module_param(bool) used to counter-intuitively take an int. In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option. For this version
it'll simply give a warning, but it'll break next kernel version.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Just convert all the files that have an nmi handler to the new routines.
Most of it is straight forward conversion. A couple of places needed some
tweaking like kgdb which separates the debug notifier from the nmi handler
and mce removes a call to notify_die.
[Thanks to Ying for finding out the history behind that mce call
https://lkml.org/lkml/2010/5/27/114
And Boris responding that he would like to remove that call because of it
https://lkml.org/lkml/2011/9/21/163]
The things that get converted are the registeration/unregistration routines
and the nmi handler itself has its args changed along with code removal
to check which list it is on (most are on one NMI list except for kgdb
which has both an NMI routine and an NMI Unknown routine).
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Corey Minyard <minyard@acm.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/1317409584-23662-4-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
drivers/acpi/apei/ghes.c:542: warning: integer overflow in expression
drivers/acpi/apei/ghes.c:619: warning: integer overflow in expression
ghes.c:(.text+0x46289): undefined reference to `__udivdi3'
in function ghes_estatus_cache_add().
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Len Brown <len.brown@intel.com>
memory_failure_queue() is called when recoverable memory errors are
notified by firmware to do the recovery work.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
printk is used by GHES to report hardware errors. Ratelimit is
enforced on the printk to avoid too many hardware error reports in
kernel log. Because there may be thousands or even millions of
corrected hardware errors during system running.
Currently, a simple scheme is used. That is, the total number of
hardware error reporting is ratelimited. This may cause some issues
in practice.
For example, there are two kinds of hardware errors occurred in
system. One is corrected memory error, because the fault memory
address is accessed frequently, there may be hundreds error report
per-second. The other is corrected PCIe AER error, it will be
reported once per-second. Because they share one ratelimit control
structure, it is highly possible that only memory error is reported.
To avoid the above issue, an error record content based throttle
algorithm is implemented in the patch. Where after the first
successful reporting, all error records that are same are throttled for
some time, to let other kinds of error records have the opportunity to
be reported.
In above example, the memory errors will be throttled for some time,
after being printked. Then the PCIe AER error will be printked
successfully.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some APEI GHES recoverable errors are reported via NMI, but printk is
not safe in NMI context.
To solve the issue, a lock-less memory allocator is used to allocate
memory in NMI handler, save the error record into the allocated
memory, put the error record into a lock-less list. On the other
hand, an irq_work is used to delay the operation from NMI context to
IRQ context. The irq_work IRQ handler will remove nodes from
lock-less list, printk the error record and do some further processing
include recovery operation, then free the memory.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
APEI firmware first mode must be turned on explicitly on some
machines, otherwise there may be no GHES hardware error record for
hardware error notification. APEI bit in generic _OSC call can be
used to do that, but on some machine, a special WHEA _OSC call must be
used. This patch adds the support to that WHEA _OSC call.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some machine may have broken firmware so that GHES and firmware first
mode should be disabled. This patch adds support to that.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
printk is used by GHES to report hardware errors. Normally, the
printk will be ratelimited to avoid too many hardware error reports in
kernel log. Because there may be thousands or even millions of
corrected hardware errors during system running.
That is different for fatal hardware error, because system will go
panic as soon as possible, there will be no more than several error
records. And these error records are valuable for system fault
diagnosis, so they should not be ratelimited.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
This patch adds POLL/IRQ/NMI notification types support.
Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.
Known issue:
- Error information can not be printed for recoverable errors notified
via NMI, because printk is not NMI-safe. Will fix this via delay
printing to IRQ context via irq_work or make printk NMI-safe.
v2:
- adjust printk format per comments.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
printk is one of the methods to report hardware errors to user space.
This patch implements hardware error reporting for GHES via printk.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
platform_data in hest_parse_ghes() is used for saving the address of entry
information of erst_tab. When the device is failed to be added, platform_data
will be freed by platform_device_put(). But the value saved in platform_data
should not be freed here. If it is done, it will make system panic.
So I think platform_data should save the address of allocated memory
which saves entry information of erst_tab.
This patch fixed it and I confirmed it on x86_64 next-tree.
v2:
Transport the pointer of hest_hdr to platform_data using
platform_device_add_data()
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Register GHES during HEST initialization as platform devices. And make
GHES driver into platform device driver. So that the GHES driver
module can be loaded automatically when there are GHES available.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The abbreviation of severity should be SEV instead of SER, so the CPER
severity constants are renamed accordingly. GHES severity constants
are renamed in the same way too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
Now, only SCI notification type and memory errors are supported. More
notification type and hardware error type will be added later. These
memory errors are reported to user space through /dev/mcelog via
faking a corrected Machine Check, so that the error memory page can be
offlined by /sbin/mcelog if the error count for one page is beyond the
threshold.
On some machines, Machine Check can not report physical address for
some corrected memory errors, but GHES can do that. So this simplified
GHES is implemented firstly.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>