Commit Graph

6 Commits

Author SHA1 Message Date
Inaky Perez-Gonzalez 44b849d11b wimax/i2400m: trace commands sent from user space on the "echo" pipe
When commands are sent from user space, trace both the command sent
and the answer received over the "echo" pipe instead of over the
"trace" pipe when command tracing is enabled. As well, when the device
sends a reports/indications, send it over the "echo" pipe.

The "trace" pipe is used by the device to send firmware traces;
gets confusing. Another named pipe makes it easier to split debug
information.

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
2009-05-28 18:01:35 -07:00
Inaky Perez-Gonzalez 4e5b6d006b wimax/i2400m: fix device crash: fix optimization in _roq_queue_update_ws
When the i2400m receives data and the device indicates there has to be
reordering, we keep an sliding window implementation to sort the
packets before sending them to the network stack.

One of the "operations" that the device indicates is "queue a packet
and update the window start". When the queue is empty, this is
equivalent to "deliver the packet and update the window start".

That case was optimized in i2400m_roq_queue_update_ws() so that we
would not pointlessly queue and dequeue a packet. However, when the
optimization was active, it wasn't updating the window start. That
caused the reorder management code to get confused later on with what
seemed to be wrong reorder requests from the device.

Thus the fix implemented is to do the right thing and update the
window start in both cases, when the queue is empty (and the
optimization is done) and when not.

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
2009-05-14 18:00:32 -07:00
Inaky Perez-Gonzalez c747583d19 wimax/i2400m: implement RX reorder support
Allow the device to give the driver RX data with reorder information.

When that is done, the device will indicate the driver if a packet has
to be held in a (sorted) queue. It will also tell the driver when held
packets have to be released to the OS.

This is done to improve the WiMAX-protocol level retransmission
support when missing frames are detected.

The code docs provide details about the implementation.

In general, this just hooks into the RX path in rx.c; if a packet with
the reorder bit in the RX header is detected, the reorder information
in the header is extracted and one of the four main reorder operations
are executed. In one case (queue) no packet will be delivered to the
networking stack, just queued, whereas in the others (reset, update_ws
and queue_update_ws), queued packet might be delivered depending on
the window start for the specific queue.

The modifications to files other than rx.c are:

- control.c: during device initialization, enable reordering support
  if the rx_reorder_disabled module parameter is not enabled

- driver.c: expose a rx_reorder_disable module parameter and call
  i2400m_rx_setup/release() to initialize/shutdown RX reorder
  support.

- i2400m.h: introduce members in 'struct i2400m' needed for
  implementing reorder support.

- linux/i2400m.h: introduce TLVs, commands and constant definitions
  related to RX reorder

Last but not least, the rx reorder code includes an small circular log
where the last N reorder operations are recorded to be displayed in
case of inconsistency. Otherwise diagnosing issues would be almost
impossible.

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-02 03:10:28 -08:00
Inaky Perez-Gonzalez fd5c565c0c wimax/i2400m: support extended data RX protocol (no need to reallocate skbs)
Newer i2400m firmwares (>= v1.4) extend the data RX protocol so that
each packet has a 16 byte header. This header is mainly used to
implement host reordeing (which is addressed in later commits).

However, this header also allows us to overwrite it (once data has
been extracted) with an Ethernet header and deliver to the networking
stack without having to reallocate the skb (as it happened in fw <=
v1.3) to make room for it.

- control.c: indicate the device [dev_initialize()] that the driver
  wants to use the extended data RX protocol. Also involves adding the
  definition of the needed data types in include/linux/wimax/i2400m.h.

- rx.c: handle the new payload type for the extended RX data
  protocol. Prepares the skb for delivery to
  netdev.c:i2400m_net_erx().

- netdev.c: Introduce i2400m_net_erx() that adds the fake ethernet
  address to a prepared skb and delivers it to the networking
  stack.

- cleanup: in most instances in rx.c, the variable 'single' was
  renamed to 'single_last' for it better conveys its meaning.

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-02 03:10:26 -08:00
Wei Yongjun c71a2699c5 i2400m: remove some pointless conditionals before kfree_skb()
Remove some pointless conditionals before kfree_skb().

Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-26 23:07:31 -08:00
Inaky Perez-Gonzalez aa5a7acabe i2400m: RX and TX data/control paths
Handling of TX/RX data to/from the i2400m device (IP packets, control
and diagnostics). On RX, this parses the received read transaction
from the device, breaks it in chunks and passes it to the
corresponding subsystems (network and control).

Transmission to the device is done through a software FIFO, as
data/control frames can be coalesced (while the device is reading the
previous tx transaction, others accumulate). A FIFO is used because at
the end it is resource-cheaper that scatter/gather over USB. As well,
most traffic is going to be download (vs upload).

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-01-07 10:00:19 -08:00