err was overwritten by a previous function call, and checked to be 0. If
the following page allocation fails, 0 is going to be returned instead
of -ENOMEM.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With this, the guest can use 1TB segments as well as 256MB segments.
Since we now have the situation where a single emulated guest segment
could correspond to multiple shadow segments (as the shadow segments
are still 256MB segments), this adds a new kvmppc_mmu_flush_segment()
to scan for all shadow segments that need to be removed.
This restructures the guest HPT (hashed page table) lookup code to
use the correct hashing and matching functions for HPTEs within a
1TB segment. We use the standard hpt_hash() function instead of
open-coding the hash calculation, and we use HPTE_V_COMPARE() with
an AVPN value that has the B (segment size) field included. The
calculation of avpn is done a little earlier since it doesn't change
in the loop starting at the do_second label.
The computation in kvmppc_mmu_book3s_64_esid_to_vsid() changes so that
it returns a 256MB VSID even if the guest SLB entry is a 1TB entry.
This is because the users of this function are creating 256MB SLB
entries. We set a new VSID_1T flag so that entries created from 1T
segments don't collide with entries from 256MB segments.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Pull kvm updates from Gleb Natapov:
"Highlights of the updates are:
general:
- new emulated device API
- legacy device assignment is now optional
- irqfd interface is more generic and can be shared between arches
x86:
- VMCS shadow support and other nested VMX improvements
- APIC virtualization and Posted Interrupt hardware support
- Optimize mmio spte zapping
ppc:
- BookE: in-kernel MPIC emulation with irqfd support
- Book3S: in-kernel XICS emulation (incomplete)
- Book3S: HV: migration fixes
- BookE: more debug support preparation
- BookE: e6500 support
ARM:
- reworking of Hyp idmaps
s390:
- ioeventfd for virtio-ccw
And many other bug fixes, cleanups and improvements"
* tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
kvm: Add compat_ioctl for device control API
KVM: x86: Account for failing enable_irq_window for NMI window request
KVM: PPC: Book3S: Add API for in-kernel XICS emulation
kvm/ppc/mpic: fix missing unlock in set_base_addr()
kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write
kvm/ppc/mpic: remove users
kvm/ppc/mpic: fix mmio region lists when multiple guests used
kvm/ppc/mpic: remove default routes from documentation
kvm: KVM_CAP_IOMMU only available with device assignment
ARM: KVM: iterate over all CPUs for CPU compatibility check
KVM: ARM: Fix spelling in error message
ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally
KVM: ARM: Fix API documentation for ONE_REG encoding
ARM: KVM: promote vfp_host pointer to generic host cpu context
ARM: KVM: add architecture specific hook for capabilities
ARM: KVM: perform HYP initilization for hotplugged CPUs
ARM: KVM: switch to a dual-step HYP init code
ARM: KVM: rework HYP page table freeing
ARM: KVM: enforce maximum size for identity mapped code
ARM: KVM: move to a KVM provided HYP idmap
...
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself. This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names. Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the instruction emulator code returns EMULATE_EXIT_USER
and common code initializes the "run->exit_reason = .." and
"vcpu->arch.hcall_needed = .." with one fixed reason.
But there can be different reasons when emulator need to exit
to user space. To support that the "run->exit_reason = .."
and "vcpu->arch.hcall_needed = .." initialization is moved a
level up to emulator.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Instruction emulation return EMULATE_DO_PAPR when it requires
exit to userspace on book3s. Similar return is required
for booke. EMULATE_DO_PAPR reads out to be confusing so it is
renamed to EMULATE_EXIT_USER.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch makes the parameter old a const pointer to the old memory
slot and adds a new parameter named change to know the change being
requested: the former is for removing extra copying and the latter is
for cleaning up the code.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Commit a413f474a0 ("powerpc: Disable relocation on exceptions whenever
PR KVM is active") added calls to pSeries_disable_reloc_on_exc() and
pSeries_enable_reloc_on_exc() to book3s_pr.c, and added declarations
of those functions to <asm/hvcall.h>, but didn't add an include of
<asm/hvcall.h> to book3s_pr.c. 64-bit kernels seem to get hvcall.h
included via some other path, but 32-bit kernels fail to compile with:
arch/powerpc/kvm/book3s_pr.c: In function ‘kvmppc_core_init_vm’:
arch/powerpc/kvm/book3s_pr.c:1300:4: error: implicit declaration of function ‘pSeries_disable_reloc_on_exc’ [-Werror=implicit-function-declaration]
arch/powerpc/kvm/book3s_pr.c: In function ‘kvmppc_core_destroy_vm’:
arch/powerpc/kvm/book3s_pr.c:1316:4: error: implicit declaration of function ‘pSeries_enable_reloc_on_exc’ [-Werror=implicit-function-declaration]
cc1: all warnings being treated as errors
make[2]: *** [arch/powerpc/kvm/book3s_pr.o] Error 1
make[1]: *** [arch/powerpc/kvm] Error 2
make: *** [sub-make] Error 2
This fixes it by adding an include of hvcall.h.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When running on top of pHyp, the hypercall instruction "sc 1" goes
straight into pHyp without trapping in supervisor mode.
So if we want to support PAPR guest in this configuration we need to
add a second way of accessing PAPR hypercalls, preferably with the
exact same semantics except for the instruction.
So let's overlay an officially reserved instruction and emulate PAPR
hypercalls whenever we hit that one.
Signed-off-by: Alexander Graf <agraf@suse.de>
For PR KVM we allow userspace to map 0xc000000000000000. Because
transitioning from userspace to the guest kernel may use the relocated
exception vectors we have to disable relocation on exceptions whenever
PR KVM is active as we cannot trust that address.
This issue does not apply to HV KVM, since changing from a guest to the
hypervisor will never use the relocated exception vectors.
Currently the hypervisor interface only allows us to toggle relocation
on exceptions on a partition wide scope, so we need to globally disable
relocation on exceptions when the first PR KVM instance is started and
only re-enable them when all PR KVM instances have been destroyed.
It's a bit heavy handed, but until the hypervisor gives us a lightweight
way to toggle relocation on exceptions on a single thread it's only real
option.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The mask of MSR bits that get transferred from the guest MSR to the
shadow MSR included MSR_DE. In fact that bit only exists on Book 3E
processors, and it is assigned the same bit used for MSR_BE on Book 3S
processors. Since we already had MSR_BE in the mask, this just removes
MSR_DE.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This fixes various issues in how we were handling the VSX registers
that exist on POWER7 machines. First, we were running off the end
of the current->thread.fpr[] array. Ultimately this was because the
vcpu->arch.vsr[] array is sized to be able to store both the FP
registers and the extra VSX registers (i.e. 64 entries), but PR KVM
only uses it for the extra VSX registers (i.e. 32 entries).
Secondly, calling load_up_vsx() from C code is a really bad idea,
because it jumps to fast_exception_return at the end, rather than
returning with a blr instruction. This was causing it to jump off
to a random location with random register contents, since it was using
the largely uninitialized stack frame created by kvmppc_load_up_vsx.
In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx,
since giveup_fpu and load_up_fpu handle the extra VSX registers as well
as the standard FP registers on machines with VSX. Also, since VSX
instructions can access the VMX registers and the FP registers as well
as the extra VSX registers, we have to load up the FP and VMX registers
before we can turn on the MSR_VSX bit for the guest. Conversely, if
we save away any of the VSX or FP registers, we have to turn off MSR_VSX
for the guest.
To handle all this, it is more convenient for a single call to
kvmppc_giveup_ext() to handle all the state saving that needs to be done,
so we make it take a set of MSR bits rather than just one, and the switch
statement becomes a series of if statements. Similarly kvmppc_handle_ext
needs to be able to load up more than one set of registers.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set all the guest floating-point
state using the KVM_[GS]ET_ONE_REG ioctls. The floating-point state
includes all of the traditional floating-point registers and the
FPSCR (floating point status/control register), all the VMX/Altivec
vector registers and the VSCR (vector status/control register), and
on POWER7, the vector-scalar registers (note that each FP register
is the high-order half of the corresponding VSR).
Most of these are implemented in common Book 3S code, except for VSX
on POWER7. Because HV and PR differ in how they store the FP and VSX
registers on POWER7, the code for these cases is not common. On POWER7,
the FP registers are the upper halves of the VSX registers vsr0 - vsr31.
PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the
arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas
HV KVM on POWER7 stores the whole VSX register in arch.vsr[].
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace, vsx compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
This enables userspace to get and set various SPRs (special-purpose
registers) using the KVM_[GS]ET_ONE_REG ioctls. With this, userspace
can get and set all the SPRs that are part of the guest state, either
through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or
the KVM_[GS]ET_ONE_REG ioctls.
The SPRs that are added here are:
- DABR: Data address breakpoint register
- DSCR: Data stream control register
- PURR: Processor utilization of resources register
- SPURR: Scaled PURR
- DAR: Data address register
- DSISR: Data storage interrupt status register
- AMR: Authority mask register
- UAMOR: User authority mask override register
- MMCR0, MMCR1, MMCRA: Performance monitor unit control registers
- PMC1..PMC8: Performance monitor unit counter registers
In order to reduce code duplication between PR and HV KVM code, this
moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and
centralizes the copying between user and kernel space there. The
registers that are handled differently between PR and HV, and those
that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg()
functions that are specific to each flavor.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: minimal style fixes]
Signed-off-by: Alexander Graf <agraf@suse.de>
This removes the powerpc "generic" updates of vcpu->cpu in load and
put, and moves them to the various backends.
The reason is that "HV" KVM does its own sauce with that field
and the generic updates might corrupt it. The field contains the
CPU# of the -first- HW CPU of the core always for all the VCPU
threads of a core (the one that's online from a host Linux
perspective).
However, the preempt notifiers are going to be called on the
threads VCPUs when they are running (due to them sleeping on our
private waitqueue) causing unload to be called, potentially
clobbering the value.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot. With this,
we can handle deletion and modification of memory slots.
kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot. This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.
We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does. We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have an architecture-specific field in the kvm_memory_slot
structure, we can use it to store the array of page physical addresses
that we need for Book3S HV KVM on PPC970 processors. This reduces the
size of struct kvm_arch for Book3S HV, and also reduces the size of
struct kvm_arch_memory_slot for other PPC KVM variants since the fields
in it are now only compiled in for Book3S HV.
This necessitates making the kvm_arch_create_memslot and
kvm_arch_free_memslot operations specific to each PPC KVM variant.
That in turn means that we now don't allocate the rmap arrays on
Book3S PR and Book E.
Since we now unpin pages and free the slot_phys array in
kvmppc_core_free_memslot, we no longer need to do it in
kvmppc_core_destroy_vm, since the generic code takes care to free
all the memslots when destroying a VM.
We now need the new memslot to be passed in to
kvmppc_core_prepare_memory_region, since we need to initialize its
arch.slot_phys member on Book3S HV.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Requests may want to tell us that we need to go back into host state,
so add a return value for the checks.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our prepare_to_enter helper wants to be able to return in more circumstances
to the host than only when an interrupt is pending. Broaden the interface a
bit and move even more generic code to the generic helper.
Signed-off-by: Alexander Graf <agraf@suse.de>
Today, we disable preemption while inside guest context, because we need
to expose to the world that we are not in a preemptible context. However,
during that time we already have interrupts disabled, which would indicate
that we are in a non-preemptible context.
The reason the checks for irqs_disabled() fail for us though is that we
manually control hard IRQs and ignore all the lazy EE framework. Let's
stop doing that. Instead, let's always use lazy EE to indicate when we
want to disable IRQs, but do a special final switch that gets us into
EE disabled, but soft enabled state. That way when we get back out of
guest state, we are immediately ready to process interrupts.
This simplifies the code drastically and reduces the time that we appear
as preempt disabled.
Signed-off-by: Alexander Graf <agraf@suse.de>
When getting out of __vcpu_run, let's be consistent about the state we
return in. We want to always
* have IRQs enabled
* have called kvm_guest_exit before
Signed-off-by: Alexander Graf <agraf@suse.de>
When going out of guest mode, indicate that we are in vcpu->mode. That way
requests from other CPUs don't needlessly need to kick us to process them,
because it'll just happen next time we enter the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we use our generic exit helper, we can safely drop our previous
kvm_resched that we used to trigger at the beginning of the exit handler
function.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have very simple MMU Notifier support for e500 in place,
also add the same simple support to book3s. It gets us one step closer
to actual fast support.
Signed-off-by: Alexander Graf <agraf@suse.de>
We need to do the same things when preparing to enter a guest for booke and
book3s_pr cores. Fold the generic code into a generic function that both call.
Signed-off-by: Alexander Graf <agraf@suse.de>
We want to have tracing information on guest exits for booke as well
as book3s. Since most information is identical, use a common trace point.
Signed-off-by: Alexander Graf <agraf@suse.de>
After commit a2766325cf, the error page is replaced by the
error code, it need not be released anymore
[ The patch has been compiling tested for powerpc ]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
There is nothing in the code for emulating TCE tables in the kernel
that prevents it from working on "PR" KVM... other than ifdef's and
location of the code.
This and moves the bulk of the code there to a new file called
book3s_64_vio.c.
This speeds things up a bit on my G5.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix for hv kvm, 32bit, whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
While handling an exit, we should listen for interrupts and make sure to
receive them when they arrive, to keep our latencies low.
Signed-off-by: Alexander Graf <agraf@suse.de>
When the kernel calls into RTAS, it switches to 32-bit mode. The
magic page was is longer accessible in that case, causing the
patched instructions in the RTAS call wrapper to crash.
This fixes it by making available a 32-bit mapping of the magic
page in that case. This mapping is flushed whenever we switch
the kernel back to 64-bit mode.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: add a check if the magic page is mapped]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When running kvm_vcpu_block and it realizes that the CPU is actually good
to run, we get a request bit set for KVM_REQ_UNHALT. Right now, there's
nothing we can do with that bit, so let's unset it right after the call
again so we don't get confused in our later checks for pending work.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When running PR KVM on a p7 system in bare metal, we get HV exits instead
of normal supervisor traps. Semantically they are identical though and the
HSRR vs SRR difference is already taken care of in the exit code.
So all we need to do is handle them in addition to our normal exits.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When emulating updating load/store instructions (lwzu, stwu, ...) we need to
write the effective address of the load/store into a register.
Currently, we write the physical address in there, which is very wrong. So
instead let's save off where the virtual fault was on MMIO and use that
information as value to put into the register.
While at it, also move the XOP variants of the above instructions to the new
scheme of using the already known vaddr instead of calculating it themselves.
Reported-by: Jörg Sommer <joerg@alea.gnuu.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We were leaking preemption counters. Fix the code to always toggle
between preempt and non-preempt properly.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We were failing to compile on book3s_32 with the following errors:
arch/powerpc/kvm/book3s_pr.c:883:45: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
arch/powerpc/kvm/book3s_pr.c:898:79: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
Fix this by explicity casting the u64 to long before we use it as a pointer.
Also, on PPC32 we can not use get_user/put_user for 64bit wide variables,
as there is no single instruction that could load or store variables that big.
So instead, we have to use copy_from/to_user which works everywhere.
Reported-by: Jörg Sommer <joerg@alea.gnuu.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Pull kvm updates from Avi Kivity:
"Changes include timekeeping improvements, support for assigning host
PCI devices that share interrupt lines, s390 user-controlled guests, a
large ppc update, and random fixes."
This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.
* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: Convert intx_mask_lock to spin lock
KVM: x86: fix kvm_write_tsc() TSC matching thinko
x86: kvmclock: abstract save/restore sched_clock_state
KVM: nVMX: Fix erroneous exception bitmap check
KVM: Ignore the writes to MSR_K7_HWCR(3)
KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
KVM: PMU: add proper support for fixed counter 2
KVM: PMU: Fix raw event check
KVM: PMU: warn when pin control is set in eventsel msr
KVM: VMX: Fix delayed load of shared MSRs
KVM: use correct tlbs dirty type in cmpxchg
KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
KVM: x86 emulator: Allow PM/VM86 switch during task switch
KVM: SVM: Fix CPL updates
KVM: x86 emulator: VM86 segments must have DPL 3
KVM: x86 emulator: Fix task switch privilege checks
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
...
This moves the get/set_one_reg implementation down from powerpc.c into
booke.c, book3s_pr.c and book3s_hv.c. This avoids #ifdefs in C code,
but more importantly, it fixes a bug on Book3s HV where we were
accessing beyond the end of the kvm_vcpu struct (via the to_book3s()
macro) and corrupting memory, causing random crashes and file corruption.
On Book3s HV we only accept setting the HIOR to zero, since the guest
runs in supervisor mode and its vectors are never offset from zero.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf update to apply on top of changed ONE_REG patches]
Signed-off-by: Avi Kivity <avi@redhat.com>
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.
We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This changes the implementation of kvm_vm_ioctl_get_dirty_log() for
Book3s HV guests to use the hardware C (changed) bits in the guest
hashed page table. Since this makes the implementation quite different
from the Book3s PR case, this moves the existing implementation from
book3s.c to book3s_pr.c and creates a new implementation in book3s_hv.c.
That implementation calls kvmppc_hv_get_dirty_log() to do the actual
work by calling kvm_test_clear_dirty on each page. It iterates over
the HPTEs, clearing the C bit if set, and returns 1 if any C bit was
set (including the saved C bit in the rmap entry).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
As Scott put it:
> If we get a signal after the check, we want to be sure that we don't
> receive the reschedule IPI until after we're in the guest, so that it
> will cause another signal check.
we need to have interrupts disabled from the point we do signal_check()
all the way until we actually enter the guest.
This patch fixes potential signal loss races.
Reported-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When running the 64-bit Book3s PR code without CONFIG_PREEMPT_NONE, we were
doing a few things wrong, most notably access to PACA fields without making
sure that the pointers stay stable accross the access (preempt_disable()).
This patch moves to_svcpu towards a get/put model which allows us to disable
preemption while accessing the shadow vcpu fields in the PACA. That way we
can run preemptible and everyone's happy!
Reported-by: Jörg Sommer <joerg@alea.gnuu.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Somewhere during merges we ended up from
local_irq_enable()
foo();
local_irq_disable()
to always keeping irqs enabled during that part. However, we now
have the following code:
foo();
local_irq_disable()
which disables interrupts without the surrounding code enabling them
again! So let's remove that disable and be happy.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When entering the guest, we want to make sure we're not getting preempted
away, so let's disable preemption on entry, but enable it again while handling
guest exits.
Reported-by: Jörg Sommer <joerg@alea.gnuu.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>