clear time_next_packet
or else we can inherit a prior value and delay first packets of the
new flow.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-28 00:18:31 -04:00
Eric Dumazet 7eec4174ff pkt_sched: fq: fix non TCP flows pacing
Steinar reported FQ pacing was not working for UDP flows.

It looks like the initial sk->sk_pacing_rate value of 0 was
a wrong choice. We should init it to ~0U (unlimited)

Then, TCA_FQ_FLOW_DEFAULT_RATE should be removed because it makes
no real sense. The default rate is really unlimited, and we
need to avoid a zero divide.

Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-08 21:54:01 -04:00
Eric Dumazet ede869cd0f pkt_sched: fq: fix typo for initial_quantum
TCA_FQ_INITIAL_QUANTUM should set q->initial_quantum

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-08 16:32:41 -04:00
Eric Dumazet 0eab5eb7a3 pkt_sched: fq: rate limiting improvements
FQ rate limiting suffers from two problems, reported
by Steinar :

1) FQ enforces a delay when flow quantum is exhausted in order
to reduce cpu overhead. But if packets are small, current
delay computation is slightly wrong, and observed rates can
be too high.

Steinar had this problem because he disabled TSO and GSO,
and default FQ quantum is 2*1514.

(Of course, I wish recent TSO auto sizing changes will help
to not having to disable TSO in the first place)

2) maxrate was not used for forwarded flows (skbs not attached
to a socket)

Tested:

tc qdisc add dev eth0 root est 1sec 4sec fq maxrate 8Mbit
netperf -H lpq84 -l 1000 &
sleep 10 ; tc -s qdisc show dev eth0
qdisc fq 8003: root refcnt 32 limit 10000p flow_limit 100p buckets 1024
 quantum 3028 initial_quantum 15140 maxrate 8000Kbit
 Sent 16819357 bytes 11258 pkt (dropped 0, overlimits 0 requeues 0)
 rate 7831Kbit 653pps backlog 7570b 5p requeues 0
  44 flows (43 inactive, 1 throttled), next packet delay 2977352 ns
  0 gc, 0 highprio, 5545 throttled

lpq83:~# tcpdump -p -i eth0 host lpq84 -c 12
09:02:52.079484 IP lpq83 > lpq84: . 1389536928:1389538376(1448) ack 3808678021 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079499 IP lpq83 > lpq84: . 1448:2896(1448) ack 1 win 457 <nop,nop,timestamp 961812 572609068>
09:02:52.079906 IP lpq84 > lpq83: . ack 2896 win 16384 <nop,nop,timestamp 572609080 961812>
09:02:52.082568 IP lpq83 > lpq84: . 2896:4344(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.082581 IP lpq83 > lpq84: . 4344:5792(1448) ack 1 win 457 <nop,nop,timestamp 961815 572609071>
09:02:52.083017 IP lpq84 > lpq83: . ack 5792 win 16384 <nop,nop,timestamp 572609083 961815>
09:02:52.085678 IP lpq83 > lpq84: . 5792:7240(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.085693 IP lpq83 > lpq84: . 7240:8688(1448) ack 1 win 457 <nop,nop,timestamp 961818 572609074>
09:02:52.086117 IP lpq84 > lpq83: . ack 8688 win 16384 <nop,nop,timestamp 572609086 961818>
09:02:52.088792 IP lpq83 > lpq84: . 8688:10136(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.088806 IP lpq83 > lpq84: . 10136:11584(1448) ack 1 win 457 <nop,nop,timestamp 961821 572609077>
09:02:52.089217 IP lpq84 > lpq83: . ack 11584 win 16384 <nop,nop,timestamp 572609090 961821>

Reported-by: Steinar H. Gunderson <sesse@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-01 13:00:38 -04:00
Eric Dumazet 8d34ce10c5 pkt_sched: fq: qdisc dismantle fixes
fq_reset() should drops all packets in queue, including
throttled flows.

This patch moves code from fq_destroy() to fq_reset()
to do the cleaning.

fq_change() must stop calling fq_dequeue() if all remaining
packets are from throttled flows.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-30 15:51:23 -04:00
Eric Dumazet 08f89b981b pkt_sched: fq: prefetch() fix
kbuild bot reported following m68k build error :

  net/sched/sch_fq.c: In function 'fq_dequeue':
>> net/sched/sch_fq.c:491:2: error: implicit declaration of function
'prefetch' [-Werror=implicit-function-declaration]
   cc1: some warnings being treated as errors

While we are fixing this, move this prefetch() call a bit earlier.

Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 14:51:59 -04:00
Eric Dumazet afe4fd0624 pkt_sched: fq: Fair Queue packet scheduler
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
  unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
  to add per socket limitation.

Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.

TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.

This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.

Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit

cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)

15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>

TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.

In slow start or steady state, very few packets are throttled [1]

FQ gets a bunch of tunables as :

  limit : max number of packets on whole Qdisc (default 10000)

  flow_limit : max number of packets per flow (default 100)

  quantum : the credit per RR round (default is 2 MTU)

  initial_quantum : initial credit for new flows (default is 10 MTU)

  maxrate : max per flow rate (default : unlimited)

  buckets : number of RB trees (default : 1024) in hash table.
               (consumes 8 bytes per bucket)

  [no]pacing : disable/enable pacing (default is enable)

All of them can be changed on a live qdisc.

$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
              [ quantum BYTES ] [ initial_quantum BYTES ]
              [ maxrate RATE  ] [ buckets NUMBER ]
              [ [no]pacing ]

$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
 Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
 backlog 0b 0p requeues 14
  511 flows, 511 inactive, 0 throttled
  110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit

[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-29 21:38:31 -04:00