Pull cgroup updates from Tejun Heo:
"Nothing too interesting. Just a handful of cleanup patches"
* 'for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
Revert "cgroup: remove redundant variable in cgroup_mount()"
cgroup: remove redundant variable in cgroup_mount()
cgroup: fix missing unlock in cgroup_release_agent()
cgroup: remove CGRP_RELEASABLE flag
perf/cgroup: Remove perf_put_cgroup()
cgroup: remove redundant check in cgroup_ino()
cpuset: simplify proc_cpuset_show()
cgroup: simplify proc_cgroup_show()
cgroup: use a per-cgroup work for release agent
cgroup: remove bogus comments
cgroup: remove redundant code in cgroup_rmdir()
cgroup: remove some useless forward declarations
cgroup: fix a typo in comment.
For now, there are NCHUNKS of 64 freelists in zbud_pool, the last
unbuddied[63] freelist linked with all zbud pages which have free chunks
of 63. Calculating according to context of num_free_chunks(), our max
chunk number of unbuddied zbud page is 62, so none of zbud pages will be
added/removed in last freelist, but still we will try to find an unbuddied
zbud page in the last unused freelist, it is unneeded.
This patch redefines NCHUNKS to 63 as free chunk number in one zbud page,
hence we can decrease size of zpool and avoid accessing the last unused
freelist whenever failing to allocate zbud from freelist in zbud_alloc.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change zsmalloc init_zspage() logic to iterate through each object on each
of its pages, checking the offset to verify the object is on the current
page before linking it into the zspage.
The current zsmalloc init_zspage free object linking code has logic that
relies on there only being one page per zspage when PAGE_SIZE is a
multiple of class->size. It calculates the number of objects for the
current page, and iterates through all of them plus one, to account for
the assumed partial object at the end of the page. While this currently
works, the logic can be simplified to just link the object at each
successive offset until the offset is larger than PAGE_SIZE, which does
not rely on PAGE_SIZE being a multiple of class->size.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The letter 'f' in "n <= N/f" stands for fullness_threshold_frac, not
1/fullness_threshold_frac.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zs_get_total_size_bytes returns a amount of memory zsmalloc consumed with
*byte unit* but zsmalloc operates *page unit* rather than byte unit so
let's change the API so benefit we could get is that reduce unnecessary
overhead (ie, change page unit with byte unit) in zsmalloc.
Since return type is pages, "zs_get_total_pages" is better than
"zs_get_total_size_bytes".
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, zram has no feature to limit memory so theoretically zram can
deplete system memory. Users have asked for a limit several times as even
without exhaustion zram makes it hard to control memory usage of the
platform. This patchset adds the feature.
Patch 1 makes zs_get_total_size_bytes faster because it would be used
frequently in later patches for the new feature.
Patch 2 changes zs_get_total_size_bytes's return unit from bytes to page
so that zsmalloc doesn't need unnecessary operation(ie, << PAGE_SHIFT).
Patch 3 adds new feature. I added the feature into zram layer, not
zsmalloc because limiation is zram's requirement, not zsmalloc so any
other user using zsmalloc(ie, zpool) shouldn't affected by unnecessary
branch of zsmalloc. In future, if every users of zsmalloc want the
feature, then, we could move the feature from client side to zsmalloc
easily but vice versa would be painful.
Patch 4 adds news facility to report maximum memory usage of zram so that
this avoids user polling frequently via /sys/block/zram0/ mem_used_total
and ensures transient max are not missed.
This patch (of 4):
pages_allocated has counted in size_class structure and when user of
zsmalloc want to see total_size_bytes, it should gather all of count from
each size_class to report the sum.
It's not bad if user don't see the value often but if user start to see
the value frequently, it would be not a good deal for performance pov.
This patch moves the count from size_class to zs_pool so it could reduce
memory footprint (from [255 * 8byte] to [sizeof(atomic_long_t)]).
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Reviewed-by: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmstat workers are used for folding counter differentials into the zone,
per node and global counters at certain time intervals. They currently
run at defined intervals on all processors which will cause some holdoff
for processors that need minimal intrusion by the OS.
The current vmstat_update mechanism depends on a deferrable timer firing
every other second by default which registers a work queue item that runs
on the local CPU, with the result that we have 1 interrupt and one
additional schedulable task on each CPU every 2 seconds If a workload
indeed causes VM activity or multiple tasks are running on a CPU, then
there are probably bigger issues to deal with.
However, some workloads dedicate a CPU for a single CPU bound task. This
is done in high performance computing, in high frequency financial
applications, in networking (Intel DPDK, EZchip NPS) and with the advent
of systems with more and more CPUs over time, this may become more and
more common to do since when one has enough CPUs one cares less about
efficiently sharing a CPU with other tasks and more about efficiently
monopolizing a CPU per task.
The difference of having this timer firing and workqueue kernel thread
scheduled per second can be enormous. An artificial test measuring the
worst case time to do a simple "i++" in an endless loop on a bare metal
system and under Linux on an isolated CPU with dynticks and with and
without this patch, have Linux match the bare metal performance (~700
cycles) with this patch and loose by couple of orders of magnitude (~200k
cycles) without it[*]. The loss occurs for something that just calculates
statistics. For networking applications, for example, this could be the
difference between dropping packets or sustaining line rate.
Statistics are important and useful, but it would be great if there would
be a way to not cause statistics gathering produce a huge performance
difference. This patche does just that.
This patch creates a vmstat shepherd worker that monitors the per cpu
differentials on all processors. If there are differentials on a
processor then a vmstat worker local to the processors with the
differentials is created. That worker will then start folding the diffs
in regular intervals. Should the worker find that there is no work to be
done then it will make the shepherd worker monitor the differentials
again.
With this patch it is possible then to have periods longer than
2 seconds without any OS event on a "cpu" (hardware thread).
The patch shows a very minor increased in system performance.
hackbench -s 512 -l 2000 -g 15 -f 25 -P
Results before the patch:
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 4.992
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 4.971
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 5.063
Hackbench after the patch:
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 4.973
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 4.990
Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks)
Each sender will pass 2000 messages of 512 bytes
Time: 4.993
[fengguang.wu@intel.com: cpu_stat_off can be static]
Signed-off-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Gilad Ben-Yossef <gilad@benyossef.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Max Krasnyansky <maxk@qti.qualcomm.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PROT_NUMA VMAs are skipped to avoid problems distinguishing between
present, prot_none and special entries. MPOL_MF_LAZY is not visible from
userspace since commit a720094ded ("mm: mempolicy: Hide MPOL_NOOP and
MPOL_MF_LAZY from userspace for now") but it should still skip VMAs the
same way task_numa_work does.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always mark pages with PageBalloon even if balloon compaction is disabled
and expose this mark in /proc/kpageflags as KPF_BALLOON.
Also this patch adds three counters into /proc/vmstat: "balloon_inflate",
"balloon_deflate" and "balloon_migrate". They accumulate balloon
activity. Current size of balloon is (balloon_inflate - balloon_deflate)
pages.
All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON.
It should be selected by ballooning driver which wants use this feature.
Currently virtio-balloon is the only user.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now ballooned pages are detected using PageBalloon(). Fake mapping is no
longer required. This patch links ballooned pages to balloon device using
field page->private instead of page->mapping. Also this patch embeds
balloon_dev_info directly into struct virtio_balloon.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin reported KASAN splash inside isolate_migratepages_range().
Problem is in the function __is_movable_balloon_page() which tests
AS_BALLOON_MAP in page->mapping->flags. This function has no protection
against anonymous pages. As result it tried to check address space flags
inside struct anon_vma.
Further investigation shows more problems in current implementation:
* Special branch in __unmap_and_move() never works:
balloon_page_movable() checks page flags and page_count. In
__unmap_and_move() page is locked, reference counter is elevated, thus
balloon_page_movable() always fails. As a result execution goes to the
normal migration path. virtballoon_migratepage() returns
MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS,
move_to_new_page() thinks this is an error code and assigns
newpage->mapping to NULL. Newly migrated page lose connectivity with
balloon an all ability for further migration.
* lru_lock erroneously required in isolate_migratepages_range() for
isolation ballooned page. This function releases lru_lock periodically,
this makes migration mostly impossible for some pages.
* balloon_page_dequeue have a tight race with balloon_page_isolate:
balloon_page_isolate could be executed in parallel with dequeue between
picking page from list and locking page_lock. Race is rare because they
use trylock_page() for locking.
This patch fixes all of them.
Instead of fake mapping with special flag this patch uses special state of
page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256. Buddy allocator uses
PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose. Storing mark
directly in struct page makes everything safer and easier.
PagePrivate is used to mark pages present in page list (i.e. not
isolated, like PageLRU for normal pages). It replaces special rules for
reference counter and makes balloon migration similar to migration of
normal pages. This flag is protected by page_lock together with link to
the balloon device.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series implements general forms of get_user_pages_fast and
__get_user_pages_fast in core code and activates them for arm and arm64.
These are required for Transparent HugePages to function correctly, as a
futex on a THP tail will otherwise result in an infinite loop (due to the
core implementation of __get_user_pages_fast always returning 0).
Unfortunately, a futex on THP tail can be quite common for certain
workloads; thus THP is unreliable without a __get_user_pages_fast
implementation.
This series may also be beneficial for direct-IO heavy workloads and
certain KVM workloads.
This patch (of 6):
get_user_pages_fast() attempts to pin user pages by walking the page
tables directly and avoids taking locks. Thus the walker needs to be
protected from page table pages being freed from under it, and needs to
block any THP splits.
One way to achieve this is to have the walker disable interrupts, and rely
on IPIs from the TLB flushing code blocking before the page table pages
are freed.
On some platforms we have hardware broadcast of TLB invalidations, thus
the TLB flushing code doesn't necessarily need to broadcast IPIs; and
spuriously broadcasting IPIs can hurt system performance if done too
often.
This problem has been solved on PowerPC and Sparc by batching up page
table pages belonging to more than one mm_user, then scheduling an
rcu_sched callback to free the pages. This RCU page table free logic has
been promoted to core code and is activated when one enables
HAVE_RCU_TABLE_FREE. Unfortunately, these architectures implement their
own get_user_pages_fast routines.
The RCU page table free logic coupled with an IPI broadcast on THP split
(which is a rare event), allows one to protect a page table walker by
merely disabling the interrupts during the walk.
This patch provides a general RCU implementation of get_user_pages_fast
that can be used by architectures that perform hardware broadcast of TLB
invalidations.
It is based heavily on the PowerPC implementation by Nick Piggin.
[akpm@linux-foundation.org: various comment fixes]
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove 3 brace coding style for any arm of this statement
Signed-off-by: Paul McQuade <paulmcquad@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"WARNING: Use #include <linux/uaccess.h> instead of <asm/uaccess.h>"
Signed-off-by: Paul McQuade <paulmcquad@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_can_account_kmem() returns true iff
!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
memcg_kmem_is_active(memcg);
To begin with the !mem_cgroup_is_root(memcg) check is useless, because one
can't enable kmem accounting for the root cgroup (mem_cgroup_write()
returns EINVAL on an attempt to set the limit on the root cgroup).
Furthermore, the !mem_cgroup_disabled() check also seems to be redundant.
The point is memcg_can_account_kmem() is called from three places:
mem_cgroup_salbinfo_read(), __memcg_kmem_get_cache(), and
__memcg_kmem_newpage_charge(). The latter two functions are only invoked
if memcg_kmem_enabled() returns true, which implies that the memory cgroup
subsystem is enabled. And mem_cgroup_slabinfo_read() shows the output of
memory.kmem.slabinfo, which won't exist if the memory cgroup is completely
disabled.
So let's substitute all the calls to memcg_can_account_kmem() with plain
memcg_kmem_is_active(), and kill the former.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a memcg with even just moderate cache pressure, success rates for
transparent huge page allocations drop to zero, wasting a lot of effort
that the allocator puts into assembling these pages.
The reason for this is that the memcg reclaim code was never designed for
higher-order charges. It reclaims in small batches until there is room
for at least one page. Huge page charges only succeed when these batches
add up over a series of huge faults, which is unlikely under any
significant load involving order-0 allocations in the group.
Remove that loop on the memcg side in favor of passing the actual reclaim
goal to direct reclaim, which is already set up and optimized to meet
higher-order goals efficiently.
This brings memcg's THP policy in line with the system policy: if the
allocator painstakingly assembles a hugepage, memcg will at least make an
honest effort to charge it. As a result, transparent hugepage allocation
rates amid cache activity are drastically improved:
vanilla patched
pgalloc 4717530.80 ( +0.00%) 4451376.40 ( -5.64%)
pgfault 491370.60 ( +0.00%) 225477.40 ( -54.11%)
pgmajfault 2.00 ( +0.00%) 1.80 ( -6.67%)
thp_fault_alloc 0.00 ( +0.00%) 531.60 (+100.00%)
thp_fault_fallback 749.00 ( +0.00%) 217.40 ( -70.88%)
[ Note: this may in turn increase memory consumption from internal
fragmentation, which is an inherent risk of transparent hugepages.
Some setups may have to adjust the memcg limits accordingly to
accomodate this - or, if the machine is already packed to capacity,
disable the transparent huge page feature. ]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave@sr71.net>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When attempting to charge pages, we first charge the memory counter and
then the memory+swap counter. If one of the counters is at its limit, we
enter reclaim, but if it's the memory+swap counter, reclaim shouldn't swap
because that wouldn't change the situation. However, if the counters have
the same limits, we never get to the memory+swap limit. To know whether
reclaim should swap or not, there is a state flag that indicates whether
the limits are equal and whether hitting the memory limit implies hitting
the memory+swap limit.
Just try the memory+swap counter first.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave@sr71.net>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pages_and_swap_cache limits release_pages to PAGEVEC_SIZE chunks.
This is not a big deal for the normal release path but it completely kills
memcg uncharge batching which reduces res_counter spin_lock contention.
Dave has noticed this with his page fault scalability test case on a large
machine when the lock was basically dominating on all CPUs:
80.18% 80.18% [kernel] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--66.59%-- res_counter_uncharge_until
| res_counter_uncharge
| uncharge_batch
| uncharge_list
| mem_cgroup_uncharge_list
| release_pages
| free_pages_and_swap_cache
| tlb_flush_mmu_free
| |
| |--90.12%-- unmap_single_vma
| | unmap_vmas
| | unmap_region
| | do_munmap
| | vm_munmap
| | sys_munmap
| | system_call_fastpath
| | __GI___munmap
| |
| --9.88%-- tlb_flush_mmu
| tlb_finish_mmu
| unmap_region
| do_munmap
| vm_munmap
| sys_munmap
| system_call_fastpath
| __GI___munmap
In his case the load was running in the root memcg and that part has been
handled by reverting 05b8430123 ("mm: memcontrol: use root_mem_cgroup
res_counter") because this is a clear regression, but the problem remains
inside dedicated memcgs.
There is no reason to limit release_pages to PAGEVEC_SIZE batches other
than lru_lock held times. This logic, however, can be moved inside the
function. mem_cgroup_uncharge_list and free_hot_cold_page_list do not
hold any lock for the whole pages_to_free list so it is safe to call them
in a single run.
The release_pages() code was previously breaking the lru_lock each
PAGEVEC_SIZE pages (ie, 14 pages). However this code has no usage of
pagevecs so switch to breaking the lock at least every SWAP_CLUSTER_MAX
(32) pages. This means that the lock acquisition frequency is
approximately halved and the max hold times are approximately doubled.
The now unneeded batching is removed from free_pages_and_swap_cache().
Also update the grossly out-of-date release_pages documentation.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Hansen <dave@sr71.net>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cat /sys/.../pools followed by removal the device leads to:
|======================================================
|[ INFO: possible circular locking dependency detected ]
|3.17.0-rc4+ #1498 Not tainted
|-------------------------------------------------------
|rmmod/2505 is trying to acquire lock:
| (s_active#28){++++.+}, at: [<c017f754>] kernfs_remove_by_name_ns+0x3c/0x88
|
|but task is already holding lock:
| (pools_lock){+.+.+.}, at: [<c011494c>] dma_pool_destroy+0x18/0x17c
|
|which lock already depends on the new lock.
|the existing dependency chain (in reverse order) is:
|
|-> #1 (pools_lock){+.+.+.}:
| [<c0114ae8>] show_pools+0x30/0xf8
| [<c0313210>] dev_attr_show+0x1c/0x48
| [<c0180e84>] sysfs_kf_seq_show+0x88/0x10c
| [<c017f960>] kernfs_seq_show+0x24/0x28
| [<c013efc4>] seq_read+0x1b8/0x480
| [<c011e820>] vfs_read+0x8c/0x148
| [<c011ea10>] SyS_read+0x40/0x8c
| [<c000e960>] ret_fast_syscall+0x0/0x48
|
|-> #0 (s_active#28){++++.+}:
| [<c017e9ac>] __kernfs_remove+0x258/0x2ec
| [<c017f754>] kernfs_remove_by_name_ns+0x3c/0x88
| [<c0114a7c>] dma_pool_destroy+0x148/0x17c
| [<c03ad288>] hcd_buffer_destroy+0x20/0x34
| [<c03a4780>] usb_remove_hcd+0x110/0x1a4
The problem is the lock order of pools_lock and kernfs_mutex in
dma_pool_destroy() vs show_pools() call path.
This patch breaks out the creation of the sysfs file outside of the
pools_lock mutex. The newly added pools_reg_lock ensures that there is no
race of create vs destroy code path in terms whether or not the sysfs file
has to be deleted (and was it deleted before we try to create a new one)
and what to do if device_create_file() failed.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
`While growing per memcg caches arrays, we jump between memcontrol.c and
slab_common.c in a weird way:
memcg_alloc_cache_id - memcontrol.c
memcg_update_all_caches - slab_common.c
memcg_update_cache_size - memcontrol.c
There's absolutely no reason why memcg_update_cache_size can't live on the
slab's side though. So let's move it there and settle it comfortably amid
per-memcg cache allocation functions.
Besides, this patch cleans this function up a bit, removing all the
useless comments from it, and renames it to memcg_update_cache_params to
conform to memcg_alloc/free_cache_params, which we already have in
slab_common.c.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_update_all_caches grows arrays of per-memcg caches, so we only need
to call it when memcg_limited_groups_array_size is increased. However,
currently we invoke it each time a new kmem-active memory cgroup is
created. Then it just iterates over all slab_caches and does nothing
(memcg_update_cache_size returns immediately).
This patch fixes this insanity. In the meantime it moves the code dealing
with id allocations to separate functions, memcg_alloc_cache_id and
memcg_free_cache_id.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only reason why they live in memcontrol.c is that we get/put css
reference to the owner memory cgroup in them. However, we can do that in
memcg_{un,}register_cache. OTOH, there are several reasons to move them
to slab_common.c.
First, I think that the less public interface functions we have in
memcontrol.h the better. Since the functions I move don't depend on
memcontrol, I think it's worth making them private to slab, especially
taking into account that the arrays are defined on the slab's side too.
Second, the way how per-memcg arrays are updated looks rather awkward: it
proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c
(memcg_update_all_caches) and back to memcontrol.c again
(memcg_update_array_size). In the following patches I move the function
relocating the arrays (memcg_update_array_size) to slab_common.c and
therefore get rid this circular call path. I think we should have the
cache allocation stuff in the same place where we have relocation, because
it's easier to follow the code then. So I move arrays alloc/free
functions to slab_common.c too.
The third point isn't obvious. I'm going to make the list_lru structure
per-memcg to allow targeted kmem reclaim. That means we will have
per-memcg arrays in list_lrus too. It turns out that it's much easier to
update these arrays in list_lru.c rather than in memcontrol.c, because all
the stuff we need is defined there. This patch makes memcg caches arrays
allocation path conform that of the upcoming list_lru.
So let's move these functions to slab_common.c and make them static.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dump the contents of the relevant struct_mm when we hit the bug condition.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Very similar to VM_BUG_ON_PAGE and VM_BUG_ON_VMA, dump struct_mm when the
bug is hit.
[akpm@linux-foundation.org: coding-style fixes]
[mhocko@suse.cz: fix build]
[mhocko@suse.cz: fix build some more]
[akpm@linux-foundation.org: do strange things to avoid doing strange things for the comma separators]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_page() and dump_vma() are not specific to page_alloc.c, move them out
so page_alloc.c won't turn into the unofficial debug repository.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zones are allocated by the page allocator in either node or zone order.
Node ordering is preferred in terms of locality and is applied
automatically in one of three cases:
1. If a node has only low memory
2. If DMA/DMA32 is a high percentage of memory
3. If low memory on a single node is greater than 70% of the node size
Otherwise zone ordering is used to preserve low memory for devices that
require it. Unfortunately a consequence of this is that applications
running on a machine with balanced NUMA nodes will experience different
performance characteristics depending on which node they happen to start
from.
The point of zone ordering is to protect lower zones for devices that
require DMA/DMA32 memory. When NUMA was first introduced, this was
critical as 32-bit NUMA machines existed and exhausting low memory
triggered OOMs easily as so many allocations required low memory. On
64-bit machines the primary concern is devices that are 32-bit only which
is less severe than the low memory exhaustion problem on 32-bit NUMA. It
seems there are really few devices that depends on it.
AGP -- I assume this is getting more rare but even then I think the allocations
happen early in boot time where lowmem pressure is less of a problem
DRM -- If the device is 32-bit only then there may be low pressure. I didn't
evaluate these in detail but it looks like some of these are mobile
graphics card. Not many NUMA laptops out there. DRM folk should know
better though.
Some TV cards -- Much demand for 32-bit capable TV cards on NUMA machines?
B43 wireless card -- again not really a NUMA thing.
I cannot find a good reason to incur a performance penalty on all 64-bit NUMA
machines in case someone throws a brain damanged TV or graphics card in there.
This patch defaults to node-ordering on 64-bit NUMA machines. I was tempted
to make it default everywhere but I understand that some embedded arches may
be using 32-bit NUMA where I cannot predict the consequences.
The performance impact depends on the workload and the characteristics of the
machine and the machine I tested on had a large Normal zone on node 0 so the
impact is within the noise for the majority of tests. The allocation stats
show more allocation requests were from DMA32 and local node. Running SpecJBB
with multiple JVMs and automatic NUMA balancing disabled the results were
specjbb
3.17.0-rc2 3.17.0-rc2
vanilla nodeorder-v1r1
Min 1 29534.00 ( 0.00%) 30020.00 ( 1.65%)
Min 10 115717.00 ( 0.00%) 134038.00 ( 15.83%)
Min 19 109718.00 ( 0.00%) 114186.00 ( 4.07%)
Min 28 104459.00 ( 0.00%) 103639.00 ( -0.78%)
Min 37 98245.00 ( 0.00%) 103756.00 ( 5.61%)
Min 46 97198.00 ( 0.00%) 96197.00 ( -1.03%)
Mean 1 30953.25 ( 0.00%) 31917.75 ( 3.12%)
Mean 10 124432.50 ( 0.00%) 140904.00 ( 13.24%)
Mean 19 116033.50 ( 0.00%) 119294.75 ( 2.81%)
Mean 28 108365.25 ( 0.00%) 106879.50 ( -1.37%)
Mean 37 102984.75 ( 0.00%) 106924.25 ( 3.83%)
Mean 46 100783.25 ( 0.00%) 105368.50 ( 4.55%)
Stddev 1 1260.38 ( 0.00%) 1109.66 ( 11.96%)
Stddev 10 7434.03 ( 0.00%) 5171.91 ( 30.43%)
Stddev 19 8453.84 ( 0.00%) 5309.59 ( 37.19%)
Stddev 28 4184.55 ( 0.00%) 2906.63 ( 30.54%)
Stddev 37 5409.49 ( 0.00%) 3192.12 ( 40.99%)
Stddev 46 4521.95 ( 0.00%) 7392.52 (-63.48%)
Max 1 32738.00 ( 0.00%) 32719.00 ( -0.06%)
Max 10 136039.00 ( 0.00%) 148614.00 ( 9.24%)
Max 19 130566.00 ( 0.00%) 127418.00 ( -2.41%)
Max 28 115404.00 ( 0.00%) 111254.00 ( -3.60%)
Max 37 112118.00 ( 0.00%) 111732.00 ( -0.34%)
Max 46 108541.00 ( 0.00%) 116849.00 ( 7.65%)
TPut 1 123813.00 ( 0.00%) 127671.00 ( 3.12%)
TPut 10 497730.00 ( 0.00%) 563616.00 ( 13.24%)
TPut 19 464134.00 ( 0.00%) 477179.00 ( 2.81%)
TPut 28 433461.00 ( 0.00%) 427518.00 ( -1.37%)
TPut 37 411939.00 ( 0.00%) 427697.00 ( 3.83%)
TPut 46 403133.00 ( 0.00%) 421474.00 ( 4.55%)
3.17.0-rc2 3.17.0-rc2
vanillanodeorder-v1r1
DMA allocs 0 0
DMA32 allocs 57 1491992
Normal allocs 32543566 30026383
Movable allocs 0 0
Direct pages scanned 0 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 0 0
Kswapd efficiency 100% 100%
Kswapd velocity 0.000 0.000
Direct efficiency 100% 100%
Direct velocity 0.000 0.000
Percentage direct scans 0% 0%
Zone normal velocity 0.000 0.000
Zone dma32 velocity 0.000 0.000
Zone dma velocity 0.000 0.000
THP fault alloc 55164 52987
THP collapse alloc 139 147
THP splits 26 21
NUMA alloc hit 4169066 4250692
NUMA alloc miss 0 0
Note that there were more DMA32 allocations with the patch applied. In this
particular case there was no difference in numa_hit and numa_miss. The
expectation is that DMA32 was being used at the low watermark instead of
falling into the slow path. kswapd was not woken but it's not worken for
THP allocations.
On 32-bit, this patch defaults to zone-ordering as low memory depletion
can be a serious problem on 32-bit large memory machines. If the default
ordering was node then processes on node 0 will deplete the Normal zone
due to normal activity. The problem is worse if CONFIG_HIGHPTE is not
set. If combined with large amounts of dirty/writeback pages in Normal
zone then there is also a high risk of OOM. The heuristics are removed
as it's not clear they were ever important on 32-bit. They were only
relevant for setting node-ordering on 64-bit.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2.6.24 there has been a paranoid check in move_freepages that looks
up the zone of two pages. This is a very slow path and the only time I've
seen this bug trigger recently is when memory initialisation was broken
during patch development. Despite the fact it's a slow path, this patch
converts the check to a VM_BUG_ON anyway as it has served its purpose by
now.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
C mm/compaction.o
mm/compaction.c: In function isolate_freepages_block:
mm/compaction.c:364:37: warning: flags may be used uninitialized in this function [-Wmaybe-uninitialized]
&& compact_unlock_should_abort(&cc->zone->lock, flags,
^
Signed-off-by: Xiubo Li <Li.Xiubo@freescale.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- be consistent in printing the test which failed
- one message was actually wrong (a<b != b>a)
- don't print second bogus warning if browse_rb() failed
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually
sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the
reader through layers indirection just to track down a simple bit.
Remove all zone flag wrappers and just use bitops against zone->flags
directly. It's just as readable and the lines are barely any longer.
Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and
remove the zone_flags_t typedef.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nested calls to min/max functions result in shadow warnings in W=2 builds.
Avoid the warning by using the min3 and max3 macros to get the min/max of
3 values instead of nested calls.
Signed-off-by: Mark Rustad <mark.d.rustad@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When entering the page_alloc slowpath, we wakeup kswapd on every pgdat
according to the zonelist and high_zoneidx. However, this doesn't take
nodemask into account, and could prematurely wakeup kswapd on some
unintended nodes.
This patch uses for_each_zone_zonelist_nodemask() instead of
for_each_zone_zonelist() in wake_all_kswapds() to avoid the above
situation.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trivially convert a few VM_BUG_ON calls to VM_BUG_ON_VMA to extract
more information when they trigger.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a helper to dump information about a VMA, this also makes
dump_page_flags more generic and re-uses that so the output looks very
similar to dump_page:
[ 61.903437] vma ffff88070f88be00 start 00007fff25970000 end 00007fff25992000
[ 61.903437] next ffff88070facd600 prev ffff88070face400 mm ffff88070fade000
[ 61.903437] prot 8000000000000025 anon_vma ffff88070fa1e200 vm_ops (null)
[ 61.903437] pgoff 7ffffffdd file (null) private_data (null)
[ 61.909129] flags: 0x100173(read|write|mayread|maywrite|mayexec|growsdown|account)
[akpm@linux-foundation.org: make dump_vma() require CONFIG_DEBUG_VM]
[swarren@nvidia.com: fix dump_vma() compilation]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using __seq_open_private() removes boilerplate code from slabstats_open()
The resultant code is shorter and easier to follow.
This patch does not change any functionality.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using seq_open_private() removes boilerplate code from vmalloc_open().
The resultant code is shorter and easier to follow.
However, please note that seq_open_private() call kzalloc() rather than
kmalloc() which may affect timing due to the memory initialisation
overhead.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is designed to avoid a few ifdefs in .c files but it's obnoxious
because it can cause unsuspecting "migrate_page" symbols to get turned into
"NULL".
Just nuke it and use the ifdefs.
Cc: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove down_write(&mm->mmap_sem) in do_set_mempolicy(). This logic
was never correct and it is no longer needed, see the previous patch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. vma_policy_mof(task) is simply not safe unless task == current,
it can race with do_exit()->mpol_put(). Remove this arg and update
its single caller.
2. vma can not be NULL, remove this check and simplify the code.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup + preparation. Every user of get_task_policy() calls it
unconditionally, even if it is not going to use the result.
get_task_policy() is cheap but still this does not look clean, plus
the code looks simpler if get_task_policy() is called only when this
is really needed.
Note: I hope this is correct, but it is not clear why vma_policy_mof()
doesn't fall back to get_task_policy() if ->get_policy() returns NULL.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The deprecation warnings for the scan_unevictable interface triggers by
scripts doing `sysctl -a | grep something else'. This is annoying and not
helpful.
The interface has been defunct since 264e56d824 ("mm: disable user
interface to manually rescue unevictable pages"), which was in 2011, and
there haven't been any reports of usecases for it, only reports that the
deprecation warnings are annying. It's unlikely that anybody is using
this interface specifically at this point, so remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct compact_control currently converts the gfp mask to a migratetype,
but we need the entire gfp mask in a follow-up patch.
Pass the entire gfp mask as part of struct compact_control.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator has gfp flags (like __GFP_WAIT) and alloc flags (like
ALLOC_CPUSET) that have separate semantics.
The function allocflags_to_migratetype() actually takes gfp flags, not
alloc flags, and returns a migratetype. Rename it to
gfpflags_to_migratetype().
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.
Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates. This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.
This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.
It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same. But in theory
the compiler can replace the local variable by multiple inlines of
page_order(). Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.
Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner. The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike the migration scanner, the free scanner remembers the beginning of
the last scanned pageblock in cc->free_pfn. It might be therefore
rescanning pages uselessly when called several times during single
compaction. This might have been useful when pages were returned to the
buddy allocator after a failed migration, but this is no longer the case.
This patch changes the meaning of cc->free_pfn so that if it points to a
middle of a pageblock, that pageblock is scanned only from cc->free_pfn to
the end. isolate_freepages_block() will record the pfn of the last page
it looked at, which is then used to update cc->free_pfn.
In the mmtests stress-highalloc benchmark, this has resulted in lowering
the ratio between pages scanned by both scanners, from 2.5 free pages per
migrate page, to 2.25 free pages per migrate page, without affecting
success rates.
With __GFP_NO_KSWAPD allocations, this appears to result in a worse ratio
(2.1 instead of 1.8), but page migration successes increased by 10%, so
this could mean that more useful work can be done until need_resched()
aborts this kind of compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners try to lock zone locks as late as possible by checking
many page or pageblock properties opportunistically without lock and
skipping them if not unsuitable. For pages that pass the initial checks,
some properties have to be checked again safely under lock. However, if
the lock was already held from a previous iteration in the initial checks,
the rechecks are unnecessary.
This patch therefore skips the rechecks when the lock was already held.
This is now possible to do, since we don't (potentially) drop and
reacquire the lock between the initial checks and the safe rechecks
anymore.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners regularly check for lock contention and need_resched()
through the compact_checklock_irqsave() function. However, if there is no
contention, the lock can be held and IRQ disabled for potentially long
time.
This has been addressed by commit b2eef8c0d0 ("mm: compaction: minimise
the time IRQs are disabled while isolating pages for migration") for the
migration scanner. However, the refactoring done by commit 2a1402aa04
("mm: compaction: acquire the zone->lru_lock as late as possible") has
changed the conditions so that the lock is dropped only when there's
contention on the lock or need_resched() is true. Also, need_resched() is
checked only when the lock is already held. The comment "give a chance to
irqs before checking need_resched" is therefore misleading, as IRQs remain
disabled when the check is done.
This patch restores the behavior intended by commit b2eef8c0d0 and also
tries to better balance and make more deterministic the time spent by
checking for contention vs the time the scanners might run between the
checks. It also avoids situations where checking has not been done often
enough before. The result should be avoiding both too frequent and too
infrequent contention checking, and especially the potentially
long-running scans with IRQs disabled and no checking of need_resched() or
for fatal signal pending, which can happen when many consecutive pages or
pageblocks fail the preliminary tests and do not reach the later call site
to compact_checklock_irqsave(), as explained below.
Before the patch:
In the migration scanner, compact_checklock_irqsave() was called each
loop, if reached. If not reached, some lower-frequency checking could
still be done if the lock was already held, but this would not result in
aborting contended async compaction until reaching
compact_checklock_irqsave() or end of pageblock. In the free scanner, it
was similar but completely without the periodical checking, so lock can be
potentially held until reaching the end of pageblock.
After the patch, in both scanners:
The periodical check is done as the first thing in the loop on each
SWAP_CLUSTER_MAX aligned pfn, using the new compact_unlock_should_abort()
function, which always unlocks the lock (if locked) and aborts async
compaction if scheduling is needed. It also aborts any type of compaction
when a fatal signal is pending.
The compact_checklock_irqsave() function is replaced with a slightly
different compact_trylock_irqsave(). The biggest difference is that the
function is not called at all if the lock is already held. The periodical
need_resched() checking is left solely to compact_unlock_should_abort().
The lock contention avoidance for async compaction is achieved by the
periodical unlock by compact_unlock_should_abort() and by using trylock in
compact_trylock_irqsave() and aborting when trylock fails. Sync
compaction does not use trylock.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unification of the migrate and free scanner families of function has
highlighted a difference in how the scanners ensure they only isolate
pages of the intended zone. This is important for taking zone lock or lru
lock of the correct zone. Due to nodes overlapping, it is however
possible to encounter a different zone within the range of the zone being
compacted.
The free scanner, since its inception by commit 748446bb6b ("mm:
compaction: memory compaction core"), has been checking the zone of the
first valid page in a pageblock, and skipping the whole pageblock if the
zone does not match.
This checking was completely missing from the migration scanner at first,
and later added by commit dc9086004b ("mm: compaction: check for
overlapping nodes during isolation for migration") in a reaction to a bug
report. But the zone comparison in migration scanner is done once per a
single scanned page, which is more defensive and thus more costly than a
check per pageblock.
This patch unifies the checking done in both scanners to once per
pageblock, through a new pageblock_pfn_to_page() function, which also
includes pfn_valid() checks. It is more defensive than the current free
scanner checks, as it checks both the first and last page of the
pageblock, but less defensive by the migration scanner per-page checks.
It assumes that node overlapping may result (on some architecture) in a
boundary between two nodes falling into the middle of a pageblock, but
that there cannot be a node0 node1 node0 interleaving within a single
pageblock.
The result is more code being shared and a bit less per-page CPU cost in
the migration scanner.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_freepages_block() rechecks if the pageblock is suitable to be a
target for migration after it has taken the zone->lock. However, the
check has been optimized to occur only once per pageblock, and
compact_checklock_irqsave() might be dropping and reacquiring lock, which
means somebody else might have changed the pageblock's migratetype
meanwhile.
Furthermore, nothing prevents the migratetype to change right after
isolate_freepages_block() has finished isolating. Given how imperfect
this is, it's simpler to just rely on the check done in
isolate_freepages() without lock, and not pretend that the recheck under
lock guarantees anything. It is just a heuristic after all.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compact_stall vmstat counter counts the number of allocations stalled
by direct compaction. It does not count when all attempted zones had
deferred compaction, but it does count when all zones skipped compaction.
The skipping is decided based on very early check of
compaction_suitable(), based on watermarks and memory fragmentation.
Therefore it makes sense not to count skipped compactions as stalls.
Moreover, compact_success or compact_fail is also already not being
counted when compaction was skipped, so this patch changes the
compact_stall counting to match the other two.
Additionally, restructure __alloc_pages_direct_compact() code for better
readability.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating huge page for collapsing, khugepaged currently holds
mmap_sem for reading on the mm where collapsing occurs. Afterwards the
read lock is dropped before write lock is taken on the same mmap_sem.
Holding mmap_sem during whole huge page allocation is therefore useless,
the vma needs to be rechecked after taking the write lock anyway.
Furthemore, huge page allocation might involve a rather long sync
compaction, and thus block any mmap_sem writers and i.e. affect workloads
that perform frequent m(un)map or mprotect oterations.
This patch simply releases the read lock before allocating a huge page.
It also deletes an outdated comment that assumed vma must be stable, as it
was using alloc_hugepage_vma(). This is no longer true since commit
9f1b868a13 ("mm: thp: khugepaged: add policy for finding target node").
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The check for ALLOC_CMA in __alloc_pages_nodemask() derives migratetype
from gfp_mask in each retry pass, although the migratetype variable
already has the value determined and it does not change. Use the variable
and perform the check only once. Also convert #ifdef CONFIG_CMA to
IS_ENABLED.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Russell King recently noticed that limiting default CMA region only to low
memory on ARM architecture causes serious memory management issues with
machines having a lot of memory (which is mainly available as high
memory). More information can be found the following thread:
http://thread.gmane.org/gmane.linux.ports.arm.kernel/348441/
Those two patches removes this limit letting kernel to put default CMA
region into high memory when this is possible (there is enough high memory
available and architecture specific DMA limit fits).
This should solve strange OOM issues on systems with lots of RAM (i.e.
>1GiB) and large (>256M) CMA area.
This patch (of 2):
Automatically allocated regions should not cross low/high memory boundary,
because such regions cannot be later correctly initialized due to spanning
across two memory zones. This patch adds a check for this case and a
simple code for moving region to low memory if automatically selected
address might not fit completely into high memory.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Daniel Drake <drake@endlessm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memory-hotplug has two limits:
1. If the memory block is in ZONE_NORMAL, you can change it to
ZONE_MOVABLE, but this memory block must be adjacent to ZONE_MOVABLE.
2. If the memory block is in ZONE_MOVABLE, you can change it to
ZONE_NORMAL, but this memory block must be adjacent to ZONE_NORMAL.
With this patch, we can easy to know a memory block can be onlined to
which zone, and don't need to know the above two limits.
Updated the related Documentation.
[akpm@linux-foundation.org: use conventional comment layout]
[akpm@linux-foundation.org: fix build with CONFIG_MEMORY_HOTREMOVE=n]
[akpm@linux-foundation.org: remove unused local zone_prev]
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because of chicken and egg problem, initialization of SLAB is really
complicated. We need to allocate cpu cache through SLAB to make the
kmem_cache work, but before initialization of kmem_cache, allocation
through SLAB is impossible.
On the other hand, SLUB does initialization in a more simple way. It uses
percpu allocator to allocate cpu cache so there is no chicken and egg
problem.
So, this patch try to use percpu allocator in SLAB. This simplifies the
initialization step in SLAB so that we could maintain SLAB code more
easily.
In my testing there is no performance difference.
This implementation relies on percpu allocator. Because percpu allocator
uses vmalloc address space, vmalloc address space could be exhausted by
this change on many cpu system with *32 bit* kernel. This implementation
can cover 1024 cpus in worst case by following calculation.
Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches *
120 objects per cpu_cache = 140 MB
Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) *
80 objects per cpu_cache = 46 MB
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab merge is good feature to reduce fragmentation. If new creating slab
have similar size and property with exsitent slab, this feature reuse it
rather than creating new one. As a result, objects are packed into fewer
slabs so that fragmentation is reduced.
Below is result of my testing.
* After boot, sleep 20; cat /proc/meminfo | grep Slab
<Before>
Slab: 25136 kB
<After>
Slab: 24364 kB
We can save 3% memory used by slab.
For supporting this feature in SLAB, we need to implement SLAB specific
kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some
SLUB specific processing related to debug flag and object size change on
these functions.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab merge is good feature to reduce fragmentation. Now, it is only
applied to SLUB, but, it would be good to apply it to SLAB. This patch is
preparation step to apply slab merge to SLAB by commonizing slab merge
logic.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a bug (discovered with kmemcheck) in for_each_kmem_cache_node(). The
for loop reads the array "node" before verifying that the index is within
the range. This results in kmemcheck warning.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the SLUB code to search for partial slabs on the nearest node with
memory in the presence of memoryless nodes. Additionally, do not consider
it to be an ALLOC_NODE_MISMATCH (and deactivate the slab) when a
memoryless-node specified allocation goes off-node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anton noticed (http://www.spinics.net/lists/linux-mm/msg67489.html) that
on ppc LPARs with memoryless nodes, a large amount of memory was consumed
by slabs and was marked unreclaimable. He tracked it down to slab
deactivations in the SLUB core when we allocate remotely, leading to poor
efficiency always when memoryless nodes are present.
After much discussion, Joonsoo provided a few patches that help
significantly. They don't resolve the problem altogether:
- memory hotplug still needs testing, that is when a memoryless node
becomes memory-ful, we want to dtrt
- there are other reasons for going off-node than memoryless nodes,
e.g., fully exhausted local nodes
Neither case is resolved with this series, but I don't think that should
block their acceptance, as they can be explored/resolved with follow-on
patches.
The series consists of:
[1/3] topology: add support for node_to_mem_node() to determine the
fallback node
[2/3] slub: fallback to node_to_mem_node() node if allocating on
memoryless node
- Joonsoo's patches to cache the nearest node with memory for each
NUMA node
[3/3] Partial revert of 81c98869fa (""kthread: ensure locality of
task_struct allocations")
- At Tejun's request, keep the knowledge of memoryless node fallback
to the allocator core.
This patch (of 3):
We need to determine the fallback node in slub allocator if the allocation
target node is memoryless node. Without it, the SLUB wrongly select the
node which has no memory and can't use a partial slab, because of node
mismatch. Introduced function, node_to_mem_node(X), will return a node Y
with memory that has the nearest distance. If X is memoryless node, it
will return nearest distance node, but, if X is normal node, it will
return itself.
We will use this function in following patch to determine the fallback
node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tracing of mergeable slabs as well as uses of failslab are confusing since
the objects of multiple slab caches will be affected. Moreover this
creates a situation where a mergeable slab will become unmergeable.
If tracing or failslab testing is desired then it may be best to switch
merging off for starters.
Signed-off-by: Christoph Lameter <cl@linux.com>
Tested-by: WANG Chao <chaowang@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cache_free_alien() is rarely used function when node mismatch. But, it is
defined with inline attribute so it is inlined to __cache_free() which is
core free function of slab allocator. It uselessly makes
kmem_cache_free()/kfree() functions large. What we really need to inline
is just checking node match so this patch factor out other parts of
cache_free_alien() to reduce code size of kmem_cache_free()/ kfree().
<Before>
nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free"
00000000000011e0 0000000000000228 T kfree
0000000000000670 0000000000000216 T kmem_cache_free
<After>
nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free"
0000000000001110 00000000000001b5 T kfree
0000000000000750 0000000000000181 T kmem_cache_free
You can see slightly reduced size of text: 0x228->0x1b5, 0x216->0x181.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our intention of __ac_put_obj() is that it doesn't affect anything if
sk_memalloc_socks() is disabled. But, because __ac_put_obj() is too
small, compiler inline it to ac_put_obj() and affect code size of free
path. This patch add noinline keyword for __ac_put_obj() not to distrupt
normal free path at all.
<Before>
nm -S slab-orig.o |
grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free"
0000000000001e80 00000000000002f5 t cache_alloc_refill
0000000000001230 0000000000000258 T kfree
0000000000000690 000000000000024c T kmem_cache_free
<After>
nm -S slab-patched.o |
grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free"
0000000000001e00 00000000000002e5 t cache_alloc_refill
00000000000011e0 0000000000000228 T kfree
0000000000000670 0000000000000216 T kmem_cache_free
cache_alloc_refill: 0x2f5->0x2e5
kfree: 0x256->0x228
kmem_cache_free: 0x24c->0x216
code size of each function is reduced slightly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, due to likely keyword, compiled code of cache_flusharray() is on
unlikely.text section. Although it is uncommon case compared to free to
cpu cache case, it is common case than free_block(). But, free_block() is
on normal text section. This patch fix this odd situation to remove
likely keyword.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we track caller if tracing or slab debugging is enabled. If they are
disabled, we could save one argument passing overhead by calling
__kmalloc(_node)(). But, I think that it would be marginal. Furthermore,
default slab allocator, SLUB, doesn't use this technique so I think that
it's okay to change this situation.
After this change, we can turn on/off CONFIG_DEBUG_SLAB without full
kernel build and remove some complicated '#if' defintion. It looks more
benefitial to me.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't need to keep kmem_cache definition in include/linux/slab.h if we
don't need to inline kmem_cache_size(). According to my code inspection,
this function is only called at lc_create() in lib/lru_cache.c which may
be called at initialization phase of something, so we don't need to inline
it. Therfore, move it to slab_common.c and move kmem_cache definition to
internal header.
After this change, we can change kmem_cache definition easily without full
kernel build. For instance, we can turn on/off CONFIG_SLUB_STATS without
full kernel build.
[akpm@linux-foundation.org: export kmem_cache_size() to modules]
[rdunlap@infradead.org: add header files to fix kmemcheck.c build errors]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
False positive:
mm/slab_common.c: In function 'kmem_cache_create':
mm/slab_common.c:204: warning: 's' may be used uninitialized in this function
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Rename vm_is_stack() to task_of_stack() and change it to return
"struct task_struct *" rather than the global (and thus wrong in
general) pid_t.
- Add the new pid_of_stack() helper which calls task_of_stack() and
uses the right namespace to report the correct pid_t.
Unfortunately we need to define this helper twice, in task_mmu.c
and in task_nommu.c. perhaps it makes sense to add fs/proc/util.c
and move at least pid_of_stack/task_of_stack there to avoid the
code duplication.
- Change show_map_vma() and show_numa_map() to use the new helper.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For DAX, we want to be able to copy between iovecs and kernel addresses
that don't necessarily have a struct page. This is a fairly simple
rearrangement for bvec iters to kmap the pages outside and pass them in,
but for user iovecs it gets more complicated because we might try various
different ways to kmap the memory. Duplicating the existing logic works
out best in this case.
We need to be able to write zeroes to an iovec for reads from unwritten
ranges in a file. This is performed by the new iov_iter_zero() function,
again patterned after the existing code that handles iovec iterators.
[AV: and export the buggers...]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Highlights include:
Stable fixes:
- fix an NFSv4.1 state renewal regression
- fix open/lock state recovery error handling
- fix lock recovery when CREATE_SESSION/SETCLIENTID_CONFIRM fails
- fix statd when reconnection fails
- Don't wake tasks during connection abort
- Don't start reboot recovery if lease check fails
- fix duplicate proc entries
Features:
- pNFS block driver fixes and clean ups from Christoph
- More code cleanups from Anna
- Improve mmap() writeback performance
- Replace use of PF_TRANS with a more generic mechanism for avoiding
deadlocks in nfs_release_page
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUMpFYAAoJEGcL54qWCgDywHYP/A7XNykwOGhoHVP1Cgr3xqoz
gVhAw97AEMZE8xSNVEGS++pJTe59JVzsIsYAwdHMwePV33l3zyzYorae6N9p7zWF
0xVaNQ4qNLVhbrNLAoB5KA/c3/jMnNjF5t15+8akZad5pt4kXLlhSKjyVpdEEtJE
A0eneXShMYEeLZoOJhpQt5bsw0OZ8YbWWEMjGlDqyeelvV3K1+zfivQOoyX6hS4w
XFkPEDmU7zunE/xFP9ZoUaVdLO0TvOWfEZ7STWoHm7NuWfPQiDb9w1mTnuZbZyka
ssezoGcitzwsjCcQ5e1iKTOoFRIsm/zYXFQgFQL7VFMBU1Tss9Of8047EyDkqcPF
GxctsGg0gQ2FkG7yx7JH7AKpyibOIuByQrQQ916coWSf7K0L4H4Rcky3vryroylP
1e1RI49xu215OTm+dLvlvYCv55bqCrTmaUGImZac18+ixD2eh6MNfW2ubSdxk89L
U2rTFV09Bd52N7IQOGQx1FBEI2ZnIFUV4UaFz7v+rGFxOnk6+WYe+iWyb4wC70Yc
8Jh/gTIQDd5aghql3FTieMOyfEvO6Re4pLMXmqEWMAevicx2t8DwkJriRu6X8Iy2
rlDlBPwu5QmRWC20Dc897f0VajwDtwdeB8puod7nobOWzOfx4FrNqLJ+jR3pmHUk
0otvJytqemXt+zkqqHKK
=/OQi
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-3.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable fixes:
- fix an NFSv4.1 state renewal regression
- fix open/lock state recovery error handling
- fix lock recovery when CREATE_SESSION/SETCLIENTID_CONFIRM fails
- fix statd when reconnection fails
- don't wake tasks during connection abort
- don't start reboot recovery if lease check fails
- fix duplicate proc entries
Features:
- pNFS block driver fixes and clean ups from Christoph
- More code cleanups from Anna
- Improve mmap() writeback performance
- Replace use of PF_TRANS with a more generic mechanism for avoiding
deadlocks in nfs_release_page"
* tag 'nfs-for-3.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (66 commits)
NFSv4.1: Fix an NFSv4.1 state renewal regression
NFSv4: fix open/lock state recovery error handling
NFSv4: Fix lock recovery when CREATE_SESSION/SETCLIENTID_CONFIRM fails
NFS: Fabricate fscache server index key correctly
SUNRPC: Add missing support for RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT
NFSv3: Fix missing includes of nfs3_fs.h
NFS/SUNRPC: Remove other deadlock-avoidance mechanisms in nfs_release_page()
NFS: avoid waiting at all in nfs_release_page when congested.
NFS: avoid deadlocks with loop-back mounted NFS filesystems.
MM: export page_wakeup functions
SCHED: add some "wait..on_bit...timeout()" interfaces.
NFS: don't use STABLE writes during writeback.
NFSv4: use exponential retry on NFS4ERR_DELAY for async requests.
rpc: Add -EPERM processing for xs_udp_send_request()
rpc: return sent and err from xs_sendpages()
lockd: Try to reconnect if statd has moved
SUNRPC: Don't wake tasks during connection abort
Fixing lease renewal
nfs: fix duplicate proc entries
pnfs/blocklayout: Fix a 64-bit division/remainder issue in bl_map_stripe
...
When @gfp is specified, the percpu allocator is interested in whether
it contains all of GFP_KERNEL or not. If it does, the normal
allocation path is taken; otherwise, the atomic allocation path.
Unfortunately, pcpu_alloc() was incorrectly testing for whether @gfp
contains any part of GFP_KERNEL.
Fix it by testing "(gfp & GFP_KERNEL) != GFP_KERNEL" instead of
"!(gfp & GFP_KERNEL)" to decide whether the allocation should be
atomic or not.
Signed-off-by: Tejun Heo <tj@kernel.org>
Apart from the usual cleanups, here is the summary of new features:
- s390 moves closer towards host large page support
- PowerPC has improved support for debugging (both inside the guest and
via gdbstub) and support for e6500 processors
- ARM/ARM64 support read-only memory (which is necessary to put firmware
in emulated NOR flash)
- x86 has the usual emulator fixes and nested virtualization improvements
(including improved Windows support on Intel and Jailhouse hypervisor
support on AMD), adaptive PLE which helps overcommitting of huge guests.
Also included are some patches that make KVM more friendly to memory
hot-unplug, and fixes for rare caching bugs.
Two patches have trivial mm/ parts that were acked by Rik and Andrew.
Note: I will soon switch to a subkey for signing purposes. To verify
future signed pull requests from me, please update my key with
"gpg --recv-keys 9B4D86F2". You should see 3 new subkeys---the
one for signing will be a 2048-bit RSA key, 4E6B09D7.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJUL5sPAAoJEBvWZb6bTYbyfkEP/3MNhSyn6HCjPjtjLNPAl9KL
WpExZSUFL2+4CztpdGIsek1BeJYHmqv3+c5S+WvaWVA1aqh2R7FT1D1ErBLjgLQq
lq23IOr+XxmC3dXQUEEk+TlD+283UzypzEG4l4UD3JYg79fE3UrXAz82SeyewJDY
x7aPYhkZG3RHu+wAyMPasG6E3zS5LySdUtGWbiPwz5BejrhBJoJdeb2WIL/RwnUK
7ppSLB5EoFj/uMkuyeAAdAbdfSrhHA6faDZxNdxS9k9wGutrhhfUoQ49ONrKG4dV
sFo1tSPTVgRs8QFYUZ2fJUPBAmUVddsgqh2K9d0NftGTq7b8YszaCsfFrs2/Y4MU
YxssWEhxsfszerCu12bbAJrv6JBZYQ7TwGvI9L7P0iFU6IVw/djmukU4AkM9/e91
YS/cue/PN+9Pn2ccXzL9J7xRtZb8FsOuRsCXTCmbOwDkLmrKPDBN2t3RUbeF+Eam
ABrpWnLKX13kZSo4LKU+/niarzmPMp7odQfHVdr8ea0fiYLp4iN8puA20WaSPIgd
CLvm+RAvXe5Lm91L4mpFotJ2uFyK6QlIYJV4FsgeWv/0D0qppWQi0Utb/aCNHCgy
z8MyUMD48y7EpoQrFYr/7cddXIu0/NegnM8I1coVjIPEk4NfeebGUlCJ/V3D8wMG
BgEfS2x6jRc5zB3hjwDr
=iEVi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Fixes and features for 3.18.
Apart from the usual cleanups, here is the summary of new features:
- s390 moves closer towards host large page support
- PowerPC has improved support for debugging (both inside the guest
and via gdbstub) and support for e6500 processors
- ARM/ARM64 support read-only memory (which is necessary to put
firmware in emulated NOR flash)
- x86 has the usual emulator fixes and nested virtualization
improvements (including improved Windows support on Intel and
Jailhouse hypervisor support on AMD), adaptive PLE which helps
overcommitting of huge guests. Also included are some patches that
make KVM more friendly to memory hot-unplug, and fixes for rare
caching bugs.
Two patches have trivial mm/ parts that were acked by Rik and Andrew.
Note: I will soon switch to a subkey for signing purposes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (157 commits)
kvm: do not handle APIC access page if in-kernel irqchip is not in use
KVM: s390: count vcpu wakeups in stat.halt_wakeup
KVM: s390/facilities: allow TOD-CLOCK steering facility bit
KVM: PPC: BOOK3S: HV: CMA: Reserve cma region only in hypervisor mode
arm/arm64: KVM: Report correct FSC for unsupported fault types
arm/arm64: KVM: Fix VTTBR_BADDR_MASK and pgd alloc
kvm: Fix kvm_get_page_retry_io __gup retval check
arm/arm64: KVM: Fix set_clear_sgi_pend_reg offset
kvm: x86: Unpin and remove kvm_arch->apic_access_page
kvm: vmx: Implement set_apic_access_page_addr
kvm: x86: Add request bit to reload APIC access page address
kvm: Add arch specific mmu notifier for page invalidation
kvm: Rename make_all_cpus_request() to kvm_make_all_cpus_request() and make it non-static
kvm: Fix page ageing bugs
kvm/x86/mmu: Pass gfn and level to rmapp callback.
x86: kvm: use alternatives for VMCALL vs. VMMCALL if kernel text is read-only
kvm: x86: use macros to compute bank MSRs
KVM: x86: Remove debug assertion of non-PAE reserved bits
kvm: don't take vcpu mutex for obviously invalid vcpu ioctls
kvm: Faults which trigger IO release the mmap_sem
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJUL0J0AAoJEA7Zo9+K/4c9w40P/iMFPfCethdBtPz5rI88CVr2
7yU99TdbEPoRJm+rU4ohvHdB73p2KWINIKvpSThvegvjXbEcKxQkdpVWHsFJZeHS
bZiYmhjxdCBvJGLrYo5IwqH0PrSjokTPzMUekUCk7BkUKNJRaDjfUBHvUmKsinUR
dQL+3KE3edy6W3DL+FOd0QZwSOgmOfEibTWpfmg+n16kFNa75Kg/QLwjYRvtQplP
eElywDZN07IhAeBFqKhKvlKmDSAeqMd8RfoPPo9Ts+reeIrWYjVNbl9ISOqXqy2x
JoLeZQmwSXj/C9Ehr5e+aId2eO8In5xueQfXP8SS8dCC7VLwRbnNgyAQQZEslEBk
QH0GhT6GqTamBdiNI3I+usfs65cEaialXh2afcoLwGS/iGD8MhZ8Dt+m4iyXNxEZ
kT9VA4974mPjJ1g0mDDnYIxNjxF43m+SD5K1sR/XGpMcA8NdqMUmvKNcbePCobVa
WTutIemQqGipNeWE94XwZEbc0B+aWwH7eiZOBMVGhWsHInd7QeTBTbfZlctyBkzf
AswgsFjC5FW05CWK6J1Lf/UI1FD9PmHMKpmQUPED1+7okDTfqGjKjdREWgZSixUt
LIRfWqWEaNpRRBFbDyt0C+F4pBRPLiRDaOyNhwEdtXuVGKRXb1G3qX7nFOJAZo6G
GDTZo9iIRNSfm/M4tJ+n
=2VyW
-----END PGP SIGNATURE-----
Merge tag 'tiny/for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux
Pull "tinification" patches from Josh Triplett.
Work on making smaller kernels.
* tag 'tiny/for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux:
bloat-o-meter: Ignore syscall aliases SyS_ and compat_SyS_
mm: Support compiling out madvise and fadvise
x86: Support compiling out human-friendly processor feature names
x86: Drop support for /proc files when !CONFIG_PROC_FS
x86, boot: Don't compile early_serial_console.c when !CONFIG_EARLY_PRINTK
x86, boot: Don't compile aslr.c when !CONFIG_RANDOMIZE_BASE
x86, boot: Use the usual -y -n mechanism for objects in vmlinux
x86: Add "make tinyconfig" to configure the tiniest possible kernel
x86, platform, kconfig: move kvmconfig functionality to a helper
Merge fixes from Andrew Morton:
"5 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm: page_alloc: fix zone allocation fairness on UP
perf: fix perf bug in fork()
MAINTAINERS: change git URL for mpc5xxx tree
mm: memcontrol: do not iterate uninitialized memcgs
ocfs2/dlm: should put mle when goto kill in dlm_assert_master_handler
The zone allocation batches can easily underflow due to higher-order
allocations or spills to remote nodes. On SMP that's fine, because
underflows are expected from concurrency and dealt with by returning 0.
But on UP, zone_page_state will just return a wrapped unsigned long,
which will get past the <= 0 check and then consider the zone eligible
until its watermarks are hit.
Commit 3a025760fc ("mm: page_alloc: spill to remote nodes before
waking kswapd") already made the counter-resetting use
atomic_long_read() to accomodate underflows from remote spills, but it
didn't go all the way with it.
Make it clear that these batches are expected to go negative regardless
of concurrency, and use atomic_long_read() everywhere.
Fixes: 81c0a2bb51 ("mm: page_alloc: fair zone allocator policy")
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Leon Romanovsky <leon@leon.nu>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup iterators yield css objects that have not yet gone through
css_online(), but they are not complete memcgs at this point and so the
memcg iterators should not return them. Commit d8ad305597 ("mm/memcg:
iteration skip memcgs not yet fully initialized") set out to implement
exactly this, but it uses CSS_ONLINE, a cgroup-internal flag that does
not meet the ordering requirements for memcg, and so the iterator may
skip over initialized groups, or return partially initialized memcgs.
The cgroup core can not reasonably provide a clear answer on whether the
object around the css has been fully initialized, as that depends on
controller-specific locking and lifetime rules. Thus, introduce a
memcg-specific flag that is set after the memcg has been initialized in
css_online(), and read before mem_cgroup_iter() callers access the memcg
members.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reverts 1ba6e0b50b ("mm: numa: split_huge_page: transfer the
NUMA type from the pmd to the pte"). If a huge page is being split due
a protection change and the tail will be in a PROT_NONE vma then NUMA
hinting PTEs are temporarily created in the protected VMA.
VM_RW|VM_PROTNONE
|-----------------|
^
split here
In the specific case above, it should get fixed up by change_pte_range()
but there is a window of opportunity for weirdness to happen. Similarly,
if a huge page is shrunk and split during a protection update but before
pmd_numa is cleared then a pte_numa can be left behind.
Instead of adding complexity trying to deal with the case, this patch
will not mark PTEs NUMA when splitting a huge page. NUMA hinting faults
will not be triggered which is marginal in comparison to the complexity
in dealing with the corner cases during THP split.
Cc: stable@vger.kernel.org
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A migration entry is marked as write if pte_write was true at the time the
entry was created. The VMA protections are not double checked when migration
entries are being removed as mprotect marks write-migration-entries as
read. It means that potentially we take a spurious fault to mark PTEs write
again but it's straight-forward. However, there is a race between write
migrations being marked read and migrations finishing. This potentially
allows a PTE to be write that should have been read. Close this race by
double checking the VMA permissions using maybe_mkwrite when migration
completes.
[torvalds@linux-foundation.org: use maybe_mkwrite]
Cc: stable@vger.kernel.org
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->page_mkwrite() is used by filesystems to allocate blocks under a page
which is becoming writeably mmapped in some process' address space. This
allows a filesystem to return a page fault if there is not enough space
available, user exceeds quota or similar problem happens, rather than
silently discarding data later when writepage is called.
However VFS fails to call ->page_mkwrite() in all the cases where
filesystems need it when blocksize < pagesize. For example when
blocksize = 1024, pagesize = 4096 the following is problematic:
ftruncate(fd, 0);
pwrite(fd, buf, 1024, 0);
map = mmap(NULL, 1024, PROT_WRITE, MAP_SHARED, fd, 0);
map[0] = 'a'; ----> page_mkwrite() for index 0 is called
ftruncate(fd, 10000); /* or even pwrite(fd, buf, 1, 10000) */
mremap(map, 1024, 10000, 0);
map[4095] = 'a'; ----> no page_mkwrite() called
At the moment ->page_mkwrite() is called, filesystem can allocate only
one block for the page because i_size == 1024. Otherwise it would create
blocks beyond i_size which is generally undesirable. But later at
->writepage() time, we also need to store data at offset 4095 but we
don't have block allocated for it.
This patch introduces a helper function filesystems can use to have
->page_mkwrite() called at all the necessary moments.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Pull vfs fixes from Al Viro:
"Assorted fixes + unifying __d_move() and __d_materialise_dentry() +
minimal regression fix for d_path() of victims of overwriting rename()
ported on top of that"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Don't exchange "short" filenames unconditionally.
fold swapping ->d_name.hash into switch_names()
fold unlocking the children into dentry_unlock_parents_for_move()
kill __d_materialise_dentry()
__d_materialise_dentry(): flip the order of arguments
__d_move(): fold manipulations with ->d_child/->d_subdirs
don't open-code d_rehash() in d_materialise_unique()
pull rehashing and unlocking the target dentry into __d_materialise_dentry()
ufs: deal with nfsd/iget races
fuse: honour max_read and max_write in direct_io mode
shmem: fix nlink for rename overwrite directory
Pull cgroup fixes from Tejun Heo:
"This is quite late but these need to be backported anyway.
This is the fix for a long-standing cpuset bug which existed from
2009. cpuset makes use of PF_SPREAD_{PAGE|SLAB} flags to modify the
task's memory allocation behavior according to the settings of the
cpuset it belongs to; unfortunately, when those flags have to be
changed, cpuset did so directly even whlie the target task is running,
which is obviously racy as task->flags may be modified by the task
itself at any time. This obscure bug manifested as corrupt
PF_USED_MATH flag leading to a weird crash.
The bug is fixed by moving the flag to task->atomic_flags. The first
two are prepatory ones to help defining atomic_flags accessors and the
third one is the actual fix"
* 'for-3.17-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flags
sched: add macros to define bitops for task atomic flags
sched: fix confusing PFA_NO_NEW_PRIVS constant
The third argument of fuse_get_user_pages() "nbytesp" refers to the number of
bytes a caller asked to pack into fuse request. This value may be lesser
than capacity of fuse request or iov_iter. So fuse_get_user_pages() must
ensure that *nbytesp won't grow.
Now, when helper iov_iter_get_pages() performs all hard work of extracting
pages from iov_iter, it can be done by passing properly calculated
"maxsize" to the helper.
The other caller of iov_iter_get_pages() (dio_refill_pages()) doesn't need
this capability, so pass LONG_MAX as the maxsize argument here.
Fixes: c9c37e2e63 ("fuse: switch to iov_iter_get_pages()")
Reported-by: Werner Baumann <werner.baumann@onlinehome.de>
Tested-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If overwriting an empty directory with rename, then need to drop the extra
nlink.
Test prog:
#include <stdio.h>
#include <fcntl.h>
#include <err.h>
#include <sys/stat.h>
int main(void)
{
const char *test_dir1 = "test-dir1";
const char *test_dir2 = "test-dir2";
int res;
int fd;
struct stat statbuf;
res = mkdir(test_dir1, 0777);
if (res == -1)
err(1, "mkdir(\"%s\")", test_dir1);
res = mkdir(test_dir2, 0777);
if (res == -1)
err(1, "mkdir(\"%s\")", test_dir2);
fd = open(test_dir2, O_RDONLY);
if (fd == -1)
err(1, "open(\"%s\")", test_dir2);
res = rename(test_dir1, test_dir2);
if (res == -1)
err(1, "rename(\"%s\", \"%s\")", test_dir1, test_dir2);
res = fstat(fd, &statbuf);
if (res == -1)
err(1, "fstat(%i)", fd);
if (statbuf.st_nlink != 0) {
fprintf(stderr, "nlink is %lu, should be 0\n", statbuf.st_nlink);
return 1;
}
return 0;
}
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This fixes the same bug as b43790eedd ("mm: softdirty: don't forget to
save file map softdiry bit on unmap") and 9aed8614af ("mm/memory.c:
don't forget to set softdirty on file mapped fault") where the return
value of pte_*mksoft_dirty was being ignored.
To be sure that no other pte/pmd "mk" function return values were being
ignored, I annotated the functions in arch/x86/include/asm/pgtable.h
with __must_check and rebuilt.
The userspace effect of this bug is that the softdirty mark might be
lost if a file mapped pte get zapped.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Jamie Liu <jamieliu@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 4590685546 ("mm/sl[aou]b: Common alignment code"), the
"ralign" automatic variable in __kmem_cache_create() may be used as
uninitialized.
The proper alignment defaults to BYTES_PER_WORD and can be overridden by
SLAB_RED_ZONE or the alignment specified by the caller.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=85031
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Andrei Elovikov <a.elovikov@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will allow NFS to wait for PG_private to be cleared and,
particularly, to send a wake-up when it is.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>